Properties

Label 112.4.a.h.1.2
Level $112$
Weight $4$
Character 112.1
Self dual yes
Analytic conductor $6.608$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [112,4,Mod(1,112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("112.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(112, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 112.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,2,0,22] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(6.60821392064\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{57}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 56)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(4.27492\) of defining polynomial
Character \(\chi\) \(=\) 112.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.54983 q^{3} +18.5498 q^{5} -7.00000 q^{7} +46.0997 q^{9} -63.2990 q^{11} -16.7492 q^{13} +158.598 q^{15} -41.2990 q^{17} -39.1478 q^{19} -59.8488 q^{21} +21.8007 q^{23} +219.096 q^{25} +163.299 q^{27} +138.096 q^{29} +95.6977 q^{31} -541.196 q^{33} -129.849 q^{35} +176.502 q^{37} -143.203 q^{39} -407.897 q^{41} -100.302 q^{43} +855.141 q^{45} +144.302 q^{47} +49.0000 q^{49} -353.100 q^{51} -409.588 q^{53} -1174.19 q^{55} -334.708 q^{57} +0.852152 q^{59} -407.045 q^{61} -322.698 q^{63} -310.694 q^{65} +9.38874 q^{67} +186.392 q^{69} +944.193 q^{71} +86.2060 q^{73} +1873.24 q^{75} +443.093 q^{77} -563.794 q^{79} +151.488 q^{81} +969.842 q^{83} -766.090 q^{85} +1180.70 q^{87} +1505.97 q^{89} +117.244 q^{91} +818.199 q^{93} -726.186 q^{95} -956.488 q^{97} -2918.06 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} + 22 q^{5} - 14 q^{7} + 62 q^{9} - 36 q^{11} + 42 q^{13} + 136 q^{15} + 8 q^{17} + 118 q^{19} - 14 q^{21} + 104 q^{23} + 106 q^{25} + 236 q^{27} - 56 q^{29} - 20 q^{31} - 720 q^{33} - 154 q^{35}+ \cdots - 2484 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 8.54983 1.64542 0.822708 0.568464i \(-0.192462\pi\)
0.822708 + 0.568464i \(0.192462\pi\)
\(4\) 0 0
\(5\) 18.5498 1.65915 0.829574 0.558397i \(-0.188583\pi\)
0.829574 + 0.558397i \(0.188583\pi\)
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 0 0
\(9\) 46.0997 1.70740
\(10\) 0 0
\(11\) −63.2990 −1.73503 −0.867517 0.497408i \(-0.834285\pi\)
−0.867517 + 0.497408i \(0.834285\pi\)
\(12\) 0 0
\(13\) −16.7492 −0.357337 −0.178669 0.983909i \(-0.557179\pi\)
−0.178669 + 0.983909i \(0.557179\pi\)
\(14\) 0 0
\(15\) 158.598 2.72999
\(16\) 0 0
\(17\) −41.2990 −0.589205 −0.294602 0.955620i \(-0.595187\pi\)
−0.294602 + 0.955620i \(0.595187\pi\)
\(18\) 0 0
\(19\) −39.1478 −0.472691 −0.236346 0.971669i \(-0.575950\pi\)
−0.236346 + 0.971669i \(0.575950\pi\)
\(20\) 0 0
\(21\) −59.8488 −0.621909
\(22\) 0 0
\(23\) 21.8007 0.197641 0.0988207 0.995105i \(-0.468493\pi\)
0.0988207 + 0.995105i \(0.468493\pi\)
\(24\) 0 0
\(25\) 219.096 1.75277
\(26\) 0 0
\(27\) 163.299 1.16396
\(28\) 0 0
\(29\) 138.096 0.884271 0.442135 0.896948i \(-0.354221\pi\)
0.442135 + 0.896948i \(0.354221\pi\)
\(30\) 0 0
\(31\) 95.6977 0.554446 0.277223 0.960806i \(-0.410586\pi\)
0.277223 + 0.960806i \(0.410586\pi\)
\(32\) 0 0
\(33\) −541.196 −2.85485
\(34\) 0 0
\(35\) −129.849 −0.627099
\(36\) 0 0
\(37\) 176.502 0.784235 0.392117 0.919915i \(-0.371743\pi\)
0.392117 + 0.919915i \(0.371743\pi\)
\(38\) 0 0
\(39\) −143.203 −0.587969
\(40\) 0 0
\(41\) −407.897 −1.55373 −0.776864 0.629669i \(-0.783191\pi\)
−0.776864 + 0.629669i \(0.783191\pi\)
\(42\) 0 0
\(43\) −100.302 −0.355720 −0.177860 0.984056i \(-0.556917\pi\)
−0.177860 + 0.984056i \(0.556917\pi\)
\(44\) 0 0
\(45\) 855.141 2.83282
\(46\) 0 0
\(47\) 144.302 0.447844 0.223922 0.974607i \(-0.428114\pi\)
0.223922 + 0.974607i \(0.428114\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) −353.100 −0.969487
\(52\) 0 0
\(53\) −409.588 −1.06153 −0.530767 0.847518i \(-0.678096\pi\)
−0.530767 + 0.847518i \(0.678096\pi\)
\(54\) 0 0
\(55\) −1174.19 −2.87868
\(56\) 0 0
\(57\) −334.708 −0.777774
\(58\) 0 0
\(59\) 0.852152 0.00188035 0.000940176 1.00000i \(-0.499701\pi\)
0.000940176 1.00000i \(0.499701\pi\)
\(60\) 0 0
\(61\) −407.045 −0.854373 −0.427187 0.904164i \(-0.640495\pi\)
−0.427187 + 0.904164i \(0.640495\pi\)
\(62\) 0 0
\(63\) −322.698 −0.645335
\(64\) 0 0
\(65\) −310.694 −0.592875
\(66\) 0 0
\(67\) 9.38874 0.0171197 0.00855983 0.999963i \(-0.497275\pi\)
