Properties

Label 112.8.f.a
Level $112$
Weight $8$
Character orbit 112.f
Analytic conductor $34.987$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [112,8,Mod(111,112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("112.111"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(112, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 112.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(34.9871228542\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 452x^{6} + 77964x^{4} + 3707888x^{2} + 180741136 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{16}\cdot 5^{4}\cdot 7^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{3} - \beta_{3} q^{5} + ( - \beta_{6} + \beta_1) q^{7} + (\beta_{2} + 221) q^{9} + \beta_{4} q^{11} - \beta_{7} q^{13} + ( - \beta_{6} - \beta_{5} + \beta_{4}) q^{15} + ( - 3 \beta_{7} + 5 \beta_{3}) q^{17}+ \cdots + (4990 \beta_{6} + \cdots - 1249 \beta_{4}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 1768 q^{9} - 12544 q^{21} + 57640 q^{25} + 34608 q^{29} - 261520 q^{37} - 573496 q^{49} + 841200 q^{53} + 414400 q^{57} + 200640 q^{65} + 623280 q^{77} - 4891640 q^{81} + 3438720 q^{85} + 3866240 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 452x^{6} + 77964x^{4} + 3707888x^{2} + 180741136 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -347\nu^{7} - 106429\nu^{5} - 18052750\nu^{3} - 105084308\nu ) / 379524120 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 7\nu^{6} + 2128\nu^{4} + 99064\nu^{2} - 18479496 ) / 11292 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 1444\nu^{7} + 998871\nu^{5} + 249446658\nu^{3} + 23093938148\nu ) / 379524120 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 49\nu^{6} + 24306\nu^{4} + 4005768\nu^{2} + 131131148 ) / 28230 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 15950 \nu^{7} - 70581 \nu^{6} + 6806080 \nu^{5} - 21456624 \nu^{4} + 994408480 \nu^{3} + \cdots - 113874820752 ) / 379524120 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 15950 \nu^{7} - 70581 \nu^{6} - 6806080 \nu^{5} - 21456624 \nu^{4} - 994408480 \nu^{3} + \cdots - 113874820752 ) / 379524120 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 10928\nu^{7} + 2959827\nu^{5} + 155302346\nu^{3} + 9404643476\nu ) / 126508040 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{7} + \beta_{6} - \beta_{5} + 9\beta_{3} + 40\beta_1 ) / 560 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -5\beta_{6} - 5\beta_{5} - 3\beta_{2} - 7910 ) / 70 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -42\beta_{7} + 19\beta_{6} - 19\beta_{5} + 42\beta_{3} - 5540\beta_1 ) / 140 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 880\beta_{6} + 880\beta_{5} + 105\beta_{4} + 234\beta_{2} + 423290 ) / 35 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 2981\beta_{7} - 16145\beta_{6} + 16145\beta_{5} - 9291\beta_{3} + 1727200\beta_1 ) / 140 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( -232140\beta_{6} - 232140\beta_{5} - 31920\beta_{4} + 6552\beta_{2} + 19688480 ) / 35 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 597521\beta_{7} + 1943837\beta_{6} - 1943837\beta_{5} - 8391\beta_{3} - 198841720\beta_1 ) / 70 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/112\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(17\) \(85\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
111.1
4.18330 14.9157i
4.18330 + 14.9157i
4.18330 + 6.20659i
4.18330 6.20659i
−4.18330 + 6.20659i
−4.18330 6.20659i
−4.18330 14.9157i
−4.18330 + 14.9157i
0 −67.4845 0 9.83571i 0 245.851 873.556i 0 2367.16 0
111.2 0 −67.4845 0 9.83571i 0 245.851 + 873.556i 0 2367.16 0
111.3 0 −16.1815 0 376.488i 0 −831.513 + 363.496i 0 −1925.16 0
111.4 0 −16.1815 0 376.488i 0 −831.513 363.496i 0 −1925.16 0
111.5 0 16.1815 0 376.488i 0 831.513 363.496i 0 −1925.16 0
111.6 0 16.1815 0 376.488i 0 831.513 + 363.496i 0 −1925.16 0
111.7 0 67.4845 0 9.83571i 0 −245.851 + 873.556i 0 2367.16 0
111.8 0 67.4845 0 9.83571i 0 −245.851 873.556i 0 2367.16 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 111.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
7.b odd 2 1 inner
28.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 112.8.f.a 8
4.b odd 2 1 inner 112.8.f.a 8
7.b odd 2 1 inner 112.8.f.a 8
28.d even 2 1 inner 112.8.f.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
112.8.f.a 8 1.a even 1 1 trivial
112.8.f.a 8 4.b odd 2 1 inner
112.8.f.a 8 7.b odd 2 1 inner
112.8.f.a 8 28.d even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{4} - 4816T_{3}^{2} + 1192464 \) acting on \(S_{8}^{\mathrm{new}}(112, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( (T^{4} - 4816 T^{2} + 1192464)^{2} \) Copy content Toggle raw display
$5$ \( (T^{4} + 141840 T^{2} + 13712400)^{2} \) Copy content Toggle raw display
$7$ \( T^{8} + \cdots + 45\!\cdots\!01 \) Copy content Toggle raw display
$11$ \( (T^{4} + \cdots + 167305664307600)^{2} \) Copy content Toggle raw display
$13$ \( (T^{4} + 71263440 T^{2} + 543024752400)^{2} \) Copy content Toggle raw display
$17$ \( (T^{4} + \cdots + 16\!\cdots\!00)^{2} \) Copy content Toggle raw display
$19$ \( (T^{4} + \cdots + 784980306250000)^{2} \) Copy content Toggle raw display
$23$ \( (T^{4} + \cdots + 20\!\cdots\!00)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} - 8652 T - 1473629724)^{4} \) Copy content Toggle raw display
$31$ \( (T^{4} + \cdots + 44\!\cdots\!00)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 65380 T - 102566363900)^{4} \) Copy content Toggle raw display
$41$ \( (T^{4} + \cdots + 46\!\cdots\!00)^{2} \) Copy content Toggle raw display
$43$ \( (T^{4} + \cdots + 12\!\cdots\!00)^{2} \) Copy content Toggle raw display
$47$ \( (T^{4} + \cdots + 38\!\cdots\!44)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + \cdots - 1332053077500)^{4} \) Copy content Toggle raw display
$59$ \( (T^{4} + \cdots + 35\!\cdots\!00)^{2} \) Copy content Toggle raw display
$61$ \( (T^{4} + \cdots + 16\!\cdots\!00)^{2} \) Copy content Toggle raw display
$67$ \( (T^{4} + \cdots + 19\!\cdots\!00)^{2} \) Copy content Toggle raw display
$71$ \( (T^{4} + \cdots + 14\!\cdots\!00)^{2} \) Copy content Toggle raw display
$73$ \( (T^{4} + \cdots + 50\!\cdots\!00)^{2} \) Copy content Toggle raw display
$79$ \( (T^{4} + \cdots + 40\!\cdots\!00)^{2} \) Copy content Toggle raw display
$83$ \( (T^{4} + \cdots + 82\!\cdots\!44)^{2} \) Copy content Toggle raw display
$89$ \( (T^{4} + \cdots + 61\!\cdots\!00)^{2} \) Copy content Toggle raw display
$97$ \( (T^{4} + \cdots + 26\!\cdots\!00)^{2} \) Copy content Toggle raw display
show more
show less