Properties

Label 1120.2.bi.a.463.11
Level $1120$
Weight $2$
Character 1120.463
Analytic conductor $8.943$
Analytic rank $0$
Dimension $72$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1120,2,Mod(463,1120)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1120.463"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1120, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 2, 3, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1120 = 2^{5} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1120.bi (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.94324502638\)
Analytic rank: \(0\)
Dimension: \(72\)
Relative dimension: \(36\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 280)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 463.11
Character \(\chi\) \(=\) 1120.463
Dual form 1120.2.bi.a.687.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.683238 - 0.683238i) q^{3} +(-2.03938 - 0.917023i) q^{5} +(0.707107 + 0.707107i) q^{7} -2.06637i q^{9} -5.41441 q^{11} +(3.15744 - 3.15744i) q^{13} +(0.766836 + 2.01993i) q^{15} +(-2.46948 + 2.46948i) q^{17} +3.87964i q^{19} -0.966244i q^{21} +(-0.659207 + 0.659207i) q^{23} +(3.31814 + 3.74032i) q^{25} +(-3.46154 + 3.46154i) q^{27} +5.76955 q^{29} +3.09841i q^{31} +(3.69933 + 3.69933i) q^{33} +(-0.793626 - 2.09049i) q^{35} +(-0.680801 - 0.680801i) q^{37} -4.31457 q^{39} -7.39465 q^{41} +(0.0846505 + 0.0846505i) q^{43} +(-1.89491 + 4.21412i) q^{45} +(-2.32683 - 2.32683i) q^{47} +1.00000i q^{49} +3.37448 q^{51} +(-8.08545 + 8.08545i) q^{53} +(11.0420 + 4.96514i) q^{55} +(2.65072 - 2.65072i) q^{57} +7.94305i q^{59} +4.20293i q^{61} +(1.46115 - 1.46115i) q^{63} +(-9.33468 + 3.54378i) q^{65} +(-7.82159 + 7.82159i) q^{67} +0.900790 q^{69} -2.85514i q^{71} +(1.45516 + 1.45516i) q^{73} +(0.288449 - 4.82260i) q^{75} +(-3.82857 - 3.82857i) q^{77} +12.8568 q^{79} -1.46901 q^{81} +(3.88328 + 3.88328i) q^{83} +(7.30077 - 2.77163i) q^{85} +(-3.94197 - 3.94197i) q^{87} +1.96589i q^{89} +4.46530 q^{91} +(2.11695 - 2.11695i) q^{93} +(3.55772 - 7.91206i) q^{95} +(-13.2788 + 13.2788i) q^{97} +11.1882i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 72 q + 8 q^{17} - 8 q^{25} + 64 q^{43} + 32 q^{51} - 8 q^{65} - 40 q^{73} - 112 q^{75} - 72 q^{81} - 80 q^{83} - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1120\mathbb{Z}\right)^\times\).

\(n\) \(351\) \(421\) \(801\) \(897\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.683238 0.683238i −0.394468 0.394468i 0.481809 0.876276i \(-0.339980\pi\)
−0.876276 + 0.481809i \(0.839980\pi\)
\(4\) 0 0
\(5\) −2.03938 0.917023i −0.912038 0.410105i
\(6\) 0 0
\(7\) 0.707107 + 0.707107i 0.267261 + 0.267261i
\(8\) 0 0
\(9\) 2.06637i 0.688791i
\(10\) 0 0
\(11\) −5.41441 −1.63251 −0.816253 0.577694i \(-0.803953\pi\)
−0.816253 + 0.577694i \(0.803953\pi\)
\(12\) 0 0
\(13\) 3.15744 3.15744i 0.875717 0.875717i −0.117371 0.993088i \(-0.537447\pi\)
0.993088 + 0.117371i \(0.0374466\pi\)
\(14\) 0 0
\(15\) 0.766836 + 2.01993i 0.197996 + 0.521543i
\(16\) 0 0
\(17\) −2.46948 + 2.46948i −0.598936 + 0.598936i −0.940029 0.341093i \(-0.889203\pi\)
0.341093 + 0.940029i \(0.389203\pi\)
\(18\) 0 0
\(19\) 3.87964i 0.890051i 0.895518 + 0.445025i \(0.146805\pi\)
−0.895518 + 0.445025i \(0.853195\pi\)
\(20\) 0 0
\(21\) 0.966244i 0.210852i
\(22\) 0 0
\(23\) −0.659207 + 0.659207i −0.137454 + 0.137454i −0.772486 0.635032i \(-0.780987\pi\)
0.635032 + 0.772486i \(0.280987\pi\)
\(24\) 0 0
\(25\) 3.31814 + 3.74032i 0.663627 + 0.748063i
\(26\) 0 0
\(27\) −3.46154 + 3.46154i −0.666173 + 0.666173i
\(28\) 0 0
\(29\) 5.76955 1.07138 0.535689 0.844415i \(-0.320052\pi\)
0.535689 + 0.844415i \(0.320052\pi\)
\(30\) 0 0
\(31\) 3.09841i 0.556492i 0.960510 + 0.278246i \(0.0897530\pi\)
−0.960510 + 0.278246i \(0.910247\pi\)
\(32\) 0 0
\(33\) 3.69933 + 3.69933i 0.643971 + 0.643971i
\(34\) 0 0
\(35\) −0.793626 2.09049i −0.134147 0.353358i
\(36\) 0 0
\(37\) −0.680801 0.680801i −0.111923 0.111923i 0.648927 0.760850i \(-0.275218\pi\)
−0.760850 + 0.648927i \(0.775218\pi\)
\(38\) 0 0
\(39\) −4.31457 −0.690884
\(40\) 0 0
\(41\) −7.39465 −1.15485 −0.577425 0.816444i \(-0.695942\pi\)
−0.577425 + 0.816444i \(0.695942\pi\)
\(42\) 0 0
\(43\) 0.0846505 + 0.0846505i 0.0129091 + 0.0129091i 0.713532 0.700623i \(-0.247094\pi\)
−0.700623 + 0.713532i \(0.747094\pi\)
\(44\) 0 0
\(45\) −1.89491 + 4.21412i −0.282477 + 0.628203i
\(46\) 0 0
\(47\) −2.32683 2.32683i −0.339403 0.339403i 0.516740 0.856143i \(-0.327146\pi\)
−0.856143 + 0.516740i \(0.827146\pi\)
\(48\) 0 0
\(49\) 1.00000i 0.142857i
\(50\) 0 0
\(51\) 3.37448 0.472522
\(52\) 0 0
\(53\) −8.08545 + 8.08545i −1.11062 + 1.11062i −0.117556 + 0.993066i \(0.537506\pi\)
−0.993066 + 0.117556i \(0.962494\pi\)
\(54\) 0 0
\(55\) 11.0420 + 4.96514i 1.48891 + 0.669500i
\(56\) 0 0
\(57\) 2.65072 2.65072i 0.351096 0.351096i
\(58\) 0 0
\(59\) 7.94305i 1.03410i 0.855956 + 0.517049i \(0.172969\pi\)
−0.855956 + 0.517049i \(0.827031\pi\)
\(60\) 0 0
\(61\) 4.20293i 0.538130i 0.963122 + 0.269065i \(0.0867147\pi\)
−0.963122 + 0.269065i \(0.913285\pi\)
\(62\) 0 0
\(63\) 1.46115 1.46115i 0.184087 0.184087i
\(64\) 0 0
