L(s) = 1 | + (2.96 − 1.71i)3-s + (1.11 − 1.93i)5-s + (−2.45 + 0.978i)7-s + (4.35 − 7.53i)9-s − 7.64i·15-s + (−5.60 + 7.10i)21-s + (7.61 + 4.39i)23-s + (−2.5 − 4.33i)25-s − 19.4i·27-s − 10.7·29-s + (−0.854 + 5.85i)35-s + 8.15·41-s + 6.34i·43-s + (−9.72 − 16.8i)45-s + (0.252 + 0.145i)47-s + ⋯ |
L(s) = 1 | + (1.71 − 0.987i)3-s + (0.499 − 0.866i)5-s + (−0.929 + 0.369i)7-s + (1.45 − 2.51i)9-s − 1.97i·15-s + (−1.22 + 1.54i)21-s + (1.58 + 0.917i)23-s + (−0.5 − 0.866i)25-s − 3.75i·27-s − 1.99·29-s + (−0.144 + 0.989i)35-s + 1.27·41-s + 0.968i·43-s + (−1.45 − 2.51i)45-s + (0.0368 + 0.0212i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0814 + 0.996i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1120 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0814 + 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.904944756\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.904944756\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-1.11 + 1.93i)T \) |
| 7 | \( 1 + (2.45 - 0.978i)T \) |
good | 3 | \( 1 + (-2.96 + 1.71i)T + (1.5 - 2.59i)T^{2} \) |
| 11 | \( 1 + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 13T^{2} \) |
| 17 | \( 1 + (8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-7.61 - 4.39i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + 10.7T + 29T^{2} \) |
| 31 | \( 1 + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 8.15T + 41T^{2} \) |
| 43 | \( 1 - 6.34iT - 43T^{2} \) |
| 47 | \( 1 + (-0.252 - 0.145i)T + (23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (0.109 - 0.190i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.00501 + 0.00289i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 71T^{2} \) |
| 73 | \( 1 + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 17.4iT - 83T^{2} \) |
| 89 | \( 1 + (9.24 - 16.0i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.209185302841169590060404067854, −9.055710408226355383711513588167, −8.010831608255268832429643986357, −7.30118355891389112818819388422, −6.45391607773283735185581388184, −5.48933570723446394427814629103, −4.01094370897625591611622393192, −3.10738437405720817547154322585, −2.19624788609899764716748656860, −1.10749796527273381639467737211,
2.08600909806357052487195270288, 2.99839709739148115431751049357, 3.57017365177429032496621149298, 4.54221888707160272031164747864, 5.78176735646894608055362162719, 7.08589128302508801391757381144, 7.48005402429524672019494818503, 8.739445982029656730650662366738, 9.263485501268265631084628624065, 9.903893919151560764731936204374