Properties

Label 2-112-1.1-c3-0-4
Degree $2$
Conductor $112$
Sign $1$
Analytic cond. $6.60821$
Root an. cond. $2.57064$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8.54·3-s + 18.5·5-s − 7·7-s + 46.0·9-s − 63.2·11-s − 16.7·13-s + 158.·15-s − 41.2·17-s − 39.1·19-s − 59.8·21-s + 21.8·23-s + 219.·25-s + 163.·27-s + 138.·29-s + 95.6·31-s − 541.·33-s − 129.·35-s + 176.·37-s − 143.·39-s − 407.·41-s − 100.·43-s + 855.·45-s + 144.·47-s + 49·49-s − 353.·51-s − 409.·53-s − 1.17e3·55-s + ⋯
L(s)  = 1  + 1.64·3-s + 1.65·5-s − 0.377·7-s + 1.70·9-s − 1.73·11-s − 0.357·13-s + 2.72·15-s − 0.589·17-s − 0.472·19-s − 0.621·21-s + 0.197·23-s + 1.75·25-s + 1.16·27-s + 0.884·29-s + 0.554·31-s − 2.85·33-s − 0.627·35-s + 0.784·37-s − 0.587·39-s − 1.55·41-s − 0.355·43-s + 2.83·45-s + 0.447·47-s + 0.142·49-s − 0.969·51-s − 1.06·53-s − 2.87·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(112\)    =    \(2^{4} \cdot 7\)
Sign: $1$
Analytic conductor: \(6.60821\)
Root analytic conductor: \(2.57064\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 112,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.953903583\)
\(L(\frac12)\) \(\approx\) \(2.953903583\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + 7T \)
good3 \( 1 - 8.54T + 27T^{2} \)
5 \( 1 - 18.5T + 125T^{2} \)
11 \( 1 + 63.2T + 1.33e3T^{2} \)
13 \( 1 + 16.7T + 2.19e3T^{2} \)
17 \( 1 + 41.2T + 4.91e3T^{2} \)
19 \( 1 + 39.1T + 6.85e3T^{2} \)
23 \( 1 - 21.8T + 1.21e4T^{2} \)
29 \( 1 - 138.T + 2.43e4T^{2} \)
31 \( 1 - 95.6T + 2.97e4T^{2} \)
37 \( 1 - 176.T + 5.06e4T^{2} \)
41 \( 1 + 407.T + 6.89e4T^{2} \)
43 \( 1 + 100.T + 7.95e4T^{2} \)
47 \( 1 - 144.T + 1.03e5T^{2} \)
53 \( 1 + 409.T + 1.48e5T^{2} \)
59 \( 1 - 0.852T + 2.05e5T^{2} \)
61 \( 1 + 407.T + 2.26e5T^{2} \)
67 \( 1 - 9.38T + 3.00e5T^{2} \)
71 \( 1 - 944.T + 3.57e5T^{2} \)
73 \( 1 - 86.2T + 3.89e5T^{2} \)
79 \( 1 + 563.T + 4.93e5T^{2} \)
83 \( 1 - 969.T + 5.71e5T^{2} \)
89 \( 1 - 1.50e3T + 7.04e5T^{2} \)
97 \( 1 + 956.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.39183977160065018282084295939, −12.74603273755635636881703829792, −10.48158127029272947136481706747, −9.847779350536849921327799899203, −8.914141678411220504304682649405, −7.900891403867189870885225715046, −6.48817004331987790194434160734, −4.96655479380630335850166079436, −2.91073288803622947497691499124, −2.12925039107785246326992333153, 2.12925039107785246326992333153, 2.91073288803622947497691499124, 4.96655479380630335850166079436, 6.48817004331987790194434160734, 7.900891403867189870885225715046, 8.914141678411220504304682649405, 9.847779350536849921327799899203, 10.48158127029272947136481706747, 12.74603273755635636881703829792, 13.39183977160065018282084295939

Graph of the $Z$-function along the critical line