\(65\) −9.33468 + 3.54378i −1.15782 + 0.439551i
\(66\) 0 0
\(67\) −7.82159 + 7.82159i −0.955559 + 0.955559i −0.999054 0.0434947i \(-0.986151\pi\)
0.0434947 + 0.999054i \(0.486151\pi\)
\(68\) 0 0
\(69\) 0.900790 0.108442
\(70\) 0 0
\(71\) 2.85514i 0.338842i −0.985544 0.169421i \(-0.945810\pi\)
0.985544 0.169421i \(-0.0541898\pi\)
\(72\) 0 0
\(73\) 1.45516 + 1.45516i 0.170314 + 0.170314i 0.787117 0.616803i \(-0.211573\pi\)
−0.616803 + 0.787117i \(0.711573\pi\)
\(74\) 0 0
\(75\) 0.288449 4.82260i 0.0333073 0.556866i
\(76\) 0 0
\(77\) −3.82857 3.82857i −0.436306 0.436306i
\(78\) 0 0
\(79\) 12.8568 1.44650 0.723249 0.690587i \(-0.242648\pi\)
0.723249 + 0.690587i \(0.242648\pi\)
\(80\) 0 0
\(81\) −1.46901 −0.163223
\(82\) 0 0
\(83\) 3.88328 + 3.88328i 0.426245 + 0.426245i 0.887347 0.461102i \(-0.152546\pi\)
−0.461102 + 0.887347i \(0.652546\pi\)
\(84\) 0 0
\(85\) 7.30077 2.77163i 0.791879 0.300626i
\(86\) 0 0
\(87\) −3.94197 3.94197i −0.422624 0.422624i
\(88\) 0 0
\(89\) 1.96589i 0.208384i 0.994557 + 0.104192i \(0.0332256\pi\)
−0.994557 + 0.104192i \(0.966774\pi\)
\(90\) 0 0
\(91\) 4.46530 0.468091
\(92\) 0 0
\(93\) 2.11695 2.11695i 0.219518 0.219518i
\(94\) 0 0
\(95\) 3.55772 7.91206i 0.365015 0.811760i
\(96\) 0 0
\(97\) −13.2788 + 13.2788i −1.34826 + 1.34826i −0.460707 + 0.887552i \(0.652404\pi\)
−0.887552 + 0.460707i \(0.847596\pi\)
\(98\) 0 0
\(99\) 11.1882i 1.12446i
\(100\) 0 0
\(101\) 12.7251i 1.26619i 0.774073 + 0.633097i \(0.218216\pi\)
−0.774073 + 0.633097i \(0.781784\pi\)
\(102\) 0 0
\(103\) −8.27848 + 8.27848i −0.815703 + 0.815703i −0.985482 0.169779i \(-0.945695\pi\)
0.169779 + 0.985482i \(0.445695\pi\)
\(104\) 0 0
\(105\) −0.886068 + 1.97054i −0.0864714 + 0.192305i
\(106\) 0 0
\(107\) 4.27215 4.27215i 0.413004 0.413004i −0.469780 0.882784i \(-0.655667\pi\)
0.882784 + 0.469780i \(0.155667\pi\)
\(108\) 0 0
\(109\) 18.5611 1.77783 0.888915 0.458073i \(-0.151460\pi\)
0.888915 + 0.458073i \(0.151460\pi\)
\(110\) 0 0
\(111\) 0.930298i 0.0883000i
\(112\) 0 0
\(113\) −7.33321 7.33321i −0.689851 0.689851i 0.272348 0.962199i \(-0.412200\pi\)
−0.962199 + 0.272348i \(0.912200\pi\)
\(114\) 0 0
\(115\) 1.94888 0.739865i 0.181734 0.0689927i
\(116\) 0 0
\(117\) −6.52445 6.52445i −0.603186 0.603186i
\(118\) 0 0
\(119\) −3.49237 −0.320145
\(120\) 0 0
\(121\) 18.3159 1.66508
\(122\) 0 0
\(123\) 5.05230 + 5.05230i 0.455551 + 0.455551i
\(124\) 0 0
\(125\) −3.33698 10.6707i −0.298469 0.954419i
\(126\) 0 0
\(127\) −15.8188 15.8188i −1.40369 1.40369i −0.787938 0.615754i \(-0.788851\pi\)
−0.615754 0.787938i \(-0.711149\pi\)
\(128\) 0 0
\(129\) 0.115673i 0.0101844i
\(130\) 0 0
\(131\) −8.12773 −0.710123 −0.355062 0.934843i \(-0.615540\pi\)
−0.355062 + 0.934843i \(0.615540\pi\)
\(132\) 0 0
\(133\) −2.74332 + 2.74332i −0.237876 + 0.237876i
\(134\) 0 0
\(135\) 10.2337 3.88508i 0.880776 0.334374i
\(136\) 0 0
\(137\) 4.20821 4.20821i 0.359531 0.359531i −0.504109 0.863640i \(-0.668179\pi\)
0.863640 + 0.504109i \(0.168179\pi\)
\(138\) 0 0
\(139\) 21.7350i 1.84354i −0.387741 0.921769i \(-0.626744\pi\)
0.387741 0.921769i \(-0.373256\pi\)
\(140\) 0 0
\(141\) 3.17956i 0.267767i
\(142\) 0 0
\(143\) −17.0957 + 17.0957i −1.42961 + 1.42961i
\(144\) 0 0
\(145\) −11.7663 5.29081i −0.977138 0.439378i
\(146\) 0 0
\(147\) 0.683238 0.683238i 0.0563525 0.0563525i
\(148\) 0 0
\(149\) 13.2830 1.08818 0.544092 0.839025i \(-0.316874\pi\)
0.544092 + 0.839025i \(0.316874\pi\)
\(150\) 0 0
\(151\) 10.5109i 0.855365i −0.903929 0.427682i \(-0.859330\pi\)
0.903929 0.427682i \(-0.140670\pi\)
\(152\) 0 0
\(153\) 5.10286 + 5.10286i 0.412542 + 0.412542i
\(154\) 0 0
\(155\) 2.84132 6.31884i 0.228220 0.507542i
\(156\) 0 0
\(157\) −14.7455 14.7455i −1.17682 1.17682i −0.980549 0.196273i \(-0.937116\pi\)
−0.196273 0.980549i \(-0.562884\pi\)
\(158\) 0 0
\(159\) 11.0486 0.876209
\(160\) 0 0
\(161\) −0.932259 −0.0734723
\(162\) 0 0
\(163\) −6.86932 6.86932i −0.538047 0.538047i 0.384908 0.922955i \(-0.374233\pi\)
−0.922955 + 0.384908i \(0.874233\pi\)
\(164\) 0 0
\(165\) −4.15197 10.9367i −0.323230 0.851422i
\(166\) 0 0
\(167\) 3.08533 + 3.08533i 0.238750 + 0.238750i 0.816332 0.577583i \(-0.196004\pi\)
−0.577583 + 0.816332i \(0.696004\pi\)
\(168\) 0 0
\(169\) 6.93890i 0.533762i
\(170\) 0 0
\(171\) 8.01678 0.613059
\(172\) 0 0
\(173\) −6.45046 + 6.45046i −0.490419 + 0.490419i −0.908438 0.418019i \(-0.862725\pi\)
0.418019 + 0.908438i \(0.362725\pi\)
\(174\) 0 0
\(175\) −0.298526 + 4.99108i −0.0225665 + 0.377290i
\(176\) 0 0
\(177\) 5.42700 5.42700i 0.407918 0.407918i
\(178\) 0 0
\(179\) 19.1642i 1.43240i −0.697895 0.716201i \(-0.745880\pi\)
0.697895 0.716201i \(-0.254120\pi\)
\(180\) 0 0
\(181\) 13.4361i 0.998700i 0.866400 + 0.499350i \(0.166428\pi\)
−0.866400 + 0.499350i \(0.833572\pi\)
\(182\) 0 0
\(183\) 2.87160 2.87160i 0.212275 0.212275i
\(184\) 0 0
\(185\) 0.764101 + 2.01272i 0.0561778 + 0.147978i
\(186\) 0 0
\(187\) 13.3708 13.3708i 0.977767 0.977767i
\(188\) 0 0
\(189\) −4.89535 −0.356084
\(190\) 0 0
\(191\) 0.448780i 0.0324726i −0.999868 0.0162363i \(-0.994832\pi\)
0.999868 0.0162363i \(-0.00516839\pi\)
\(192\) 0 0
\(193\) −2.00162 2.00162i −0.144080 0.144080i 0.631388 0.775467i \(-0.282486\pi\)
