| L(s) = 1 | + 67.4·3-s − 9.83i·5-s + (−245. + 873. i)7-s + 2.36e3·9-s − 2.41e3i·11-s + 8.44e3i·13-s − 663. i·15-s + 2.53e4i·17-s + 3.47e3·19-s + (−1.65e4 + 5.89e4i)21-s + 6.76e4i·23-s + 7.80e4·25-s + 1.21e4·27-s + 4.29e4·29-s + 4.78e4·31-s + ⋯ |
| L(s) = 1 | + 1.44·3-s − 0.0351i·5-s + (−0.270 + 0.962i)7-s + 1.08·9-s − 0.546i·11-s + 1.06i·13-s − 0.0507i·15-s + 1.25i·17-s + 0.116·19-s + (−0.390 + 1.38i)21-s + 1.15i·23-s + 0.998·25-s + 0.118·27-s + 0.327·29-s + 0.288·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.270 - 0.962i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.270 - 0.962i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(4)\) |
\(\approx\) |
\(3.003081118\) |
| \(L(\frac12)\) |
\(\approx\) |
\(3.003081118\) |
| \(L(\frac{9}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 7 | \( 1 + (245. - 873. i)T \) |
| good | 3 | \( 1 - 67.4T + 2.18e3T^{2} \) |
| 5 | \( 1 + 9.83iT - 7.81e4T^{2} \) |
| 11 | \( 1 + 2.41e3iT - 1.94e7T^{2} \) |
| 13 | \( 1 - 8.44e3iT - 6.27e7T^{2} \) |
| 17 | \( 1 - 2.53e4iT - 4.10e8T^{2} \) |
| 19 | \( 1 - 3.47e3T + 8.93e8T^{2} \) |
| 23 | \( 1 - 6.76e4iT - 3.40e9T^{2} \) |
| 29 | \( 1 - 4.29e4T + 1.72e10T^{2} \) |
| 31 | \( 1 - 4.78e4T + 2.75e10T^{2} \) |
| 37 | \( 1 + 3.54e5T + 9.49e10T^{2} \) |
| 41 | \( 1 + 5.54e5iT - 1.94e11T^{2} \) |
| 43 | \( 1 - 5.07e5iT - 2.71e11T^{2} \) |
| 47 | \( 1 - 6.35e5T + 5.06e11T^{2} \) |
| 53 | \( 1 - 1.26e6T + 1.17e12T^{2} \) |
| 59 | \( 1 - 9.21e5T + 2.48e12T^{2} \) |
| 61 | \( 1 - 1.86e6iT - 3.14e12T^{2} \) |
| 67 | \( 1 - 2.09e6iT - 6.06e12T^{2} \) |
| 71 | \( 1 - 4.07e6iT - 9.09e12T^{2} \) |
| 73 | \( 1 + 1.11e5iT - 1.10e13T^{2} \) |
| 79 | \( 1 + 2.72e5iT - 1.92e13T^{2} \) |
| 83 | \( 1 + 5.12e6T + 2.71e13T^{2} \) |
| 89 | \( 1 + 9.51e6iT - 4.42e13T^{2} \) |
| 97 | \( 1 + 1.20e7iT - 8.07e13T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.65091308452706657115675126533, −11.52769675980672281394837690753, −10.05740092679932190990573794566, −8.863050318480350837581275165327, −8.575633205013727822282032227501, −7.12626691016713535791021109877, −5.72059425794365059833086163558, −3.95222313963315610677066625302, −2.84403172619143634859845267717, −1.68351337561002437508110879108,
0.74066506571003786963471546989, 2.50490066053081337038524870069, 3.47521237166805949390120315003, 4.82908931540117572293404075746, 6.84066746168045157567512972571, 7.72143774730340426388005774176, 8.745177154011132720454989691116, 9.825749548920986506554728048668, 10.65898237763821093658136168076, 12.32072994456181145968058582567