0.00855983 + 0.999963i \(0.497275\pi\)
\(68\) 0 0
\(69\) 186.392 0.325202
\(70\) 0 0
\(71\) 944.193 1.57824 0.789120 0.614239i \(-0.210537\pi\)
0.789120 + 0.614239i \(0.210537\pi\)
\(72\) 0 0
\(73\) 86.2060 0.138214 0.0691072 0.997609i \(-0.477985\pi\)
0.0691072 + 0.997609i \(0.477985\pi\)
\(74\) 0 0
\(75\) 1873.24 2.88404
\(76\) 0 0
\(77\) 443.093 0.655781
\(78\) 0 0
\(79\) −563.794 −0.802934 −0.401467 0.915873i \(-0.631500\pi\)
−0.401467 + 0.915873i \(0.631500\pi\)
\(80\) 0 0
\(81\) 151.488 0.207803
\(82\) 0 0
\(83\) 969.842 1.28258 0.641289 0.767299i \(-0.278400\pi\)
0.641289 + 0.767299i \(0.278400\pi\)
\(84\) 0 0
\(85\) −766.090 −0.977578
\(86\) 0 0
\(87\) 1180.70 1.45499
\(88\) 0 0
\(89\) 1505.97 1.79363 0.896814 0.442408i \(-0.145876\pi\)
0.896814 + 0.442408i \(0.145876\pi\)
\(90\) 0 0
\(91\) 117.244 0.135061
\(92\) 0 0
\(93\) 818.199 0.912294
\(94\) 0 0
\(95\) −726.186 −0.784264
\(96\) 0 0
\(97\) −956.488 −1.00120 −0.500601 0.865678i \(-0.666888\pi\)
−0.500601 + 0.865678i \(0.666888\pi\)
\(98\) 0 0
\(99\) −2918.06 −2.96239
\(100\) 0 0
\(101\) 1641.75 1.61743 0.808715 0.588200i \(-0.200163\pi\)
0.808715 + 0.588200i \(0.200163\pi\)
\(102\) 0 0
\(103\) −580.894 −0.555701 −0.277850 0.960624i \(-0.589622\pi\)
−0.277850 + 0.960624i \(0.589622\pi\)
\(104\) 0 0
\(105\) −1110.19 −1.03184
\(106\) 0 0
\(107\) 1681.99 1.51967 0.759834 0.650117i \(-0.225280\pi\)
0.759834 + 0.650117i \(0.225280\pi\)
\(108\) 0 0
\(109\) 246.302 0.216436 0.108218 0.994127i \(-0.465486\pi\)
0.108218 + 0.994127i \(0.465486\pi\)
\(110\) 0 0
\(111\) 1509.06 1.29039
\(112\) 0 0
\(113\) −2387.25 −1.98738 −0.993690 0.112165i \(-0.964221\pi\)
−0.993690 + 0.112165i \(0.964221\pi\)
\(114\) 0 0
\(115\) 404.399 0.327916
\(116\) 0 0
\(117\) −772.131 −0.610116
\(118\) 0 0
\(119\) 289.093 0.222698
\(120\) 0 0
\(121\) 2675.76 2.01034
\(122\) 0 0
\(123\) −3487.45 −2.55653
\(124\) 0 0
\(125\) 1745.47 1.24896
\(126\) 0 0
\(127\) −1616.00 −1.12911 −0.564554 0.825396i \(-0.690952\pi\)
−0.564554 + 0.825396i \(0.690952\pi\)
\(128\) 0 0
\(129\) −857.568 −0.585308
\(130\) 0 0
\(131\) −462.350 −0.308365 −0.154182 0.988042i \(-0.549274\pi\)
−0.154182 + 0.988042i \(0.549274\pi\)
\(132\) 0 0
\(133\) 274.035 0.178660
\(134\) 0 0
\(135\) 3029.17 1.93118
\(136\) 0 0
\(137\) 679.362 0.423663 0.211832 0.977306i \(-0.432057\pi\)
0.211832 + 0.977306i \(0.432057\pi\)
\(138\) 0 0
\(139\) −1514.45 −0.924127 −0.462064 0.886847i \(-0.652891\pi\)
−0.462064 + 0.886847i \(0.652891\pi\)
\(140\) 0 0
\(141\) 1233.76 0.736889
\(142\) 0 0
\(143\) 1060.21 0.619992
\(144\) 0 0
\(145\) 2561.66 1.46714
\(146\) 0 0
\(147\) 418.942 0.235059
\(148\) 0 0
\(149\) −1031.39 −0.567078 −0.283539 0.958961i \(-0.591509\pi\)
−0.283539 + 0.958961i \(0.591509\pi\)
\(150\) 0 0
\(151\) 3066.37 1.65256 0.826282 0.563256i \(-0.190452\pi\)
0.826282 + 0.563256i \(0.190452\pi\)
\(152\) 0 0
\(153\) −1903.87 −1.00601
\(154\) 0 0
\(155\) 1775.18 0.919907
\(156\) 0 0
\(157\) −3196.35 −1.62482 −0.812409 0.583087i \(-0.801844\pi\)
−0.812409 + 0.583087i \(0.801844\pi\)
\(158\) 0 0
\(159\) −3501.91 −1.74666
\(160\) 0 0
\(161\) −152.605 −0.0747014
\(162\) 0 0
\(163\) 308.907 0.148438 0.0742192 0.997242i \(-0.476354\pi\)
0.0742192 + 0.997242i \(0.476354\pi\)
\(164\) 0 0
\(165\) −10039.1 −4.73662
\(166\) 0 0
\(167\) −1449.46 −0.671632 −0.335816 0.941928i \(-0.609012\pi\)
−0.335816 + 0.941928i \(0.609012\pi\)
\(168\) 0 0
\(169\) −1916.47 −0.872310
\(170\) 0 0
\(171\) −1804.70 −0.807071
\(172\) 0 0
\(173\) 1817.86 0.798899 0.399449 0.916755i \(-0.369201\pi\)
0.399449 + 0.916755i \(0.369201\pi\)
\(174\) 0 0
\(175\) −1533.67 −0.662485
\(176\) 0 0
\(177\) 7.28576 0.00309396
\(178\) 0 0
\(179\) 2145.14 0.895729 0.447865 0.894101i \(-0.352185\pi\)
0.447865 + 0.894101i \(0.352185\pi\)
\(180\) 0 0
\(181\) 1952.00 0.801606 0.400803 0.916164i \(-0.368731\pi\)
0.400803 + 0.916164i \(0.368731\pi\)
\(182\) 0 0
\(183\) −3480.17 −1.40580
\(184\) 0 0
\(185\) 3274.08 1.30116
\(186\) 0 0
\(187\) 2614.19 1.02229
\(188\) 0 0
\(189\) −1143.09 −0.439935
\(190\) 0 0
\(191\) −2352.55 −0.891229 −0.445614 0.895225i \(-0.647015\pi\)
−0.445614 + 0.895225i \(0.647015\pi\)
\(192\) 0 0
\(193\) 3358.46 1.25257 0.626287 0.779592i \(-0.284574\pi\)
0.626287 + 0.779592i \(0.284574\pi\)