−0.775467 + 0.631388i \(0.782486\pi\)
\(194\) 0 0
\(195\) 8.79904 + 3.95656i 0.630113 + 0.283335i
\(196\) 0 0
\(197\) 9.07212 + 9.07212i 0.646362 + 0.646362i 0.952112 0.305750i \(-0.0989072\pi\)
−0.305750 + 0.952112i \(0.598907\pi\)
\(198\) 0 0
\(199\) −18.1441 −1.28620 −0.643101 0.765781i \(-0.722353\pi\)
−0.643101 + 0.765781i \(0.722353\pi\)
\(200\) 0 0
\(201\) 10.6880 0.753874
\(202\) 0 0
\(203\) 4.07969 + 4.07969i 0.286338 + 0.286338i
\(204\) 0 0
\(205\) 15.0805 + 6.78107i 1.05327 + 0.473610i
\(206\) 0 0
\(207\) 1.36217 + 1.36217i 0.0946771 + 0.0946771i
\(208\) 0 0
\(209\) 21.0060i 1.45301i
\(210\) 0 0
\(211\) −13.0722 −0.899929 −0.449964 0.893046i \(-0.648563\pi\)
−0.449964 + 0.893046i \(0.648563\pi\)
\(212\) 0 0
\(213\) −1.95074 + 1.95074i −0.133662 + 0.133662i
\(214\) 0 0
\(215\) −0.0950080 0.250261i −0.00647949 0.0170677i
\(216\) 0 0
\(217\) −2.19091 + 2.19091i −0.148729 + 0.148729i
\(218\) 0 0
\(219\) 1.98844i 0.134367i
\(220\) 0 0
\(221\) 15.5945i 1.04900i
\(222\) 0 0
\(223\) 6.46091 6.46091i 0.432655 0.432655i −0.456876 0.889531i \(-0.651032\pi\)
0.889531 + 0.456876i \(0.151032\pi\)
\(224\) 0 0
\(225\) 7.72889 6.85651i 0.515259 0.457100i
\(226\) 0 0
\(227\) −6.74613 + 6.74613i −0.447756 + 0.447756i −0.894608 0.446852i \(-0.852545\pi\)
0.446852 + 0.894608i \(0.352545\pi\)
\(228\) 0 0
\(229\) −20.4172 −1.34921 −0.674603 0.738181i \(-0.735685\pi\)
−0.674603 + 0.738181i \(0.735685\pi\)
\(230\) 0 0
\(231\) 5.23164i 0.344217i
\(232\) 0 0
\(233\) −9.85773 9.85773i −0.645802 0.645802i 0.306174 0.951976i \(-0.400951\pi\)
−0.951976 + 0.306174i \(0.900951\pi\)
\(234\) 0 0
\(235\) 2.61153 + 6.87905i 0.170358 + 0.448740i
\(236\) 0 0
\(237\) −8.78422 8.78422i −0.570597 0.570597i
\(238\) 0 0
\(239\) 4.45737 0.288324 0.144162 0.989554i \(-0.453951\pi\)
0.144162 + 0.989554i \(0.453951\pi\)
\(240\) 0 0
\(241\) 5.85350 0.377057 0.188529 0.982068i \(-0.439628\pi\)
0.188529 + 0.982068i \(0.439628\pi\)
\(242\) 0 0
\(243\) 11.3883 + 11.3883i 0.730559 + 0.730559i
\(244\) 0 0
\(245\) 0.917023 2.03938i 0.0585865 0.130291i
\(246\) 0 0
\(247\) 12.2498 + 12.2498i 0.779433 + 0.779433i
\(248\) 0 0
\(249\) 5.30641i 0.336280i
\(250\) 0 0
\(251\) −4.36889 −0.275762 −0.137881 0.990449i \(-0.544029\pi\)
−0.137881 + 0.990449i \(0.544029\pi\)
\(252\) 0 0
\(253\) 3.56922 3.56922i 0.224395 0.224395i
\(254\) 0 0
\(255\) −6.88184 3.09448i −0.430958 0.193784i
\(256\) 0 0
\(257\) −6.53348 + 6.53348i −0.407547 + 0.407547i −0.880882 0.473335i \(-0.843050\pi\)
0.473335 + 0.880882i \(0.343050\pi\)
\(258\) 0 0
\(259\) 0.962798i 0.0598254i
\(260\) 0 0
\(261\) 11.9220i 0.737956i
\(262\) 0 0
\(263\) −11.5702 + 11.5702i −0.713446 + 0.713446i −0.967254 0.253808i \(-0.918317\pi\)
0.253808 + 0.967254i \(0.418317\pi\)
\(264\) 0 0
\(265\) 23.9038 9.07476i 1.46840 0.557458i
\(266\) 0 0
\(267\) 1.34317 1.34317i 0.0822006 0.0822006i
\(268\) 0 0
\(269\) −15.9197 −0.970644 −0.485322 0.874336i \(-0.661298\pi\)
−0.485322 + 0.874336i \(0.661298\pi\)
\(270\) 0 0
\(271\) 20.8120i 1.26424i 0.774872 + 0.632119i \(0.217814\pi\)
−0.774872 + 0.632119i \(0.782186\pi\)
\(272\) 0 0
\(273\) −3.05086 3.05086i −0.184647 0.184647i
\(274\) 0 0
\(275\) −17.9658 20.2516i −1.08338 1.22122i
\(276\) 0 0
\(277\) −14.4770 14.4770i −0.869840 0.869840i 0.122615 0.992454i \(-0.460872\pi\)
−0.992454 + 0.122615i \(0.960872\pi\)
\(278\) 0 0
\(279\) 6.40248 0.383306
\(280\) 0 0
\(281\) 22.0154 1.31333 0.656664 0.754184i \(-0.271967\pi\)
0.656664 + 0.754184i \(0.271967\pi\)
\(282\) 0 0
\(283\) −0.00141407 0.00141407i −8.40579e−5 8.40579e-5i 0.707065 0.707149i \(-0.250019\pi\)
−0.707149 + 0.707065i \(0.750019\pi\)
\(284\) 0 0
\(285\) −7.83659 + 2.97505i −0.464199 + 0.176227i
\(286\) 0 0
\(287\) −5.22881 5.22881i −0.308647 0.308647i
\(288\) 0 0
\(289\) 4.80337i 0.282551i
\(290\) 0 0
\(291\) 18.1452 1.06369
\(292\) 0 0
\(293\) 13.2135 13.2135i 0.771940 0.771940i −0.206505 0.978445i \(-0.566209\pi\)
0.978445 + 0.206505i \(0.0662091\pi\)
\(294\) 0 0
\(295\) 7.28397 16.1989i 0.424089 0.943137i
\(296\) 0 0
\(297\) 18.7422 18.7422i 1.08753 1.08753i
\(298\) 0 0
\(299\) 4.16282i 0.240742i
\(300\) 0 0
\(301\) 0.119714i 0.00690019i
\(302\) 0 0
\(303\) 8.69426 8.69426i 0.499472 0.499472i
\(304\) 0 0
\(305\) 3.85419 8.57137i 0.220690 0.490795i
\(306\) 0 0
\(307\) 15.4316 15.4316i 0.880731 0.880731i −0.112878 0.993609i \(-0.536007\pi\)
0.993609 + 0.112878i \(0.0360069\pi\)
\(308\) 0 0
\(309\) 11.3123 0.643537
\(310\) 0 0
\(311\) 22.4892i 1.27524i −0.770349 0.637622i \(-0.779918\pi\)
0.770349 0.637622i \(-0.220082\pi\)
\(312\) 0 0
\(313\) 10.8617 + 10.8617i 0.613942 + 0.613942i 0.943971 0.330029i \(-0.107058\pi\)
−0.330029 + 0.943971i \(0.607058\pi\)
\(314\) 0 0
\(315\) −4.31974 + 1.63993i −0.243390 + 0.0923994i
\(316\) 0 0
\(317\) −5.29117 5.29117i −0.297182 0.297182i 0.542727 0.839909i \(-0.317392\pi\)
−0.839909 + 0.542727i \(0.817392\pi\)
\(318\) 0 0
\(319\) −31.2387 −1.74903
\(320\) 0 0
\(321\) −5.83778 −0.325833
\(322\) 0 0
\(323\) −9.58068 9.58068i −0.533083 0.533083i
\(324\) 0 0
\(325\) 22.2867 + 1.33301i 1.23624 + 0.0739421i
\(326\) 0 0
\(327\) −12.6816 12.6816i −0.701296 0.701296i
