Properties

Label 1120.2.bw.f
Level $1120$
Weight $2$
Character orbit 1120.bw
Analytic conductor $8.943$
Analytic rank $0$
Dimension $8$
CM discriminant -20
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1120,2,Mod(289,1120)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1120.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1120, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1120 = 2^{5} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1120.bw (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,6,0,0,0,-6,0,12,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.94324502638\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.12960000.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{6} + 8x^{4} - 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{6}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{5} + \beta_{4} + \beta_{3}) q^{3} + (\beta_{4} + \beta_{3} - \beta_1) q^{5} + ( - \beta_{7} - \beta_{6} + \beta_{4} - 1) q^{7} + (2 \beta_{7} + 4 \beta_{4} + \cdots - \beta_1) q^{9} + (\beta_{7} + \beta_{5} + 6 \beta_{4} + \cdots - 2) q^{15}+ \cdots + ( - 4 \beta_{7} - 8 \beta_{6} + \cdots + 8) q^{89}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 6 q^{3} - 6 q^{7} + 12 q^{9} + 4 q^{21} - 6 q^{23} - 20 q^{25} - 24 q^{29} + 20 q^{35} - 20 q^{45} - 16 q^{63} + 18 q^{67} + 112 q^{69} - 30 q^{75} - 32 q^{81} - 78 q^{87} - 12 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 3x^{6} + 8x^{4} - 3x^{2} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{6} - 4\nu^{4} + 8\nu^{2} + 4\nu - 3 ) / 4 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{7} - 13\nu ) / 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{6} + 4\nu^{4} - 8\nu^{2} + 4\nu + 3 ) / 4 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -3\nu^{6} + 8\nu^{4} - 24\nu^{2} + 9 ) / 8 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 3\nu^{7} - \nu^{6} - 8\nu^{5} + 24\nu^{3} - \nu - 13 ) / 8 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -3\nu^{7} - 3\nu^{6} + 8\nu^{5} + 8\nu^{4} - 24\nu^{3} - 16\nu^{2} + 9\nu + 1 ) / 8 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -5\nu^{7} + 16\nu^{5} - 40\nu^{3} + 15\nu ) / 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{6} + \beta_{5} - 2\beta_{4} - \beta _1 + 3 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{7} - 2\beta_{6} + 2\beta_{5} + 2\beta_{3} + \beta_{2} + 2 ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -4\beta_{4} + 3\beta_{3} - 3\beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 3\beta_{7} - 5\beta_{6} + 5\beta_{5} - 5\beta _1 + 5 ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( -4\beta_{6} - 4\beta_{5} + 4\beta_{3} - 9 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( -13\beta_{3} - 8\beta_{2} - 13\beta_1 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1120\mathbb{Z}\right)^\times\).

