Properties

Label 112.3.c.b
Level $112$
Weight $3$
Character orbit 112.c
Analytic conductor $3.052$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [112,3,Mod(97,112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("112.97"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(112, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 112.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.05177896084\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-6}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 28)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{-6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{3} + \beta q^{5} + ( - \beta - 5) q^{7} - 15 q^{9} + 6 q^{11} - \beta q^{13} - 24 q^{15} + 4 \beta q^{17} + 5 \beta q^{19} + ( - 5 \beta + 24) q^{21} + 30 q^{23} + q^{25} - 6 \beta q^{27} + \cdots - 90 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 10 q^{7} - 30 q^{9} + 12 q^{11} - 48 q^{15} + 48 q^{21} + 60 q^{23} + 2 q^{25} - 12 q^{29} + 48 q^{35} + 20 q^{37} + 48 q^{39} - 20 q^{43} + 2 q^{49} - 192 q^{51} + 180 q^{53} - 240 q^{57} + 150 q^{63}+ \cdots - 180 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/112\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(17\) \(85\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
97.1
2.44949i
2.44949i
0 4.89898i 0 4.89898i 0 −5.00000 + 4.89898i 0 −15.0000 0
97.2 0 4.89898i 0 4.89898i 0 −5.00000 4.89898i 0 −15.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 112.3.c.b 2
3.b odd 2 1 1008.3.f.c 2
4.b odd 2 1 28.3.b.a 2
7.b odd 2 1 inner 112.3.c.b 2
7.c even 3 2 784.3.s.d 4
7.d odd 6 2 784.3.s.d 4
8.b even 2 1 448.3.c.c 2
8.d odd 2 1 448.3.c.d 2
12.b even 2 1 252.3.d.c 2
20.d odd 2 1 700.3.d.a 2
20.e even 4 2 700.3.h.a 4
21.c even 2 1 1008.3.f.c 2
28.d even 2 1 28.3.b.a 2
28.f even 6 2 196.3.h.b 4
28.g odd 6 2 196.3.h.b 4
56.e even 2 1 448.3.c.d 2
56.h odd 2 1 448.3.c.c 2
84.h odd 2 1 252.3.d.c 2
84.j odd 6 2 1764.3.z.i 4
84.n even 6 2 1764.3.z.i 4
140.c even 2 1 700.3.d.a 2
140.j odd 4 2 700.3.h.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
28.3.b.a 2 4.b odd 2 1
28.3.b.a 2 28.d even 2 1
112.3.c.b 2 1.a even 1 1 trivial
112.3.c.b 2 7.b odd 2 1 inner
196.3.h.b 4 28.f even 6 2
196.3.h.b 4 28.g odd 6 2
252.3.d.c 2 12.b even 2 1
252.3.d.c 2 84.h odd 2 1
448.3.c.c 2 8.b even 2 1
448.3.c.c 2 56.h odd 2 1
448.3.c.d 2 8.d odd 2 1
448.3.c.d 2 56.e even 2 1
700.3.d.a 2 20.d odd 2 1
700.3.d.a 2 140.c even 2 1
700.3.h.a 4 20.e even 4 2
700.3.h.a 4 140.j odd 4 2
784.3.s.d 4 7.c even 3 2
784.3.s.d 4 7.d odd 6 2
1008.3.f.c 2 3.b odd 2 1
1008.3.f.c 2 21.c even 2 1
1764.3.z.i 4 84.j odd 6 2
1764.3.z.i 4 84.n even 6 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 24 \) acting on \(S_{3}^{\mathrm{new}}(112, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 24 \) Copy content Toggle raw display
$5$ \( T^{2} + 24 \) Copy content Toggle raw display
$7$ \( T^{2} + 10T + 49 \) Copy content Toggle raw display
$11$ \( (T - 6)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 24 \) Copy content Toggle raw display
$17$ \( T^{2} + 384 \) Copy content Toggle raw display
$19$ \( T^{2} + 600 \) Copy content Toggle raw display
$23$ \( (T - 30)^{2} \) Copy content Toggle raw display
$29$ \( (T + 6)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( (T - 10)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 2400 \) Copy content Toggle raw display
$43$ \( (T + 10)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 384 \) Copy content Toggle raw display
$53$ \( (T - 90)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 600 \) Copy content Toggle raw display
$61$ \( T^{2} + 600 \) Copy content Toggle raw display
$67$ \( (T - 70)^{2} \) Copy content Toggle raw display
$71$ \( (T + 42)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 11616 \) Copy content Toggle raw display
$79$ \( (T + 74)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 4056 \) Copy content Toggle raw display
$89$ \( T^{2} + 21600 \) Copy content Toggle raw display
$97$ \( T^{2} + 6144 \) Copy content Toggle raw display
show more
show less