\(328\) 0 0
\(329\) 3.29064i 0.181419i
\(330\) 0 0
\(331\) 6.80525 0.374050 0.187025 0.982355i \(-0.440115\pi\)
0.187025 + 0.982355i \(0.440115\pi\)
\(332\) 0 0
\(333\) −1.40679 + 1.40679i −0.0770915 + 0.0770915i
\(334\) 0 0
\(335\) 23.1238 8.77861i 1.26339 0.479627i
\(336\) 0 0
\(337\) −18.9299 + 18.9299i −1.03118 + 1.03118i −0.0316788 + 0.999498i \(0.510085\pi\)
−0.999498 + 0.0316788i \(0.989915\pi\)
\(338\) 0 0
\(339\) 10.0207i 0.544247i
\(340\) 0 0
\(341\) 16.7761i 0.908476i
\(342\) 0 0
\(343\) −0.707107 + 0.707107i −0.0381802 + 0.0381802i
\(344\) 0 0
\(345\) −1.83705 0.826045i −0.0989036 0.0444728i
\(346\) 0 0
\(347\) −12.1708 + 12.1708i −0.653362 + 0.653362i −0.953801 0.300439i \(-0.902867\pi\)
0.300439 + 0.953801i \(0.402867\pi\)
\(348\) 0 0
\(349\) 15.7645 0.843856 0.421928 0.906629i \(-0.361353\pi\)
0.421928 + 0.906629i \(0.361353\pi\)
\(350\) 0 0
\(351\) 21.8592i 1.16676i
\(352\) 0 0
\(353\) −12.5792 12.5792i −0.669525 0.669525i 0.288081 0.957606i \(-0.406983\pi\)
−0.957606 + 0.288081i \(0.906983\pi\)
\(354\) 0 0
\(355\) −2.61823 + 5.82271i −0.138961 + 0.309037i
\(356\) 0 0
\(357\) 2.38612 + 2.38612i 0.126287 + 0.126287i
\(358\) 0 0
\(359\) 33.7490 1.78120 0.890602 0.454784i \(-0.150284\pi\)
0.890602 + 0.454784i \(0.150284\pi\)
\(360\) 0 0
\(361\) 3.94838 0.207810
\(362\) 0 0
\(363\) −12.5141 12.5141i −0.656819 0.656819i
\(364\) 0 0
\(365\) −1.63321 4.30205i −0.0854861 0.225179i
\(366\) 0 0
\(367\) −2.19334 2.19334i −0.114491 0.114491i 0.647540 0.762031i \(-0.275798\pi\)
−0.762031 + 0.647540i \(0.775798\pi\)
\(368\) 0 0
\(369\) 15.2801i 0.795450i
\(370\) 0 0
\(371\) −11.4346 −0.593652
\(372\) 0 0
\(373\) 5.66659 5.66659i 0.293405 0.293405i −0.545019 0.838424i \(-0.683478\pi\)
0.838424 + 0.545019i \(0.183478\pi\)
\(374\) 0 0
\(375\) −5.01070 + 9.57060i −0.258751 + 0.494224i
\(376\) 0 0
\(377\) 18.2170 18.2170i 0.938225 0.938225i
\(378\) 0 0
\(379\) 9.13563i 0.469266i 0.972084 + 0.234633i \(0.0753888\pi\)
−0.972084 + 0.234633i \(0.924611\pi\)
\(380\) 0 0
\(381\) 21.6160i 1.10742i
\(382\) 0 0
\(383\) −7.64787 + 7.64787i −0.390788 + 0.390788i −0.874968 0.484180i \(-0.839118\pi\)
0.484180 + 0.874968i \(0.339118\pi\)
\(384\) 0 0
\(385\) 4.29702 + 11.3188i 0.218996 + 0.576859i
\(386\) 0 0
\(387\) 0.174919 0.174919i 0.00889165 0.00889165i
\(388\) 0 0
\(389\) −27.8987 −1.41452 −0.707261 0.706952i \(-0.750070\pi\)
−0.707261 + 0.706952i \(0.750070\pi\)
\(390\) 0 0
\(391\) 3.25579i 0.164652i
\(392\) 0 0
\(393\) 5.55317 + 5.55317i 0.280121 + 0.280121i
\(394\) 0 0
\(395\) −26.2198 11.7899i −1.31926 0.593216i
\(396\) 0 0
\(397\) −8.36699 8.36699i −0.419927 0.419927i 0.465251 0.885179i \(-0.345964\pi\)
−0.885179 + 0.465251i \(0.845964\pi\)
\(398\) 0 0
\(399\) 3.74868 0.187669
\(400\) 0 0
\(401\) −34.4862 −1.72216 −0.861080 0.508470i \(-0.830211\pi\)
−0.861080 + 0.508470i \(0.830211\pi\)
\(402\) 0 0
\(403\) 9.78307 + 9.78307i 0.487329 + 0.487329i
\(404\) 0 0
\(405\) 2.99587 + 1.34712i 0.148866 + 0.0669388i
\(406\) 0 0
\(407\) 3.68614 + 3.68614i 0.182715 + 0.182715i
\(408\) 0 0
\(409\) 24.8534i 1.22892i 0.788947 + 0.614461i \(0.210626\pi\)
−0.788947 + 0.614461i \(0.789374\pi\)
\(410\) 0 0
\(411\) −5.75041 −0.283647
\(412\) 0 0
\(413\) −5.61659 + 5.61659i −0.276374 + 0.276374i
\(414\) 0 0
\(415\) −4.35842 11.4805i −0.213947 0.563557i
\(416\) 0 0
\(417\) −14.8502 + 14.8502i −0.727216 + 0.727216i
\(418\) 0 0
\(419\) 1.88796i 0.0922330i 0.998936 + 0.0461165i \(0.0146845\pi\)
−0.998936 + 0.0461165i \(0.985315\pi\)
\(420\) 0 0
\(421\) 1.78407i 0.0869500i −0.999055 0.0434750i \(-0.986157\pi\)
0.999055 0.0434750i \(-0.0138429\pi\)
\(422\) 0 0
\(423\) −4.80810 + 4.80810i −0.233778 + 0.233778i
\(424\) 0 0
\(425\) −17.4307 1.04256i −0.845512 0.0505718i
\(426\) 0 0
\(427\) −2.97192 + 2.97192i −0.143821 + 0.143821i
\(428\) 0 0
\(429\) 23.3609 1.12787
\(430\) 0 0
\(431\) 32.0625i 1.54439i 0.635383 + 0.772197i \(0.280842\pi\)
−0.635383 + 0.772197i \(0.719158\pi\)
\(432\) 0 0
\(433\) 22.4346 + 22.4346i 1.07814 + 1.07814i 0.996677 + 0.0814590i \(0.0259580\pi\)
0.0814590 + 0.996677i \(0.474042\pi\)
\(434\) 0 0
\(435\) 4.42430 + 11.6541i 0.212129 + 0.558770i
\(436\) 0 0
\(437\) −2.55749 2.55749i −0.122341 0.122341i
\(438\) 0 0
\(439\) −15.5671 −0.742977 −0.371489 0.928438i \(-0.621153\pi\)
−0.371489 + 0.928438i \(0.621153\pi\)
\(440\) 0 0
\(441\) 2.06637 0.0983987
\(442\) 0 0
\(443\) 22.7365 + 22.7365i 1.08025 + 1.08025i 0.996486 + 0.0837592i \(0.0266927\pi\)
0.0837592 + 0.996486i \(0.473307\pi\)
\(444\) 0 0
\(445\) 1.80277 4.00919i 0.0854593 0.190054i
\(446\) 0 0
\(447\) −9.07544 9.07544i −0.429254 0.429254i
\(448\) 0 0
\(449\) 7.97082i 0.376166i −0.982153 0.188083i \(-0.939773\pi\)
0.982153 0.188083i \(-0.0602274\pi\)
\(450\) 0 0
\(451\) 40.0377 1.88530
\(452\) 0 0
\(453\) −7.18144 + 7.18144i −0.337414 + 0.337414i
\(454\) 0 0
\(455\) −9.10644 4.09478i −0.426917 0.191966i
\(456\) 0 0
\(457\) 3.30838 3.30838i 0.154759 0.154759i −0.625480 0.780240i \(-0.715097\pi\)
0.780240 + 0.625480i \(0.215097\pi\)
\(458\) 0 0
\(459\) 17.0964i 0.797990i
\(460\) 0 0
\(461\) 12.0107i 0.559393i 0.960088 + 0.279697i \(0.0902339\pi\)