\(194\) 0 0
\(195\) −2656.39 −0.975527
\(196\) 0 0
\(197\) 2484.16 0.898422 0.449211 0.893426i \(-0.351705\pi\)
0.449211 + 0.893426i \(0.351705\pi\)
\(198\) 0 0
\(199\) 4181.66 1.48960 0.744800 0.667288i \(-0.232545\pi\)
0.744800 + 0.667288i \(0.232545\pi\)
\(200\) 0 0
\(201\) 80.2722 0.0281690
\(202\) 0 0
\(203\) −966.675 −0.334223
\(204\) 0 0
\(205\) −7566.42 −2.57786
\(206\) 0 0
\(207\) 1005.00 0.337452
\(208\) 0 0
\(209\) 2478.02 0.820135
\(210\) 0 0
\(211\) 1246.56 0.406714 0.203357 0.979105i \(-0.434815\pi\)
0.203357 + 0.979105i \(0.434815\pi\)
\(212\) 0 0
\(213\) 8072.69 2.59686
\(214\) 0 0
\(215\) −1860.59 −0.590192
\(216\) 0 0
\(217\) −669.884 −0.209561
\(218\) 0 0
\(219\) 737.047 0.227420
\(220\) 0 0
\(221\) 691.724 0.210545
\(222\) 0 0
\(223\) −2292.18 −0.688321 −0.344161 0.938911i \(-0.611837\pi\)
−0.344161 + 0.938911i \(0.611837\pi\)
\(224\) 0 0
\(225\) 10100.3 2.99267
\(226\) 0 0
\(227\) 4799.95 1.40345 0.701726 0.712447i \(-0.252413\pi\)
0.701726 + 0.712447i \(0.252413\pi\)
\(228\) 0 0
\(229\) −1059.75 −0.305808 −0.152904 0.988241i \(-0.548862\pi\)
−0.152904 + 0.988241i \(0.548862\pi\)
\(230\) 0 0
\(231\) 3788.37 1.07903
\(232\) 0 0
\(233\) −1396.74 −0.392718 −0.196359 0.980532i \(-0.562912\pi\)
−0.196359 + 0.980532i \(0.562912\pi\)
\(234\) 0 0
\(235\) 2676.78 0.743039
\(236\) 0 0
\(237\) −4820.35 −1.32116
\(238\) 0 0
\(239\) −299.050 −0.0809369 −0.0404684 0.999181i \(-0.512885\pi\)
−0.0404684 + 0.999181i \(0.512885\pi\)
\(240\) 0 0
\(241\) −4552.86 −1.21691 −0.608455 0.793588i \(-0.708211\pi\)
−0.608455 + 0.793588i \(0.708211\pi\)
\(242\) 0 0
\(243\) −3113.87 −0.822037
\(244\) 0 0
\(245\) 908.942 0.237021
\(246\) 0 0
\(247\) 655.694 0.168910
\(248\) 0 0
\(249\) 8291.99 2.11038
\(250\) 0 0
\(251\) 4335.56 1.09027 0.545136 0.838348i \(-0.316478\pi\)
0.545136 + 0.838348i \(0.316478\pi\)
\(252\) 0 0
\(253\) −1379.96 −0.342914
\(254\) 0 0
\(255\) −6549.94 −1.60852
\(256\) 0 0
\(257\) −1235.22 −0.299810 −0.149905 0.988700i \(-0.547897\pi\)
−0.149905 + 0.988700i \(0.547897\pi\)
\(258\) 0 0
\(259\) −1235.51 −0.296413
\(260\) 0 0
\(261\) 6366.20 1.50980
\(262\) 0 0
\(263\) 2030.65 0.476104 0.238052 0.971252i \(-0.423491\pi\)
0.238052 + 0.971252i \(0.423491\pi\)
\(264\) 0 0
\(265\) −7597.79 −1.76124
\(266\) 0 0
\(267\) 12875.8 2.95126
\(268\) 0 0
\(269\) −2610.12 −0.591606 −0.295803 0.955249i \(-0.595587\pi\)
−0.295803 + 0.955249i \(0.595587\pi\)
\(270\) 0 0
\(271\) −609.595 −0.136643 −0.0683215 0.997663i \(-0.521764\pi\)
−0.0683215 + 0.997663i \(0.521764\pi\)
\(272\) 0 0
\(273\) 1002.42 0.222231
\(274\) 0 0
\(275\) −13868.6 −3.04112
\(276\) 0 0
\(277\) 5083.53 1.10267 0.551335 0.834284i \(-0.314119\pi\)
0.551335 + 0.834284i \(0.314119\pi\)
\(278\) 0 0
\(279\) 4411.63 0.946658
\(280\) 0 0
\(281\) −5131.55 −1.08941 −0.544703 0.838629i \(-0.683357\pi\)
−0.544703 + 0.838629i \(0.683357\pi\)
\(282\) 0 0
\(283\) 1762.83 0.370281 0.185140 0.982712i \(-0.440726\pi\)
0.185140 + 0.982712i \(0.440726\pi\)
\(284\) 0 0
\(285\) −6208.77 −1.29044
\(286\) 0 0
\(287\) 2855.28 0.587254
\(288\) 0 0
\(289\) −3207.39 −0.652838
\(290\) 0 0
\(291\) −8177.82 −1.64740
\(292\) 0 0
\(293\) 458.796 0.0914782 0.0457391 0.998953i \(-0.485436\pi\)
0.0457391 + 0.998953i \(0.485436\pi\)
\(294\) 0 0
\(295\) 15.8073 0.00311978
\(296\) 0 0
\(297\) −10336.7 −2.01951
\(298\) 0 0
\(299\) −365.143 −0.0706246
\(300\) 0 0
\(301\) 702.116 0.134450
\(302\) 0 0
\(303\) 14036.7 2.66135
\(304\) 0 0
\(305\) −7550.61 −1.41753
\(306\) 0 0
\(307\) −4858.28 −0.903182 −0.451591 0.892225i \(-0.649143\pi\)
−0.451591 + 0.892225i \(0.649143\pi\)
\(308\) 0 0
\(309\) −4966.55 −0.914359
\(310\) 0 0
\(311\) −705.289 −0.128596 −0.0642978 0.997931i \(-0.520481\pi\)
−0.0642978 + 0.997931i \(0.520481\pi\)
\(312\) 0 0
\(313\) 6210.34 1.12150 0.560749 0.827986i \(-0.310513\pi\)
0.560749 + 0.827986i \(0.310513\pi\)
\(314\) 0 0
\(315\) −5985.99 −1.07071
\(316\) 0 0
\(317\) 7438.53 1.31795 0.658973 0.752166i \(-0.270991\pi\)
0.658973 + 0.752166i \(0.270991\pi\)
\(318\) 0 0
\(319\) −8741.36 −1.53424
\(320\) 0 0
\(321\) 14380.8 2.50049
\(322\) 0 0
\(323\) 1616.77 0.278512
\(324\) 0 0
\(325\) −3669.68 −0.626330
\(326\) 0 0
\(327\) 2105.84 0.356127
\(328\) 0 0
\(329\) −1010.12 −0.169269
\(330\) 0 0