\(n\) \(351\) \(421\) \(801\) \(897\)
\(\chi(n)\) \(1\) \(1\) \(-\beta_{4}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
289.1
−1.40126 0.809017i
1.40126 + 0.809017i
−0.535233 0.309017i
0.535233 + 0.309017i
−1.40126 + 0.809017i
1.40126 0.809017i
−0.535233 + 0.309017i
0.535233 0.309017i
0 −2.32831 + 1.34425i 0 −1.11803 + 1.93649i 0 −1.63981 2.07630i 0 2.11402 3.66158i 0
289.2 0 0.474208 0.273784i 0 −1.11803 + 1.93649i 0 −0.978225 2.45827i 0 −1.35008 + 2.33842i 0
289.3 0 1.89182 1.09224i 0 1.11803 1.93649i 0 2.07630 1.63981i 0 0.885983 1.53457i 0
289.4 0 2.96228 1.71028i 0 1.11803 1.93649i 0 −2.45827 + 0.978225i 0 4.35008 7.53457i 0
1089.1 0 −2.32831 1.34425i 0 −1.11803 1.93649i 0 −1.63981 + 2.07630i 0 2.11402 + 3.66158i 0
1089.2 0 0.474208 + 0.273784i 0 −1.11803 1.93649i 0 −0.978225 + 2.45827i 0 −1.35008 2.33842i 0
1089.3 0 1.89182 + 1.09224i 0 1.11803 + 1.93649i 0 2.07630 + 1.63981i 0 0.885983 + 1.53457i 0
1089.4 0 2.96228 + 1.71028i 0 1.11803 + 1.93649i 0 −2.45827 0.978225i 0 4.35008 + 7.53457i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 289.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
20.d odd 2 1 CM by \(\Q(\sqrt{-5}) \)
28.g odd 6 1 inner
35.j even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1120.2.bw.f yes 8
4.b odd 2 1 1120.2.bw.c 8
5.b even 2 1 1120.2.bw.c 8
7.c even 3 1 1120.2.bw.c 8
20.d odd 2 1 CM 1120.2.bw.f yes 8
28.g odd 6 1 inner 1120.2.bw.f yes 8
35.j even 6 1 inner 1120.2.bw.f yes 8
140.p odd 6 1 1120.2.bw.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1120.2.bw.c 8 4.b odd 2 1
1120.2.bw.c 8 5.b even 2 1
1120.2.bw.c 8 7.c even 3 1
1120.2.bw.c 8 140.p odd 6 1
1120.2.bw.f yes 8 1.a even 1 1 trivial
1120.2.bw.f yes 8 20.d odd 2 1 CM
1120.2.bw.f yes 8 28.g odd 6 1 inner
1120.2.bw.f yes 8 35.j even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1120, [\chi])\):

\( T_{3}^{8} - 6T_{3}^{7} + 6T_{3}^{6} + 36T_{3}^{5} - 37T_{3}^{4} - 252T_{3}^{3} + 654T_{3}^{2} - 462T_{3} + 121 \) Copy content Toggle raw display
\( T_{11} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} - 6 T^{7} + \cdots + 121 \) Copy content Toggle raw display
$5$ \( (T^{4} + 5 T^{2} + 25)^{2} \) Copy content Toggle raw display
$7$ \( T^{8} + 6 T^{7} + \cdots + 2401 \) Copy content Toggle raw display
$11$ \( T^{8} \) Copy content Toggle raw display
$13$ \( T^{8} \) Copy content Toggle raw display
$17$ \( T^{8} \) Copy content Toggle raw display
$19$ \( T^{8} \) Copy content Toggle raw display
$23$ \( T^{8} + 6 T^{7} + \cdots + 121801 \) Copy content Toggle raw display
$29$ \( (T^{2} + 6 T - 51)^{4} \) Copy content Toggle raw display
$31$ \( T^{8} \) Copy content Toggle raw display
$37$ \( T^{8} \) Copy content Toggle raw display
$41$ \( (T^{4} - 226 T^{2} + 10609)^{2} \) Copy content Toggle raw display
$43$ \( T^{8} + 344 T^{6} + \cdots + 52441 \) Copy content Toggle raw display
$47$ \( T^{8} - 188 T^{6} + \cdots + 256 \) Copy content Toggle raw display
$53$ \( T^{8} \) Copy content Toggle raw display
$59$ \( T^{8} \) Copy content Toggle raw display
$61$ \( T^{8} + 186 T^{6} + \cdots + 81 \) Copy content Toggle raw display
$67$ \( T^{8} - 18 T^{7} + \cdots + 121 \) Copy content Toggle raw display
$71$ \( T^{8} \) Copy content Toggle raw display
$73$ \( T^{8} \) Copy content Toggle raw display
$79$ \( T^{8} \) Copy content Toggle raw display
$83$ \( T^{8} + 664 T^{6} + \cdots + 221741881 \) Copy content Toggle raw display
$89$ \( (T^{4} + 6 T^{3} + \cdots + 53361)^{2} \) Copy content Toggle raw display
$97$ \( T^{8} \) Copy content Toggle raw display
show more
show less