−0.960088 + 0.279697i \(0.909766\pi\)
\(462\) 0 0
\(463\) −2.07725 + 2.07725i −0.0965380 + 0.0965380i −0.753726 0.657188i \(-0.771746\pi\)
0.657188 + 0.753726i \(0.271746\pi\)
\(464\) 0 0
\(465\) −6.25857 + 2.37598i −0.290234 + 0.110183i
\(466\) 0 0
\(467\) 5.60472 5.60472i 0.259356 0.259356i −0.565436 0.824792i \(-0.691292\pi\)
0.824792 + 0.565436i \(0.191292\pi\)
\(468\) 0 0
\(469\) −11.0614 −0.510768
\(470\) 0 0
\(471\) 20.1494i 0.928437i
\(472\) 0 0
\(473\) −0.458333 0.458333i −0.0210742 0.0210742i
\(474\) 0 0
\(475\) −14.5111 + 12.8732i −0.665814 + 0.590662i
\(476\) 0 0
\(477\) 16.7076 + 16.7076i 0.764986 + 0.764986i
\(478\) 0 0
\(479\) 30.2393 1.38167 0.690835 0.723013i \(-0.257243\pi\)
0.690835 + 0.723013i \(0.257243\pi\)
\(480\) 0 0
\(481\) −4.29918 −0.196026
\(482\) 0 0
\(483\) 0.636955 + 0.636955i 0.0289824 + 0.0289824i
\(484\) 0 0
\(485\) 39.2575 14.9036i 1.78259 0.676736i
\(486\) 0 0
\(487\) −5.59965 5.59965i −0.253745 0.253745i 0.568759 0.822504i \(-0.307424\pi\)
−0.822504 + 0.568759i \(0.807424\pi\)
\(488\) 0 0
\(489\) 9.38676i 0.424484i
\(490\) 0 0
\(491\) −11.2713 −0.508667 −0.254333 0.967117i \(-0.581856\pi\)
−0.254333 + 0.967117i \(0.581856\pi\)
\(492\) 0 0
\(493\) −14.2478 + 14.2478i −0.641687 + 0.641687i
\(494\) 0 0
\(495\) 10.2598 22.8170i 0.461145 1.02555i
\(496\) 0 0
\(497\) 2.01889 2.01889i 0.0905594 0.0905594i
\(498\) 0 0
\(499\) 7.04115i 0.315205i 0.987503 + 0.157603i \(0.0503765\pi\)
−0.987503 + 0.157603i \(0.949623\pi\)
\(500\) 0 0
\(501\) 4.21602i 0.188358i
\(502\) 0 0
\(503\) −13.7302 + 13.7302i −0.612199 + 0.612199i −0.943518 0.331320i \(-0.892506\pi\)
0.331320 + 0.943518i \(0.392506\pi\)
\(504\) 0 0
\(505\) 11.6692 25.9513i 0.519273 1.15482i
\(506\) 0 0
\(507\) −4.74092 + 4.74092i −0.210552 + 0.210552i
\(508\) 0 0
\(509\) −4.91505 −0.217856 −0.108928 0.994050i \(-0.534742\pi\)
−0.108928 + 0.994050i \(0.534742\pi\)
\(510\) 0 0
\(511\) 2.05791i 0.0910366i
\(512\) 0 0
\(513\) −13.4295 13.4295i −0.592928 0.592928i
\(514\) 0 0
\(515\) 24.4745 9.29140i 1.07848 0.409428i
\(516\) 0 0
\(517\) 12.5984 + 12.5984i 0.554078 + 0.554078i
\(518\) 0 0
\(519\) 8.81439 0.386909
\(520\) 0 0
\(521\) 6.55084 0.286998 0.143499 0.989650i \(-0.454165\pi\)
0.143499 + 0.989650i \(0.454165\pi\)
\(522\) 0 0
\(523\) −18.1480 18.1480i −0.793556 0.793556i 0.188514 0.982070i \(-0.439633\pi\)
−0.982070 + 0.188514i \(0.939633\pi\)
\(524\) 0 0
\(525\) 3.61406 3.20613i 0.157730 0.139927i
\(526\) 0 0
\(527\) −7.65146 7.65146i −0.333303 0.333303i
\(528\) 0 0
\(529\) 22.1309i 0.962213i
\(530\) 0 0
\(531\) 16.4133 0.712277
\(532\) 0 0
\(533\) −23.3482 + 23.3482i −1.01132 + 1.01132i
\(534\) 0 0
\(535\) −12.6302 + 4.79487i −0.546051 + 0.207300i
\(536\) 0 0
\(537\) −13.0937 + 13.0937i −0.565036 + 0.565036i
\(538\) 0 0
\(539\) 5.41441i 0.233215i
\(540\) 0 0
\(541\) 7.99669i 0.343805i 0.985114 + 0.171902i \(0.0549913\pi\)
−0.985114 + 0.171902i \(0.945009\pi\)
\(542\) 0 0
\(543\) 9.18008 9.18008i 0.393955 0.393955i
\(544\) 0 0
\(545\) −37.8531 17.0209i −1.62145 0.729097i
\(546\) 0 0
\(547\) −11.2540 + 11.2540i −0.481186 + 0.481186i −0.905510 0.424324i \(-0.860512\pi\)
0.424324 + 0.905510i \(0.360512\pi\)
\(548\) 0 0
\(549\) 8.68482 0.370659
\(550\) 0 0
\(551\) 22.3838i 0.953581i
\(552\) 0 0
\(553\) 9.09110 + 9.09110i 0.386593 + 0.386593i
\(554\) 0 0
\(555\) 0.853105 1.89723i 0.0362123 0.0805329i
\(556\) 0 0
\(557\) 1.87320 + 1.87320i 0.0793700 + 0.0793700i 0.745677 0.666307i \(-0.232126\pi\)
−0.666307 + 0.745677i \(0.732126\pi\)
\(558\) 0 0
\(559\) 0.534558 0.0226094
\(560\) 0 0
\(561\) −18.2708 −0.771395
\(562\) 0 0
\(563\) −18.2779 18.2779i −0.770322 0.770322i 0.207840 0.978163i \(-0.433357\pi\)
−0.978163 + 0.207840i \(0.933357\pi\)
\(564\) 0 0
\(565\) 8.23048 + 21.6799i 0.346259 + 0.912082i
\(566\) 0 0
\(567\) −1.03875 1.03875i −0.0436233 0.0436233i
\(568\) 0 0
\(569\) 0.0832566i 0.00349030i 0.999998 + 0.00174515i \(0.000555499\pi\)
−0.999998 + 0.00174515i \(0.999445\pi\)
\(570\) 0 0
\(571\) 7.17301 0.300181 0.150091 0.988672i \(-0.452043\pi\)
0.150091 + 0.988672i \(0.452043\pi\)
\(572\) 0 0
\(573\) −0.306623 + 0.306623i −0.0128094 + 0.0128094i
\(574\) 0 0
\(575\) −4.65298 0.278304i −0.194043 0.0116061i
\(576\) 0 0
\(577\) −3.54999 + 3.54999i −0.147788 + 0.147788i −0.777129 0.629341i \(-0.783325\pi\)
0.629341 + 0.777129i \(0.283325\pi\)
\(578\) 0 0
\(579\) 2.73517i 0.113670i
\(580\) 0 0
\(581\) 5.49179i 0.227838i
\(582\) 0 0
\(583\) 43.7780 43.7780i 1.81310 1.81310i
\(584\) 0 0
\(585\) 7.32276 + 19.2889i 0.302759 + 0.797498i
\(586\) 0 0
\(587\) −18.7905 + 18.7905i −0.775568 + 0.775568i −0.979074 0.203505i \(-0.934767\pi\)
0.203505 + 0.979074i \(0.434767\pi\)
\(588\) 0 0
\(589\) −12.0207 −0.495306
\(590\) 0 0
\(591\) 12.3968i 0.509937i
\(592\) 0 0
\(593\) −7.24799 7.24799i −0.297639 0.297639i 0.542449 0.840088i \(-0.317497\pi\)
−0.840088 + 0.542449i \(0.817497\pi\)
\(594\) 0 0
\(595\) 7.12226 + 3.20258i 0.291984 + 0.131293i
\(596\) 0 0
\(597\) 12.3967 + 12.3967i 0.507365 + 0.507365i
\(598\) 0 0
\(599\) 20.5332 0.838963 0.419482 0.907764i \(-0.362212\pi\)
0.419482 + 0.907764i \(0.362212\pi\)