\(331\) −4883.48 −0.810937 −0.405469 0.914109i \(-0.632892\pi\)
−0.405469 + 0.914109i \(0.632892\pi\)
\(332\) 0 0
\(333\) 8136.67 1.33900
\(334\) 0 0
\(335\) 174.160 0.0284040
\(336\) 0 0
\(337\) 1890.14 0.305526 0.152763 0.988263i \(-0.451183\pi\)
0.152763 + 0.988263i \(0.451183\pi\)
\(338\) 0 0
\(339\) −20410.6 −3.27007
\(340\) 0 0
\(341\) −6057.57 −0.961982
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) 0 0
\(345\) 3457.54 0.539559
\(346\) 0 0
\(347\) 1938.41 0.299883 0.149941 0.988695i \(-0.452092\pi\)
0.149941 + 0.988695i \(0.452092\pi\)
\(348\) 0 0
\(349\) 5119.42 0.785204 0.392602 0.919709i \(-0.371575\pi\)
0.392602 + 0.919709i \(0.371575\pi\)
\(350\) 0 0
\(351\) −2735.12 −0.415926
\(352\) 0 0
\(353\) 8124.62 1.22501 0.612507 0.790465i \(-0.290161\pi\)
0.612507 + 0.790465i \(0.290161\pi\)
\(354\) 0 0
\(355\) 17514.6 2.61853
\(356\) 0 0
\(357\) 2471.70 0.366432
\(358\) 0 0
\(359\) −9429.09 −1.38621 −0.693104 0.720838i \(-0.743757\pi\)
−0.693104 + 0.720838i \(0.743757\pi\)
\(360\) 0 0
\(361\) −5326.45 −0.776563
\(362\) 0 0
\(363\) 22877.3 3.30785
\(364\) 0 0
\(365\) 1599.11 0.229318
\(366\) 0 0
\(367\) −12307.6 −1.75055 −0.875273 0.483629i \(-0.839318\pi\)
−0.875273 + 0.483629i \(0.839318\pi\)
\(368\) 0 0
\(369\) −18803.9 −2.65283
\(370\) 0 0
\(371\) 2867.12 0.401222
\(372\) 0 0
\(373\) −7212.01 −1.00114 −0.500568 0.865697i \(-0.666876\pi\)
−0.500568 + 0.865697i \(0.666876\pi\)
\(374\) 0 0
\(375\) 14923.5 2.05506
\(376\) 0 0
\(377\) −2313.00 −0.315983
\(378\) 0 0
\(379\) −7967.91 −1.07991 −0.539953 0.841695i \(-0.681558\pi\)
−0.539953 + 0.841695i \(0.681558\pi\)
\(380\) 0 0
\(381\) −13816.5 −1.85785
\(382\) 0 0
\(383\) −2179.76 −0.290811 −0.145406 0.989372i \(-0.546449\pi\)
−0.145406 + 0.989372i \(0.546449\pi\)
\(384\) 0 0
\(385\) 8219.30 1.08804
\(386\) 0 0
\(387\) −4623.90 −0.607355
\(388\) 0 0
\(389\) 3384.86 0.441181 0.220590 0.975367i \(-0.429202\pi\)
0.220590 + 0.975367i \(0.429202\pi\)
\(390\) 0 0
\(391\) −900.346 −0.116451
\(392\) 0 0
\(393\) −3953.02 −0.507388
\(394\) 0 0
\(395\) −10458.3 −1.33219
\(396\) 0 0
\(397\) 8422.51 1.06477 0.532385 0.846502i \(-0.321296\pi\)
0.532385 + 0.846502i \(0.321296\pi\)
\(398\) 0 0
\(399\) 2342.95 0.293971
\(400\) 0 0
\(401\) −4994.70 −0.622004 −0.311002 0.950409i \(-0.600665\pi\)
−0.311002 + 0.950409i \(0.600665\pi\)
\(402\) 0 0
\(403\) −1602.86 −0.198124
\(404\) 0 0
\(405\) 2810.08 0.344776
\(406\) 0 0
\(407\) −11172.4 −1.36067
\(408\) 0 0
\(409\) 1919.31 0.232039 0.116019 0.993247i \(-0.462987\pi\)
0.116019 + 0.993247i \(0.462987\pi\)
\(410\) 0 0
\(411\) 5808.43 0.697102
\(412\) 0 0
\(413\) −5.96507 −0.000710706 0
\(414\) 0 0
\(415\) 17990.4 2.12799
\(416\) 0 0
\(417\) −12948.3 −1.52057
\(418\) 0 0
\(419\) −8429.07 −0.982785 −0.491392 0.870938i \(-0.663512\pi\)
−0.491392 + 0.870938i \(0.663512\pi\)
\(420\) 0 0
\(421\) 16423.1 1.90122 0.950611 0.310385i \(-0.100458\pi\)
0.950611 + 0.310385i \(0.100458\pi\)
\(422\) 0 0
\(423\) 6652.29 0.764646
\(424\) 0 0
\(425\) −9048.46 −1.03274
\(426\) 0 0
\(427\) 2849.31 0.322923
\(428\) 0 0
\(429\) 9064.59 1.02015
\(430\) 0 0
\(431\) 8599.47 0.961072 0.480536 0.876975i \(-0.340442\pi\)
0.480536 + 0.876975i \(0.340442\pi\)
\(432\) 0 0
\(433\) −1537.77 −0.170671 −0.0853355 0.996352i \(-0.527196\pi\)
−0.0853355 + 0.996352i \(0.527196\pi\)
\(434\) 0 0
\(435\) 21901.8 2.41405
\(436\) 0 0
\(437\) −853.449 −0.0934233
\(438\) 0 0
\(439\) −1026.94 −0.111647 −0.0558235 0.998441i \(-0.517778\pi\)
−0.0558235 + 0.998441i \(0.517778\pi\)
\(440\) 0 0
\(441\) 2258.88 0.243914
\(442\) 0 0
\(443\) 10339.5 1.10890 0.554451 0.832216i \(-0.312928\pi\)
0.554451 + 0.832216i \(0.312928\pi\)
\(444\) 0 0
\(445\) 27935.6 2.97589
\(446\) 0 0
\(447\) −8818.20 −0.933080
\(448\) 0 0
\(449\) −17742.4 −1.86484 −0.932422 0.361371i \(-0.882309\pi\)
−0.932422 + 0.361371i \(0.882309\pi\)
\(450\) 0 0
\(451\) 25819.5 2.69577
\(452\) 0 0
\(453\) 26216.9 2.71916
\(454\) 0 0
\(455\) 2174.86 0.224086
\(456\) 0 0
\(457\) 3876.86 0.396831 0.198416 0.980118i \(-0.436420\pi\)
0.198416 + 0.980118i \(0.436420\pi\)
\(458\) 0 0
\(459\) −6744.09 −0.685810
\(460\) 0 0
\(461\) −6479.33 −0.654604 −0.327302 0.944920i \(-0.606139\pi\)
−0.327302 + 0.944920i \(0.606139\pi\)
\(462\) 0 0
\(463\) 1659.44 0.166568 0.0832838 0.996526i \(-0.473459\pi\)
