L(s) = 1 | + (−0.683 − 0.683i)3-s + (−2.03 − 0.917i)5-s + (0.707 + 0.707i)7-s − 2.06i·9-s − 5.41·11-s + (3.15 − 3.15i)13-s + (0.766 + 2.01i)15-s + (−2.46 + 2.46i)17-s + 3.87i·19-s − 0.966i·21-s + (−0.659 + 0.659i)23-s + (3.31 + 3.74i)25-s + (−3.46 + 3.46i)27-s + 5.76·29-s + 3.09i·31-s + ⋯ |
L(s) = 1 | + (−0.394 − 0.394i)3-s + (−0.912 − 0.410i)5-s + (0.267 + 0.267i)7-s − 0.688i·9-s − 1.63·11-s + (0.875 − 0.875i)13-s + (0.197 + 0.521i)15-s + (−0.598 + 0.598i)17-s + 0.890i·19-s − 0.210i·21-s + (−0.137 + 0.137i)23-s + (0.663 + 0.748i)25-s + (−0.666 + 0.666i)27-s + 1.07·29-s + 0.556i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1120 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.287 - 0.957i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1120 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.287 - 0.957i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.2784379959\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2784379959\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (2.03 + 0.917i)T \) |
| 7 | \( 1 + (-0.707 - 0.707i)T \) |
good | 3 | \( 1 + (0.683 + 0.683i)T + 3iT^{2} \) |
| 11 | \( 1 + 5.41T + 11T^{2} \) |
| 13 | \( 1 + (-3.15 + 3.15i)T - 13iT^{2} \) |
| 17 | \( 1 + (2.46 - 2.46i)T - 17iT^{2} \) |
| 19 | \( 1 - 3.87iT - 19T^{2} \) |
| 23 | \( 1 + (0.659 - 0.659i)T - 23iT^{2} \) |
| 29 | \( 1 - 5.76T + 29T^{2} \) |
| 31 | \( 1 - 3.09iT - 31T^{2} \) |
| 37 | \( 1 + (0.680 + 0.680i)T + 37iT^{2} \) |
| 41 | \( 1 + 7.39T + 41T^{2} \) |
| 43 | \( 1 + (-0.0846 - 0.0846i)T + 43iT^{2} \) |
| 47 | \( 1 + (2.32 + 2.32i)T + 47iT^{2} \) |
| 53 | \( 1 + (8.08 - 8.08i)T - 53iT^{2} \) |
| 59 | \( 1 - 7.94iT - 59T^{2} \) |
| 61 | \( 1 - 4.20iT - 61T^{2} \) |
| 67 | \( 1 + (7.82 - 7.82i)T - 67iT^{2} \) |
| 71 | \( 1 + 2.85iT - 71T^{2} \) |
| 73 | \( 1 + (-1.45 - 1.45i)T + 73iT^{2} \) |
| 79 | \( 1 - 12.8T + 79T^{2} \) |
| 83 | \( 1 + (-3.88 - 3.88i)T + 83iT^{2} \) |
| 89 | \( 1 - 1.96iT - 89T^{2} \) |
| 97 | \( 1 + (13.2 - 13.2i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.39108502969367939002100458277, −9.036686542283861433164757683455, −8.208366840255302130486202172619, −7.85496232658736966789924128690, −6.72130515919892962614018256887, −5.78973473159766945991490446810, −5.05348665139597024791313524188, −3.90169231640056658881805286783, −2.93585556630616301917328716184, −1.27714385325843218614238004229,
0.13700179547638672199207986740, 2.23872197590831536172781223242, 3.34854216089642096278485156701, 4.65124208663356510318683669732, 4.89458945035504811443721247906, 6.28963146435412417530280782506, 7.15134737494158957299285178471, 7.989431241775982103418840993717, 8.548594540170449069341583169857, 9.790035808884701637314823382879