\(600\) 0 0
\(601\) −27.1276 −1.10656 −0.553280 0.832995i \(-0.686624\pi\)
−0.553280 + 0.832995i \(0.686624\pi\)
\(602\) 0 0
\(603\) 16.1623 + 16.1623i 0.658180 + 0.658180i
\(604\) 0 0
\(605\) −37.3530 16.7961i −1.51861 0.682857i
\(606\) 0 0
\(607\) −12.6435 12.6435i −0.513185 0.513185i 0.402316 0.915501i \(-0.368205\pi\)
−0.915501 + 0.402316i \(0.868205\pi\)
\(608\) 0 0
\(609\) 5.57479i 0.225902i
\(610\) 0 0
\(611\) −14.6937 −0.594442
\(612\) 0 0
\(613\) −0.474128 + 0.474128i −0.0191498 + 0.0191498i −0.716617 0.697467i \(-0.754310\pi\)
0.697467 + 0.716617i \(0.254310\pi\)
\(614\) 0 0
\(615\) −5.67048 14.9366i −0.228656 0.602304i
\(616\) 0 0
\(617\) −34.0848 + 34.0848i −1.37220 + 1.37220i −0.515032 + 0.857171i \(0.672220\pi\)
−0.857171 + 0.515032i \(0.827780\pi\)
\(618\) 0 0
\(619\) 29.0177i 1.16632i 0.812357 + 0.583161i \(0.198184\pi\)
−0.812357 + 0.583161i \(0.801816\pi\)
\(620\) 0 0
\(621\) 4.56374i 0.183136i
\(622\) 0 0
\(623\) −1.39009 + 1.39009i −0.0556929 + 0.0556929i
\(624\) 0 0
\(625\) −2.97994 + 24.8218i −0.119197 + 0.992871i
\(626\) 0 0
\(627\) −14.3521 + 14.3521i −0.573167 + 0.573167i
\(628\) 0 0
\(629\) 3.36244 0.134069
\(630\) 0 0
\(631\) 24.5158i 0.975960i 0.872855 + 0.487980i \(0.162266\pi\)
−0.872855 + 0.487980i \(0.837734\pi\)
\(632\) 0 0
\(633\) 8.93144 + 8.93144i 0.354993 + 0.354993i
\(634\) 0 0
\(635\) 17.7543 + 46.7668i 0.704559 + 1.85588i
\(636\) 0 0
\(637\) 3.15744 + 3.15744i 0.125102 + 0.125102i
\(638\) 0 0
\(639\) −5.89978 −0.233392
\(640\) 0 0
\(641\) −42.5065 −1.67891 −0.839453 0.543432i \(-0.817125\pi\)
−0.839453 + 0.543432i \(0.817125\pi\)
\(642\) 0 0
\(643\) 3.14215 + 3.14215i 0.123914 + 0.123914i 0.766344 0.642430i \(-0.222074\pi\)
−0.642430 + 0.766344i \(0.722074\pi\)
\(644\) 0 0
\(645\) −0.106075 + 0.235901i −0.00417669 + 0.00928858i
\(646\) 0 0
\(647\) −10.1457 10.1457i −0.398867 0.398867i 0.478966 0.877833i \(-0.341012\pi\)
−0.877833 + 0.478966i \(0.841012\pi\)
\(648\) 0 0
\(649\) 43.0070i 1.68817i
\(650\) 0 0
\(651\) 2.99382 0.117337
\(652\) 0 0
\(653\) 5.20264 5.20264i 0.203595 0.203595i −0.597943 0.801538i \(-0.704015\pi\)
0.801538 + 0.597943i \(0.204015\pi\)
\(654\) 0 0
\(655\) 16.5755 + 7.45332i 0.647660 + 0.291225i
\(656\) 0 0
\(657\) 3.00691 3.00691i 0.117311 0.117311i
\(658\) 0 0
\(659\) 45.6133i 1.77684i −0.459032 0.888420i \(-0.651804\pi\)
0.459032 0.888420i \(-0.348196\pi\)
\(660\) 0 0
\(661\) 45.1240i 1.75512i −0.479465 0.877561i \(-0.659169\pi\)
0.479465 0.877561i \(-0.340831\pi\)
\(662\) 0 0
\(663\) 10.6547 10.6547i 0.413795 0.413795i
\(664\) 0 0
\(665\) 8.11036 3.07898i 0.314506 0.119398i
\(666\) 0 0
\(667\) −3.80333 + 3.80333i −0.147265 + 0.147265i
\(668\) 0 0
\(669\) −8.82868 −0.341337
\(670\) 0 0
\(671\) 22.7564i 0.878501i
\(672\) 0 0
\(673\) 5.25412 + 5.25412i 0.202532 + 0.202532i 0.801084 0.598552i \(-0.204257\pi\)
−0.598552 + 0.801084i \(0.704257\pi\)
\(674\) 0 0
\(675\) −24.4331 1.46139i −0.940430 0.0562490i
\(676\) 0 0
\(677\) 26.8547 + 26.8547i 1.03211 + 1.03211i 0.999467 + 0.0326441i \(0.0103928\pi\)
0.0326441 + 0.999467i \(0.489607\pi\)
\(678\) 0 0
\(679\) −18.7791 −0.720675
\(680\) 0 0
\(681\) 9.21842 0.353251
\(682\) 0 0
\(683\) −11.7713 11.7713i −0.450416 0.450416i 0.445077 0.895492i \(-0.353176\pi\)
−0.895492 + 0.445077i \(0.853176\pi\)
\(684\) 0 0
\(685\) −12.4412 + 4.72311i −0.475352 + 0.180461i
\(686\) 0 0
\(687\) 13.9498 + 13.9498i 0.532218 + 0.532218i
\(688\) 0 0
\(689\) 51.0587i 1.94518i
\(690\) 0 0
\(691\) −32.1658 −1.22364 −0.611822 0.790995i \(-0.709563\pi\)
−0.611822 + 0.790995i \(0.709563\pi\)
\(692\) 0 0
\(693\) −7.91125 + 7.91125i −0.300523 + 0.300523i
\(694\) 0 0
\(695\) −19.9315 + 44.3259i −0.756044 + 1.68138i
\(696\) 0 0
\(697\) 18.2609 18.2609i 0.691681 0.691681i
\(698\) 0 0
\(699\) 13.4704i 0.509496i
\(700\) 0 0
\(701\) 36.5604i 1.38087i −0.723396 0.690433i \(-0.757420\pi\)
0.723396 0.690433i \(-0.242580\pi\)
\(702\) 0 0
\(703\) 2.64126 2.64126i 0.0996171 0.0996171i
\(704\) 0 0
\(705\) 2.91573 6.48432i 0.109813 0.244214i
\(706\) 0 0
\(707\) −8.99799 + 8.99799i −0.338404 + 0.338404i
\(708\) 0 0
\(709\) −13.0843 −0.491390 −0.245695 0.969347i \(-0.579016\pi\)
−0.245695 + 0.969347i \(0.579016\pi\)
\(710\) 0 0
\(711\) 26.5668i 0.996335i
\(712\) 0 0
\(713\) −2.04250 2.04250i −0.0764921 0.0764921i
\(714\) 0 0
\(715\) 50.5418 19.1875i 1.89016 0.717571i
\(716\) 0 0
\(717\) −3.04545 3.04545i −0.113734 0.113734i
\(718\) 0 0
\(719\) −18.4708 −0.688843 −0.344422 0.938815i \(-0.611925\pi\)
−0.344422 + 0.938815i \(0.611925\pi\)
\(720\) 0 0
\(721\) −11.7075 −0.436012
\(722\) 0 0
\(723\) −3.99933 3.99933i −0.148737 0.148737i
\(724\) 0 0
\(725\) 19.1442 + 21.5799i 0.710996 + 0.801459i
\(726\) 0 0
\(727\) 25.3587 + 25.3587i 0.940503 + 0.940503i 0.998327 0.0578241i \(-0.0184162\pi\)
−0.0578241 + 0.998327i \(0.518416\pi\)
\(728\) 0 0
\(729\) 11.1548i 0.413140i
\(730\) 0 0
\(731\) −0.418085 −0.0154634
\(732\) 0 0
\(733\) 24.6327 24.6327i 0.909830 0.909830i −0.0864280 0.996258i \(-0.527545\pi\)
0.996258 + 0.0864280i \(0.0275453\pi\)
\(734\) 0 0
\(735\) −2.01993 + 0.766836i −0.0745061 + 0.0282852i
\(736\) 0 0
\(737\) 42.3493 42.3493i 1.55996 1.55996i