0.0832838 + 0.996526i \(0.473459\pi\)
\(464\) 0 0
\(465\) 15177.5 1.51363
\(466\) 0 0
\(467\) 17058.4 1.69029 0.845147 0.534534i \(-0.179513\pi\)
0.845147 + 0.534534i \(0.179513\pi\)
\(468\) 0 0
\(469\) −65.7212 −0.00647062
\(470\) 0 0
\(471\) −27328.3 −2.67350
\(472\) 0 0
\(473\) 6349.04 0.617186
\(474\) 0 0
\(475\) −8577.15 −0.828519
\(476\) 0 0
\(477\) −18881.9 −1.81246
\(478\) 0 0
\(479\) 5675.58 0.541386 0.270693 0.962666i \(-0.412747\pi\)
0.270693 + 0.962666i \(0.412747\pi\)
\(480\) 0 0
\(481\) −2956.26 −0.280236
\(482\) 0 0
\(483\) −1304.74 −0.122915
\(484\) 0 0
\(485\) −17742.7 −1.66114
\(486\) 0 0
\(487\) 408.166 0.0379790 0.0189895 0.999820i \(-0.493955\pi\)
0.0189895 + 0.999820i \(0.493955\pi\)
\(488\) 0 0
\(489\) 2641.10 0.244243
\(490\) 0 0
\(491\) −1766.25 −0.162342 −0.0811709 0.996700i \(-0.525866\pi\)
−0.0811709 + 0.996700i \(0.525866\pi\)
\(492\) 0 0
\(493\) −5703.24 −0.521016
\(494\) 0 0
\(495\) −54129.6 −4.91504
\(496\) 0 0
\(497\) −6609.35 −0.596519
\(498\) 0 0
\(499\) −19261.8 −1.72801 −0.864006 0.503482i \(-0.832052\pi\)
−0.864006 + 0.503482i \(0.832052\pi\)
\(500\) 0 0
\(501\) −12392.6 −1.10511
\(502\) 0 0
\(503\) 14343.7 1.27148 0.635738 0.771905i \(-0.280696\pi\)
0.635738 + 0.771905i \(0.280696\pi\)
\(504\) 0 0
\(505\) 30454.2 2.68356
\(506\) 0 0
\(507\) −16385.5 −1.43531
\(508\) 0 0
\(509\) 15480.1 1.34802 0.674009 0.738723i \(-0.264571\pi\)
0.674009 + 0.738723i \(0.264571\pi\)
\(510\) 0 0
\(511\) −603.442 −0.0522401
\(512\) 0 0
\(513\) −6392.80 −0.550193
\(514\) 0 0
\(515\) −10775.5 −0.921989
\(516\) 0 0
\(517\) −9134.19 −0.777024
\(518\) 0 0
\(519\) 15542.4 1.31452
\(520\) 0 0
\(521\) −9939.06 −0.835774 −0.417887 0.908499i \(-0.637229\pi\)
−0.417887 + 0.908499i \(0.637229\pi\)
\(522\) 0 0
\(523\) −9517.79 −0.795762 −0.397881 0.917437i \(-0.630254\pi\)
−0.397881 + 0.917437i \(0.630254\pi\)
\(524\) 0 0
\(525\) −13112.7 −1.09006
\(526\) 0 0
\(527\) −3952.22 −0.326682
\(528\) 0 0
\(529\) −11691.7 −0.960938
\(530\) 0 0
\(531\) 39.2839 0.00321050
\(532\) 0 0
\(533\) 6831.94 0.555205
\(534\) 0 0
\(535\) 31200.7 2.52135
\(536\) 0 0
\(537\) 18340.6 1.47385
\(538\) 0 0
\(539\) −3101.65 −0.247862
\(540\) 0 0
\(541\) −3607.08 −0.286655 −0.143328 0.989675i \(-0.545780\pi\)
−0.143328 + 0.989675i \(0.545780\pi\)
\(542\) 0 0
\(543\) 16689.2 1.31898
\(544\) 0 0
\(545\) 4568.87 0.359099
\(546\) 0 0
\(547\) −21217.9 −1.65852 −0.829262 0.558860i \(-0.811239\pi\)
−0.829262 + 0.558860i \(0.811239\pi\)
\(548\) 0 0
\(549\) −18764.6 −1.45875
\(550\) 0 0
\(551\) −5406.18 −0.417987
\(552\) 0 0
\(553\) 3946.56 0.303481
\(554\) 0 0
\(555\) 27992.8 2.14095
\(556\) 0 0
\(557\) 10639.5 0.809352 0.404676 0.914460i \(-0.367384\pi\)
0.404676 + 0.914460i \(0.367384\pi\)
\(558\) 0 0
\(559\) 1679.98 0.127112
\(560\) 0 0
\(561\) 22350.9 1.68209
\(562\) 0 0
\(563\) −24299.5 −1.81901 −0.909505 0.415692i \(-0.863539\pi\)
−0.909505 + 0.415692i \(0.863539\pi\)
\(564\) 0 0
\(565\) −44283.1 −3.29736
\(566\) 0 0
\(567\) −1060.42 −0.0785422
\(568\) 0 0
\(569\) −25194.9 −1.85629 −0.928143 0.372225i \(-0.878595\pi\)
−0.928143 + 0.372225i \(0.878595\pi\)
\(570\) 0 0
\(571\) −24545.1 −1.79892 −0.899458 0.437007i \(-0.856039\pi\)
−0.899458 + 0.437007i \(0.856039\pi\)
\(572\) 0 0
\(573\) −20113.9 −1.46644
\(574\) 0 0
\(575\) 4776.45 0.346420
\(576\) 0 0
\(577\) 956.392 0.0690037 0.0345018 0.999405i \(-0.489016\pi\)
0.0345018 + 0.999405i \(0.489016\pi\)
\(578\) 0 0
\(579\) 28714.2 2.06101
\(580\) 0 0
\(581\) −6788.90 −0.484769
\(582\) 0 0
\(583\) 25926.5 1.84180
\(584\) 0 0
\(585\) −14322.9 −1.01227
\(586\) 0 0
\(587\) 7279.01 0.511817 0.255909 0.966701i \(-0.417625\pi\)
0.255909 + 0.966701i \(0.417625\pi\)
\(588\) 0 0
\(589\) −3746.36 −0.262082
\(590\) 0 0
\(591\) 21239.2 1.47828
\(592\) 0 0
\(593\) 4203.35 0.291081 0.145540 0.989352i \(-0.453508\pi\)
0.145540 + 0.989352i \(0.453508\pi\)
\(594\) 0 0
\(595\) 5362.63 0.369490
\(596\) 0 0
\(597\) 35752.5 2.45101
\(598\) 0 0
\(599\) 19920.9 1.35884 0.679419 0.733750i \(-0.262232\pi\)
0.679419 + 0.733750i \(0.262232\pi\)
\(600\) 0 0
\(601\) 19087.3 1.29549 0.647743 0.761859i \(-0.275713\pi\)
0.647743 + 0.761859i \(0.275713\pi\)
\(602\) 0 0
\(603\) 432.818 0.0292300
\(604\) 0 0
\(605\) 49635.0 3.33545