\(738\) 0 0
\(739\) 23.4559i 0.862838i 0.902152 + 0.431419i \(0.141987\pi\)
−0.902152 + 0.431419i \(0.858013\pi\)
\(740\) 0 0
\(741\) 16.7390i 0.614922i
\(742\) 0 0
\(743\) 9.17537 9.17537i 0.336612 0.336612i −0.518479 0.855090i \(-0.673502\pi\)
0.855090 + 0.518479i \(0.173502\pi\)
\(744\) 0 0
\(745\) −27.0891 12.1808i −0.992466 0.446270i
\(746\) 0 0
\(747\) 8.02430 8.02430i 0.293594 0.293594i
\(748\) 0 0
\(749\) 6.04173 0.220760
\(750\) 0 0
\(751\) 34.6985i 1.26617i −0.774084 0.633083i \(-0.781789\pi\)
0.774084 0.633083i \(-0.218211\pi\)
\(752\) 0 0
\(753\) 2.98499 + 2.98499i 0.108779 + 0.108779i
\(754\) 0 0
\(755\) −9.63874 + 21.4357i −0.350790 + 0.780126i
\(756\) 0 0
\(757\) −11.2942 11.2942i −0.410495 0.410495i 0.471416 0.881911i \(-0.343743\pi\)
−0.881911 + 0.471416i \(0.843743\pi\)
\(758\) 0 0
\(759\) −4.87725 −0.177033
\(760\) 0 0
\(761\) 51.7952 1.87757 0.938787 0.344499i \(-0.111951\pi\)
0.938787 + 0.344499i \(0.111951\pi\)
\(762\) 0 0
\(763\) 13.1247 + 13.1247i 0.475145 + 0.475145i
\(764\) 0 0
\(765\) −5.72722 15.0861i −0.207068 0.545439i
\(766\) 0 0
\(767\) 25.0797 + 25.0797i 0.905577 + 0.905577i
\(768\) 0 0
\(769\) 7.52971i 0.271528i 0.990741 + 0.135764i \(0.0433490\pi\)
−0.990741 + 0.135764i \(0.956651\pi\)
\(770\) 0 0
\(771\) 8.92784 0.321528
\(772\) 0 0
\(773\) −6.95427 + 6.95427i −0.250128 + 0.250128i −0.821023 0.570895i \(-0.806596\pi\)
0.570895 + 0.821023i \(0.306596\pi\)
\(774\) 0 0
\(775\) −11.5891 + 10.2810i −0.416291 + 0.369303i
\(776\) 0 0
\(777\) −0.657820 + 0.657820i −0.0235992 + 0.0235992i
\(778\) 0 0
\(779\) 28.6886i 1.02788i
\(780\) 0 0
\(781\) 15.4589i 0.553162i
\(782\) 0 0
\(783\) −19.9715 + 19.9715i −0.713724 + 0.713724i
\(784\) 0 0
\(785\) 16.5498 + 43.5938i 0.590686 + 1.55593i
\(786\) 0 0
\(787\) 12.5412 12.5412i 0.447047 0.447047i −0.447325 0.894372i \(-0.647623\pi\)
0.894372 + 0.447325i \(0.147623\pi\)
\(788\) 0 0
\(789\) 15.8103 0.562863
\(790\) 0 0
\(791\) 10.3707i 0.368741i
\(792\) 0 0
\(793\) 13.2705 + 13.2705i 0.471250 + 0.471250i
\(794\) 0 0
\(795\) −22.5322 10.1318i −0.799136 0.359338i
\(796\) 0 0
\(797\) 21.9527 + 21.9527i 0.777606 + 0.777606i 0.979423 0.201817i \(-0.0646846\pi\)
−0.201817 + 0.979423i \(0.564685\pi\)
\(798\) 0 0
\(799\) 11.4921 0.406562
\(800\) 0 0
\(801\) 4.06226 0.143533
\(802\) 0 0
\(803\) −7.87885 7.87885i −0.278039 0.278039i
\(804\) 0 0
\(805\) 1.90123 + 0.854903i 0.0670095 + 0.0301314i
\(806\) 0 0
\(807\) 10.8770 + 10.8770i 0.382887 + 0.382887i
\(808\) 0 0
\(809\) 15.6233i 0.549285i 0.961546 + 0.274642i \(0.0885595\pi\)
−0.961546 + 0.274642i \(0.911441\pi\)
\(810\) 0 0
\(811\) −12.8151 −0.450000 −0.225000 0.974359i \(-0.572238\pi\)
−0.225000 + 0.974359i \(0.572238\pi\)
\(812\) 0 0
\(813\) 14.2195 14.2195i 0.498700 0.498700i
\(814\) 0 0
\(815\) 7.70982 + 20.3085i 0.270063 + 0.711375i
\(816\) 0 0
\(817\) −0.328414 + 0.328414i −0.0114897 + 0.0114897i
\(818\) 0 0
\(819\) 9.22697i 0.322416i
\(820\) 0 0
\(821\) 1.83369i 0.0639962i 0.999488 + 0.0319981i \(0.0101871\pi\)
−0.999488 + 0.0319981i \(0.989813\pi\)
\(822\) 0 0
\(823\) 9.77602 9.77602i 0.340770 0.340770i −0.515886 0.856657i \(-0.672537\pi\)
0.856657 + 0.515886i \(0.172537\pi\)
\(824\) 0 0
\(825\) −1.56178 + 26.1116i −0.0543743 + 0.909088i
\(826\) 0 0
\(827\) −9.46776 + 9.46776i −0.329226 + 0.329226i −0.852292 0.523066i \(-0.824788\pi\)
0.523066 + 0.852292i \(0.324788\pi\)
\(828\) 0 0
\(829\) 29.4393 1.02247 0.511234 0.859442i \(-0.329189\pi\)
0.511234 + 0.859442i \(0.329189\pi\)
\(830\) 0 0
\(831\) 19.7825i 0.686247i
\(832\) 0 0
\(833\) −2.46948 2.46948i −0.0855623 0.0855623i
\(834\) 0 0
\(835\) −3.46284 9.12147i −0.119836 0.315661i
\(836\) 0 0
\(837\) −10.7253 10.7253i −0.370720 0.370720i
\(838\) 0 0
\(839\) −8.19787 −0.283022 −0.141511 0.989937i \(-0.545196\pi\)
−0.141511 + 0.989937i \(0.545196\pi\)
\(840\) 0 0
\(841\) 4.28771 0.147852
\(842\) 0 0
\(843\) −15.0417 15.0417i −0.518065 0.518065i
\(844\) 0 0
\(845\) −6.36314 + 14.1511i −0.218899 + 0.486811i
\(846\) 0 0
\(847\) 12.9513 + 12.9513i 0.445011 + 0.445011i
\(848\) 0 0
\(849\) 0.00193230i 6.63162e-5i
\(850\) 0 0
\(851\) 0.897577 0.0307685
\(852\) 0 0
\(853\) −12.0948 + 12.0948i −0.414118 + 0.414118i −0.883170 0.469053i \(-0.844595\pi\)
0.469053 + 0.883170i \(0.344595\pi\)
\(854\) 0 0
\(855\) −16.3493 7.35158i −0.559133 0.251419i
\(856\) 0 0
\(857\) 13.0039 13.0039i 0.444205 0.444205i −0.449218 0.893422i \(-0.648297\pi\)
0.893422 + 0.449218i \(0.148297\pi\)
\(858\) 0 0
\(859\) 46.0549i 1.57137i 0.618624 + 0.785687i \(0.287690\pi\)
−0.618624 + 0.785687i \(0.712310\pi\)
\(860\) 0 0
\(861\) 7.14504i 0.243502i
\(862\) 0 0
\(863\) −8.93749 + 8.93749i −0.304236 + 0.304236i −0.842669 0.538433i \(-0.819017\pi\)
0.538433 + 0.842669i \(0.319017\pi\)
\(864\) 0 0
\(865\) 19.0701 7.23971i 0.648405 0.246158i
\(866\) 0 0
\(867\) 3.28185 3.28185i 0.111457 0.111457i
\(868\) 0 0
\(869\) −69.6118 −2.36142
\(870\) 0 0
\(871\) 49.3924i 1.67360i
\(872\) 0 0
\(873\) 27.4390 + 27.4390i 0.928669 + 0.928669i
\(874\) 0 0
\(875\) 5.18574 9.90495i 0.175310 0.334848i
\(876\) 0 0
\(877\) −5.94628 5.94628i −0.200792 0.200792i 0.599547 0.800339i \(-0.295347\pi\)
−0.800339 + 0.599547i \(0.795347\pi\)
\(878\) 0 0
\(879\) −18.0559 −0.609011
\(880\) 0 0
\(881\) 23.6599 0.797122 0.398561 0.917142i \(-0.369510\pi\)
0.398561 + 0.917142i \(0.369510\pi\)
\(882\) 0 0
\(883\) −21.7857 21.7857i −0.733148 0.733148i 0.238094 0.971242i \(-0.423477\pi\)
−0.971242 + 0.238094i \(0.923477\pi\)
\(884\) 0 0
\(885\) −16.0444 + 6.09102i −0.539326 + 0.204747i
\(886\) 0 0
\(887\) −34.7838 34.7838i −1.16793 1.16793i −0.982695 0.185230i \(-0.940697\pi\)
−0.185230 0.982695i \(-0.559303\pi\)
\(888\) 0 0
\(889\) 22.3712i 0.750305i
\(890\) 0 0
\(891\) 7.95383 0.266463
\(892\) 0 0
\(893\) 9.02727 9.02727i 0.302086 0.302086i
\(894\) 0 0
\(895\) −17.5740 + 39.0831i −0.587435 + 1.30640i
\(896\) 0 0
\(897\) 2.84419 2.84419i 0.0949648 0.0949648i
\(898\) 0 0
\(899\) 17.8765i 0.596213i
\(900\) 0 0
\(901\) 39.9337i 1.33038i
\(902\) 0 0
\(903\) 0.0817930 0.0817930i 0.00272190 0.00272190i
\(904\) 0 0
\(905\) 12.3213 27.4014i 0.409572 0.910853i
\(906\) 0 0
\(907\) −6.75591 + 6.75591i −0.224326 + 0.224326i −0.810317 0.585991i \(-0.800705\pi\)
0.585991 + 0.810317i \(0.300705\pi\)
\(908\) 0 0
\(909\) 26.2948 0.872142
\(910\) 0 0
\(911\) 24.7078i 0.818605i −0.912399 0.409302i \(-0.865772\pi\)
0.912399 0.409302i \(-0.134228\pi\)
\(912\) 0 0
\(913\) −21.0257 21.0257i −0.695848 0.695848i
\(914\) 0 0
\(915\) −8.48961 + 3.22296i −0.280658 + 0.106548i
\(916\) 0 0
\(917\) −5.74717 5.74717i −0.189788 0.189788i
\(918\) 0 0
\(919\) 1.05781 0.0348938 0.0174469 0.999848i \(-0.494446\pi\)
0.0174469 + 0.999848i \(0.494446\pi\)
\(920\) 0 0
\(921\) −21.0870 −0.694839
\(922\) 0 0
\(923\) −9.01493 9.01493i −0.296730 0.296730i
\(924\) 0 0
\(925\) 0.287420 4.80540i 0.00945033 0.158001i
\(926\) 0 0
\(927\) 17.1064 + 17.1064i 0.561849 + 0.561849i
\(928\) 0 0
\(929\) 17.9400i 0.588591i −0.955714 0.294296i \(-0.904915\pi\)
0.955714 0.294296i \(-0.0950850\pi\)
\(930\) 0 0
\(931\) −3.87964 −0.127150
\(932\) 0 0
\(933\) −15.3655 + 15.3655i −0.503043 + 0.503043i
\(934\) 0 0
\(935\) −39.5294 + 15.0068i −1.29275 + 0.490773i
\(936\) 0 0
\(937\) 7.24822 7.24822i 0.236789 0.236789i −0.578730 0.815519i \(-0.696452\pi\)
0.815519 + 0.578730i \(0.196452\pi\)
\(938\) 0 0
\(939\) 14.8423i 0.484360i
\(940\) 0 0
\(941\) 31.3685i 1.02259i −0.859407 0.511293i \(-0.829167\pi\)
0.859407 0.511293i \(-0.170833\pi\)
\(942\) 0 0
\(943\) 4.87460 4.87460i 0.158739 0.158739i
\(944\) 0 0
\(945\) 9.98348 + 4.48915i 0.324763 + 0.146032i
\(946\) 0 0
\(947\) −10.5999 + 10.5999i −0.344450 + 0.344450i −0.858037 0.513587i \(-0.828316\pi\)
0.513587 + 0.858037i \(0.328316\pi\)
\(948\) 0 0
\(949\) 9.18919 0.298294
\(950\) 0 0
\(951\) 7.23026i 0.234457i
\(952\) 0 0
\(953\) 6.64018 + 6.64018i 0.215097 + 0.215097i 0.806428 0.591332i \(-0.201398\pi\)
−0.591332 + 0.806428i \(0.701398\pi\)
\(954\) 0 0
\(955\) −0.411541 + 0.915232i −0.0133172 + 0.0296162i
\(956\) 0 0
\(957\) 21.3435 + 21.3435i 0.689936 + 0.689936i
\(958\) 0 0
\(959\) 5.95131 0.192178
\(960\) 0 0
\(961\) 21.3998 0.690317
\(962\) 0 0
\(963\) −8.82784 8.82784i −0.284473 0.284473i
\(964\) 0 0
\(965\) 2.24653 + 5.91760i 0.0723184 + 0.190494i
\(966\) 0 0
\(967\) 29.9303 + 29.9303i 0.962495 + 0.962495i 0.999322 0.0368270i \(-0.0117251\pi\)
−0.0368270 + 0.999322i \(0.511725\pi\)
\(968\) 0 0
\(969\) 13.0918i 0.420568i
\(970\) 0 0
\(971\) 27.5224 0.883237 0.441618 0.897203i \(-0.354405\pi\)
0.441618 + 0.897203i \(0.354405\pi\)
\(972\) 0 0
\(973\) 15.3690 15.3690i 0.492706 0.492706i
\(974\) 0 0
\(975\) −14.3163 16.1379i −0.458490 0.516825i
\(976\) 0 0
\(977\) 16.9569 16.9569i 0.542499 0.542499i −0.381762 0.924261i \(-0.624682\pi\)
0.924261 + 0.381762i \(0.124682\pi\)
\(978\) 0 0
\(979\) 10.6441i 0.340188i
\(980\) 0 0
\(981\) 38.3541i 1.22455i
\(982\) 0 0
\(983\) 29.2243 29.2243i 0.932109 0.932109i −0.0657283 0.997838i \(-0.520937\pi\)
0.997838 + 0.0657283i \(0.0209371\pi\)
\(984\) 0 0
\(985\) −10.1821 26.8208i −0.324430 0.854583i
\(986\) 0 0
\(987\) −2.24829 + 2.24829i −0.0715638 + 0.0715638i
\(988\) 0 0
\(989\) −0.111604 −0.00354881
\(990\) 0 0
\(991\) 17.2817i 0.548972i −0.961591 0.274486i \(-0.911492\pi\)
0.961591 0.274486i \(-0.0885077\pi\)
\(992\) 0 0
\(993\) −4.64961 4.64961i −0.147551 0.147551i
\(994\) 0 0
\(995\) 37.0027 + 16.6386i 1.17307 + 0.527478i
\(996\) 0 0
\(997\) 1.00560 + 1.00560i 0.0318476 + 0.0318476i 0.722851 0.691004i \(-0.242831\pi\)
−0.691004 + 0.722851i \(0.742831\pi\)
\(998\) 0 0
\(999\) 4.71324 0.149120
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1120.2.bi.a.463.11 72
4.3 odd 2 280.2.w.a.43.6 72
5.2 odd 4 inner 1120.2.bi.a.687.12 72
8.3 odd 2 inner 1120.2.bi.a.463.12 72
8.5 even 2 280.2.w.a.43.14 yes 72
20.7 even 4 280.2.w.a.267.14 yes 72
40.27 even 4 inner 1120.2.bi.a.687.11 72
40.37 odd 4 280.2.w.a.267.6 yes 72
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
280.2.w.a.43.6 72 4.3 odd 2
280.2.w.a.43.14 yes 72 8.5 even 2
280.2.w.a.267.6 yes 72 40.37 odd 4
280.2.w.a.267.14 yes 72 20.7 even 4
1120.2.bi.a.463.11 72 1.1 even 1 trivial
1120.2.bi.a.463.12 72 8.3 odd 2 inner
1120.2.bi.a.687.11 72 40.27 even 4 inner
1120.2.bi.a.687.12 72 5.2 odd 4 inner