\(606\) 0 0
\(607\) −16035.1 −1.07223 −0.536115 0.844145i \(-0.680109\pi\)
−0.536115 + 0.844145i \(0.680109\pi\)
\(608\) 0 0
\(609\) −8264.91 −0.549936
\(610\) 0 0
\(611\) −2416.94 −0.160031
\(612\) 0 0
\(613\) −22477.0 −1.48097 −0.740486 0.672071i \(-0.765405\pi\)
−0.740486 + 0.672071i \(0.765405\pi\)
\(614\) 0 0
\(615\) −64691.7 −4.24166
\(616\) 0 0
\(617\) 8128.36 0.530365 0.265183 0.964198i \(-0.414568\pi\)
0.265183 + 0.964198i \(0.414568\pi\)
\(618\) 0 0
\(619\) 2911.91 0.189078 0.0945391 0.995521i \(-0.469862\pi\)
0.0945391 + 0.995521i \(0.469862\pi\)
\(620\) 0 0
\(621\) 3560.03 0.230047
\(622\) 0 0
\(623\) −10541.8 −0.677928
\(624\) 0 0
\(625\) 4991.17 0.319435
\(626\) 0 0
\(627\) 21186.7 1.34946
\(628\) 0 0
\(629\) −7289.34 −0.462075
\(630\) 0 0
\(631\) −11776.5 −0.742970 −0.371485 0.928439i \(-0.621151\pi\)
−0.371485 + 0.928439i \(0.621151\pi\)
\(632\) 0 0
\(633\) 10657.9 0.669214
\(634\) 0 0
\(635\) −29976.5 −1.87336
\(636\) 0 0
\(637\) −820.709 −0.0510482
\(638\) 0 0
\(639\) 43527.0 2.69468
\(640\) 0 0
\(641\) −20978.6 −1.29268 −0.646338 0.763051i \(-0.723700\pi\)
−0.646338 + 0.763051i \(0.723700\pi\)
\(642\) 0 0
\(643\) 4503.50 0.276206 0.138103 0.990418i \(-0.455899\pi\)
0.138103 + 0.990418i \(0.455899\pi\)
\(644\) 0 0
\(645\) −15907.7 −0.971112
\(646\) 0 0
\(647\) −8644.52 −0.525272 −0.262636 0.964895i \(-0.584592\pi\)
−0.262636 + 0.964895i \(0.584592\pi\)
\(648\) 0 0
\(649\) −53.9404 −0.00326247
\(650\) 0 0
\(651\) −5727.40 −0.344815
\(652\) 0 0
\(653\) 2964.53 0.177659 0.0888294 0.996047i \(-0.471687\pi\)
0.0888294 + 0.996047i \(0.471687\pi\)
\(654\) 0 0
\(655\) −8576.53 −0.511622
\(656\) 0 0
\(657\) 3974.07 0.235986
\(658\) 0 0
\(659\) −18295.8 −1.08149 −0.540745 0.841187i \(-0.681857\pi\)
−0.540745 + 0.841187i \(0.681857\pi\)
\(660\) 0 0
\(661\) 585.321 0.0344423 0.0172212 0.999852i \(-0.494518\pi\)
0.0172212 + 0.999852i \(0.494518\pi\)
\(662\) 0 0
\(663\) 5914.13 0.346434
\(664\) 0 0
\(665\) 5083.30 0.296424
\(666\) 0 0
\(667\) 3010.59 0.174769
\(668\) 0 0
\(669\) −19597.8 −1.13258
\(670\) 0 0
\(671\) 25765.5 1.48237
\(672\) 0 0
\(673\) −7131.10 −0.408445 −0.204223 0.978924i \(-0.565467\pi\)
−0.204223 + 0.978924i \(0.565467\pi\)
\(674\) 0 0
\(675\) 35778.2 2.04015
\(676\) 0 0
\(677\) 15564.5 0.883591 0.441796 0.897116i \(-0.354342\pi\)
0.441796 + 0.897116i \(0.354342\pi\)
\(678\) 0 0
\(679\) 6695.42 0.378419
\(680\) 0 0
\(681\) 41038.8 2.30926
\(682\) 0 0
\(683\) 9546.68 0.534837 0.267418 0.963581i \(-0.413829\pi\)
0.267418 + 0.963581i \(0.413829\pi\)
\(684\) 0 0
\(685\) 12602.1 0.702920
\(686\) 0 0
\(687\) −9060.65 −0.503181
\(688\) 0 0
\(689\) 6860.26 0.379325
\(690\) 0 0
\(691\) 25526.7 1.40533 0.702663 0.711523i \(-0.251994\pi\)
0.702663 + 0.711523i \(0.251994\pi\)
\(692\) 0 0
\(693\) 20426.4 1.11968
\(694\) 0 0
\(695\) −28092.7 −1.53326
\(696\) 0 0
\(697\) 16845.7 0.915463
\(698\) 0 0
\(699\) −11941.9 −0.646185
\(700\) 0 0
\(701\) −18823.3 −1.01419 −0.507095 0.861890i \(-0.669281\pi\)
−0.507095 + 0.861890i \(0.669281\pi\)
\(702\) 0 0
\(703\) −6909.66 −0.370701
\(704\) 0 0
\(705\) 22886.1 1.22261
\(706\) 0 0
\(707\) −11492.3 −0.611331
\(708\) 0 0
\(709\) −17323.9 −0.917647 −0.458823 0.888527i \(-0.651729\pi\)
−0.458823 + 0.888527i \(0.651729\pi\)
\(710\) 0 0
\(711\) −25990.7 −1.37093
\(712\) 0 0
\(713\) 2086.27 0.109581
\(714\) 0 0
\(715\) 19666.6 1.02866
\(716\) 0 0
\(717\) −2556.83 −0.133175
\(718\) 0 0
\(719\) 11462.3 0.594539 0.297269 0.954794i \(-0.403924\pi\)
0.297269 + 0.954794i \(0.403924\pi\)
\(720\) 0 0
\(721\) 4066.26 0.210035
\(722\) 0 0
\(723\) −38926.2 −2.00233
\(724\) 0 0
\(725\) 30256.4 1.54992
\(726\) 0 0
\(727\) −7842.63 −0.400092 −0.200046 0.979786i \(-0.564109\pi\)
−0.200046 + 0.979786i \(0.564109\pi\)
\(728\) 0 0
\(729\) −30713.3 −1.56040
\(730\) 0 0
\(731\) 4142.39 0.209592
\(732\) 0 0
\(733\) −1243.66 −0.0626678 −0.0313339 0.999509i \(-0.509976\pi\)
−0.0313339 + 0.999509i \(0.509976\pi\)
\(734\) 0 0
\(735\) 7771.30 0.389998
\(736\) 0 0
\(737\) −594.298 −0.0297032
\(738\) 0 0
\(739\) −4611.17 −0.229533 −0.114766 0.993393i \(-0.536612\pi\)
−0.114766 + 0.993393i \(0.536612\pi\)
\(740\) 0 0
\(741\) 5606.08 0.277928
\(742\) 0 0
\(743\) −18041.5 −0.890818 −0.445409 0.895327i \(-0.646942\pi\)
−0.445409 + 0.895327i \(0.646942\pi\)
\(744\) 0 0
\(745\) −19132.1 −0.940867
\(746\) 0 0
\(747\) 44709.4 2.18987
\(748\) 0 0
\(749\) −11774.0 −0.574380
\(750\) 0 0
\(751\) 13666.5 0.664044 0.332022 0.943272i \(-0.392269\pi\)
0.332022 + 0.943272i \(0.392269\pi\)
\(752\) 0 0
\(753\) 37068.3 1.79395
\(754\) 0 0
\(755\) 56880.6 2.74185
\(756\) 0 0
\(757\) 912.222 0.0437983 0.0218991 0.999760i \(-0.493029\pi\)
0.0218991 + 0.999760i \(0.493029\pi\)
\(758\) 0 0
\(759\) −11798.4 −0.564237
\(760\) 0 0
\(761\) −9524.38 −0.453691 −0.226845 0.973931i \(-0.572841\pi\)
−0.226845 + 0.973931i \(0.572841\pi\)
\(762\) 0 0
\(763\) −1724.12 −0.0818050
\(764\) 0 0
\(765\) −35316.5 −1.66911
\(766\) 0 0
\(767\) −14.2728 −0.000671920 0
\(768\) 0 0
\(769\) −6048.18 −0.283619 −0.141809 0.989894i \(-0.545292\pi\)
−0.141809 + 0.989894i \(0.545292\pi\)
\(770\) 0 0
\(771\) −10560.9 −0.493312
\(772\) 0 0
\(773\) −4649.01 −0.216317 −0.108159 0.994134i \(-0.534495\pi\)
−0.108159 + 0.994134i \(0.534495\pi\)
\(774\) 0 0
\(775\) 20967.0 0.971816
\(776\) 0 0
\(777\) −10563.4 −0.487723
\(778\) 0 0
\(779\) 15968.3 0.734433
\(780\) 0 0
\(781\) −59766.5 −2.73830
\(782\) 0 0
\(783\) 22551.0 1.02926
\(784\) 0 0
\(785\) −59291.8 −2.69581
\(786\) 0 0
\(787\) 31218.8 1.41401 0.707007 0.707207i \(-0.250045\pi\)
0.707007 + 0.707207i \(0.250045\pi\)
\(788\) 0 0
\(789\) 17361.7 0.783389
\(790\) 0 0
\(791\) 16710.8 0.751159
\(792\) 0 0
\(793\) 6817.66 0.305299
\(794\) 0 0
\(795\) −64959.9 −2.89797
\(796\) 0 0
\(797\) 26050.4 1.15778 0.578891 0.815405i \(-0.303486\pi\)
0.578891 + 0.815405i \(0.303486\pi\)
\(798\) 0 0
\(799\) −5959.54 −0.263872
\(800\) 0 0
\(801\) 69424.9 3.06243
\(802\) 0 0
\(803\) −5456.75 −0.239806
\(804\) 0 0
\(805\) −2830.79 −0.123941
\(806\) 0 0
\(807\) −22316.1 −0.973439
\(808\) 0 0
\(809\) 24696.0 1.07326 0.536629 0.843818i \(-0.319698\pi\)
0.536629 + 0.843818i \(0.319698\pi\)
\(810\) 0 0
\(811\) −9287.73 −0.402141 −0.201070 0.979577i \(-0.564442\pi\)
−0.201070 + 0.979577i \(0.564442\pi\)
\(812\) 0 0
\(813\) −5211.93 −0.224835
\(814\) 0 0
\(815\) 5730.17 0.246281
\(816\) 0 0
\(817\) 3926.62 0.168146
\(818\) 0 0
\(819\) 5404.92 0.230602
\(820\) 0 0
\(821\) 25629.5 1.08950 0.544748 0.838600i \(-0.316625\pi\)
0.544748 + 0.838600i \(0.316625\pi\)
\(822\) 0 0
\(823\) −45028.5 −1.90716 −0.953581 0.301136i \(-0.902634\pi\)
−0.953581 + 0.301136i \(0.902634\pi\)
\(824\) 0 0
\(825\) −118574. −5.00390
\(826\) 0 0
\(827\) −13210.9 −0.555488 −0.277744 0.960655i \(-0.589587\pi\)
−0.277744 + 0.960655i \(0.589587\pi\)
\(828\) 0 0
\(829\) −8486.34 −0.355540 −0.177770 0.984072i \(-0.556888\pi\)
−0.177770 + 0.984072i \(0.556888\pi\)
\(830\) 0 0
\(831\) 43463.3 1.81435
\(832\) 0 0
\(833\) −2023.65 −0.0841721
\(834\) 0 0
\(835\) −26887.2 −1.11434
\(836\) 0 0
\(837\) 15627.3 0.645352
\(838\) 0 0
\(839\) −40376.6 −1.66145 −0.830724 0.556684i \(-0.812073\pi\)
−0.830724 + 0.556684i \(0.812073\pi\)
\(840\) 0 0
\(841\) −5318.40 −0.218065
\(842\) 0 0
\(843\) −43873.9 −1.79253
\(844\) 0 0
\(845\) −35550.1 −1.44729
\(846\) 0 0
\(847\) −18730.3 −0.759838
\(848\) 0 0
\(849\) 15071.9 0.609266
\(850\) 0 0
\(851\) 3847.85 0.154997
\(852\) 0 0
\(853\) −41790.2 −1.67745 −0.838727 0.544552i \(-0.816700\pi\)
−0.838727 + 0.544552i \(0.816700\pi\)
\(854\) 0 0
\(855\) −33476.9 −1.33905
\(856\) 0 0
\(857\) −20551.3 −0.819159 −0.409580 0.912274i \(-0.634325\pi\)
−0.409580 + 0.912274i \(0.634325\pi\)
\(858\) 0 0
\(859\) −4486.87 −0.178219 −0.0891095 0.996022i \(-0.528402\pi\)
−0.0891095 + 0.996022i \(0.528402\pi\)
\(860\) 0 0
\(861\) 24412.2 0.966277
\(862\) 0 0
\(863\) 14618.5 0.576615 0.288307 0.957538i \(-0.406908\pi\)
0.288307 + 0.957538i \(0.406908\pi\)
\(864\) 0 0
\(865\) 33721.0 1.32549
\(866\) 0 0
\(867\) −27422.7 −1.07419
\(868\) 0 0
\(869\) 35687.6 1.39312
\(870\) 0 0
\(871\) −157.254 −0.00611749
\(872\) 0 0
\(873\) −44093.8 −1.70945
\(874\) 0 0
\(875\) −12218.3 −0.472062
\(876\) 0 0
\(877\) 16408.3 0.631779 0.315890 0.948796i \(-0.397697\pi\)
0.315890 + 0.948796i \(0.397697\pi\)
\(878\) 0 0
\(879\) 3922.63 0.150520
\(880\) 0 0
\(881\) 36429.8 1.39313 0.696567 0.717492i \(-0.254710\pi\)
0.696567 + 0.717492i \(0.254710\pi\)
\(882\) 0 0
\(883\) 27327.2 1.04149 0.520743 0.853713i \(-0.325655\pi\)
0.520743 + 0.853713i \(0.325655\pi\)
\(884\) 0 0
\(885\) 135.150 0.00513334
\(886\) 0 0
\(887\) −8004.51 −0.303005 −0.151502 0.988457i \(-0.548411\pi\)
−0.151502 + 0.988457i \(0.548411\pi\)
\(888\) 0 0
\(889\) 11312.0 0.426763
\(890\) 0 0
\(891\) −9589.07 −0.360545
\(892\) 0 0
\(893\) −5649.13 −0.211692
\(894\) 0 0
\(895\) 39792.0 1.48615
\(896\) 0 0
\(897\) −3121.91 −0.116207
\(898\) 0 0
\(899\) 13215.5 0.490280
\(900\) 0 0
\(901\) 16915.6 0.625460
\(902\) 0 0
\(903\) 6002.98 0.221225
\(904\) 0 0
\(905\) 36209.2 1.32998
\(906\) 0 0
\(907\) 31869.3 1.16671 0.583354 0.812218i \(-0.301740\pi\)
0.583354 + 0.812218i \(0.301740\pi\)
\(908\) 0 0
\(909\) 75684.2 2.76159
\(910\) 0 0
\(911\) 37037.3 1.34698 0.673492 0.739195i \(-0.264794\pi\)
0.673492 + 0.739195i \(0.264794\pi\)
\(912\) 0 0
\(913\) −61390.0 −2.22532
\(914\) 0 0
\(915\) −64556.5 −2.33243
\(916\) 0 0
\(917\) 3236.45 0.116551
\(918\) 0 0
\(919\) 38519.8 1.38264 0.691322 0.722546i \(-0.257028\pi\)
0.691322 + 0.722546i \(0.257028\pi\)
\(920\) 0 0
\(921\) −41537.5 −1.48611
\(922\) 0 0
\(923\) −15814.4 −0.563964
\(924\) 0 0
\(925\) 38670.9 1.37458
\(926\) 0 0
\(927\) −26779.0 −0.948800
\(928\) 0 0
\(929\) −14815.5 −0.523228 −0.261614 0.965173i \(-0.584255\pi\)
−0.261614 + 0.965173i \(0.584255\pi\)
\(930\) 0 0
\(931\) −1918.24 −0.0675273
\(932\) 0 0
\(933\) −6030.10 −0.211593
\(934\) 0 0
\(935\) 48492.7 1.69613
\(936\) 0 0
\(937\) 32260.7 1.12477 0.562387 0.826874i \(-0.309883\pi\)
0.562387 + 0.826874i \(0.309883\pi\)
\(938\) 0 0
\(939\) 53097.3 1.84533
\(940\) 0 0
\(941\) 49956.4 1.73064 0.865320 0.501219i \(-0.167115\pi\)
0.865320 + 0.501219i \(0.167115\pi\)
\(942\) 0 0
\(943\) −8892.43 −0.307081
\(944\) 0 0
\(945\) −21204.2 −0.729918
\(946\) 0 0
\(947\) 24080.8 0.826317 0.413159 0.910659i \(-0.364426\pi\)
0.413159 + 0.910659i \(0.364426\pi\)
\(948\) 0 0
\(949\) −1443.88 −0.0493891
\(950\) 0 0
\(951\) 63598.2 2.16857
\(952\) 0 0
\(953\) 3910.48 0.132920 0.0664600 0.997789i \(-0.478830\pi\)
0.0664600 + 0.997789i \(0.478830\pi\)
\(954\) 0 0
\(955\) −43639.4 −1.47868
\(956\) 0 0
\(957\) −74737.2 −2.52446
\(958\) 0 0
\(959\) −4755.54 −0.160130
\(960\) 0 0
\(961\) −20633.0 −0.692590
\(962\) 0 0
\(963\) 77539.3 2.59467
\(964\) 0 0
\(965\) 62298.8 2.07821
\(966\) 0 0
\(967\) 14021.9 0.466303 0.233151 0.972440i \(-0.425096\pi\)
0.233151 + 0.972440i \(0.425096\pi\)
\(968\) 0 0
\(969\) 13823.1 0.458268
\(970\) 0 0
\(971\) −22029.4 −0.728071 −0.364036 0.931385i \(-0.618601\pi\)
−0.364036 + 0.931385i \(0.618601\pi\)
\(972\) 0 0
\(973\) 10601.1 0.349287
\(974\) 0 0
\(975\) −31375.2 −1.03057
\(976\) 0 0
\(977\) 26081.5 0.854063 0.427032 0.904237i \(-0.359559\pi\)
0.427032 + 0.904237i \(0.359559\pi\)
\(978\) 0 0
\(979\) −95326.6 −3.11200
\(980\) 0 0
\(981\) 11354.5 0.369541
\(982\) 0 0
\(983\) 26665.7 0.865212 0.432606 0.901583i \(-0.357594\pi\)
0.432606 + 0.901583i \(0.357594\pi\)
\(984\) 0 0
\(985\) 46080.7 1.49061
\(986\) 0 0
\(987\) −8636.33 −0.278518
\(988\) 0 0
\(989\) −2186.66 −0.0703050
\(990\) 0 0
\(991\) −32351.8 −1.03702 −0.518511 0.855071i \(-0.673513\pi\)
−0.518511 + 0.855071i \(0.673513\pi\)
\(992\) 0 0
\(993\) −41752.9 −1.33433
\(994\) 0 0
\(995\) 77569.2 2.47147
\(996\) 0 0
\(997\) 39663.0 1.25992 0.629960 0.776628i \(-0.283071\pi\)
0.629960 + 0.776628i \(0.283071\pi\)
\(998\) 0 0
\(999\) 28822.5 0.912818
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 112.4.a.h.1.2 2
3.2 odd 2 1008.4.a.x.1.1 2
4.3 odd 2 56.4.a.c.1.1 2
7.6 odd 2 784.4.a.t.1.1 2
8.3 odd 2 448.4.a.s.1.2 2
8.5 even 2 448.4.a.r.1.1 2
12.11 even 2 504.4.a.i.1.1 2
20.3 even 4 1400.4.g.h.449.1 4
20.7 even 4 1400.4.g.h.449.4 4
20.19 odd 2 1400.4.a.i.1.2 2
28.3 even 6 392.4.i.i.177.1 4
28.11 odd 6 392.4.i.l.177.2 4
28.19 even 6 392.4.i.i.361.1 4
28.23 odd 6 392.4.i.l.361.2 4
28.27 even 2 392.4.a.h.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
56.4.a.c.1.1 2 4.3 odd 2
112.4.a.h.1.2 2 1.1 even 1 trivial
392.4.a.h.1.2 2 28.27 even 2
392.4.i.i.177.1 4 28.3 even 6
392.4.i.i.361.1 4 28.19 even 6
392.4.i.l.177.2 4 28.11 odd 6
392.4.i.l.361.2 4 28.23 odd 6
448.4.a.r.1.1 2 8.5 even 2
448.4.a.s.1.2 2 8.3 odd 2
504.4.a.i.1.1 2 12.11 even 2
784.4.a.t.1.1 2 7.6 odd 2
1008.4.a.x.1.1 2 3.2 odd 2
1400.4.a.i.1.2 2 20.19 odd 2
1400.4.g.h.449.1 4 20.3 even 4
1400.4.g.h.449.4 4 20.7 even 4