Properties

Label 112.2.j.b.83.1
Level $112$
Weight $2$
Character 112.83
Analytic conductor $0.894$
Analytic rank $0$
Dimension $4$
CM discriminant -7
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [112,2,Mod(27,112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(112, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 1, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("112.27"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 112.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.894324502638\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(i)\)
Coefficient field: \(\Q(i, \sqrt{7})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 3x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{4}]$

Embedding invariants

Embedding label 83.1
Root \(-1.32288 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 112.83
Dual form 112.2.j.b.27.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.32288 + 0.500000i) q^{2} +(1.50000 - 1.32288i) q^{4} +2.64575 q^{7} +(-1.32288 + 2.50000i) q^{8} -3.00000i q^{9} +(4.64575 + 4.64575i) q^{11} +(-3.50000 + 1.32288i) q^{14} +(0.500000 - 3.96863i) q^{16} +(1.50000 + 3.96863i) q^{18} +(-8.46863 - 3.82288i) q^{22} -8.00000 q^{23} -5.00000i q^{25} +(3.96863 - 3.50000i) q^{28} +(-4.29150 - 4.29150i) q^{29} +(1.32288 + 5.50000i) q^{32} +(-3.96863 - 4.50000i) q^{36} +(-8.29150 + 8.29150i) q^{37} +(3.35425 + 3.35425i) q^{43} +(13.1144 + 0.822876i) q^{44} +(10.5830 - 4.00000i) q^{46} +7.00000 q^{49} +(2.50000 + 6.61438i) q^{50} +(0.291503 - 0.291503i) q^{53} +(-3.50000 + 6.61438i) q^{56} +(7.82288 + 3.53137i) q^{58} -7.93725i q^{63} +(-4.50000 - 6.61438i) q^{64} +(-5.93725 + 5.93725i) q^{67} -5.29150 q^{71} +(7.50000 + 3.96863i) q^{72} +(6.82288 - 15.1144i) q^{74} +(12.2915 + 12.2915i) q^{77} -8.00000i q^{79} -9.00000 q^{81} +(-6.11438 - 2.76013i) q^{86} +(-17.7601 + 5.46863i) q^{88} +(-12.0000 + 10.5830i) q^{92} +(-9.26013 + 3.50000i) q^{98} +(13.9373 - 13.9373i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 6 q^{4} + 8 q^{11} - 14 q^{14} + 2 q^{16} + 6 q^{18} - 18 q^{22} - 32 q^{23} + 4 q^{29} - 12 q^{37} + 24 q^{43} + 26 q^{44} + 28 q^{49} + 10 q^{50} - 20 q^{53} - 14 q^{56} + 26 q^{58} - 18 q^{64}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/112\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(17\) \(85\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.32288 + 0.500000i −0.935414 + 0.353553i
\(3\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(4\) 1.50000 1.32288i 0.750000 0.661438i
\(5\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(6\) 0 0
\(7\) 2.64575 1.00000
\(8\) −1.32288 + 2.50000i −0.467707 + 0.883883i
\(9\) 3.00000i 1.00000i
\(10\) 0 0
\(11\) 4.64575 + 4.64575i 1.40075 + 1.40075i 0.797724 + 0.603023i \(0.206037\pi\)
0.603023 + 0.797724i \(0.293963\pi\)
\(12\) 0 0
\(13\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(14\) −3.50000 + 1.32288i −0.935414 + 0.353553i
\(15\) 0 0
\(16\) 0.500000 3.96863i 0.125000 0.992157i
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) 1.50000 + 3.96863i 0.353553 + 0.935414i
\(19\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −8.46863 3.82288i −1.80552 0.815040i
\(23\) −8.00000 −1.66812 −0.834058 0.551677i \(-0.813988\pi\)
−0.834058 + 0.551677i \(0.813988\pi\)
\(24\) 0 0
\(25\) 5.00000i 1.00000i
\(26\) 0 0
\(27\) 0 0
\(28\) 3.96863 3.50000i 0.750000 0.661438i
\(29\) −4.29150 4.29150i −0.796912 0.796912i 0.185695 0.982607i \(-0.440546\pi\)
−0.982607 + 0.185695i \(0.940546\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 1.32288 + 5.50000i 0.233854 + 0.972272i
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) −3.96863 4.50000i −0.661438 0.750000i
\(37\) −8.29150 + 8.29150i −1.36311 + 1.36311i −0.493197 + 0.869918i \(0.664172\pi\)
−0.869918 + 0.493197i \(0.835828\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 3.35425 + 3.35425i 0.511518 + 0.511518i 0.914991 0.403473i \(-0.132197\pi\)
−0.403473 + 0.914991i \(0.632197\pi\)
\(44\) 13.1144 + 0.822876i 1.97707 + 0.124053i
\(45\) 0 0
\(46\) 10.5830 4.00000i 1.56038 0.589768i
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 7.00000 1.00000
\(50\) 2.50000 + 6.61438i 0.353553 + 0.935414i
\(51\) 0 0
\(52\) 0 0
\(53\) 0.291503 0.291503i 0.0400410 0.0400410i −0.686803 0.726844i \(-0.740986\pi\)
0.726844 + 0.686803i \(0.240986\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −3.50000 + 6.61438i −0.467707 + 0.883883i
\(57\) 0 0
\(58\) 7.82288 + 3.53137i 1.02719 + 0.463692i
\(59\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(60\) 0 0
\(61\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(62\) 0 0
\(63\) 7.93725i 1.00000i
\(64\) −4.50000 6.61438i −0.562500 0.826797i
\(65\) 0 0
\(66\) 0 0
\(67\) −5.93725 + 5.93725i −0.725351 + 0.725351i −0.969690 0.244339i \(-0.921429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −5.29150 −0.627986 −0.313993 0.949425i \(-0.601667\pi\)
−0.313993 + 0.949425i \(0.601667\pi\)
\(72\) 7.50000 + 3.96863i 0.883883 + 0.467707i
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) 6.82288 15.1144i 0.793143 1.75701i
\(75\) 0 0
\(76\) 0 0
\(77\) 12.2915 + 12.2915i 1.40075 + 1.40075i
\(78\) 0 0
\(79\) 8.00000i 0.900070i −0.893011 0.450035i \(-0.851411\pi\)
0.893011 0.450035i \(-0.148589\pi\)
\(80\) 0 0
\(81\) −9.00000 −1.00000
\(82\) 0 0
\(83\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −6.11438 2.76013i −0.659330 0.297632i
\(87\) 0 0
\(88\) −17.7601 + 5.46863i −1.89324 + 0.582958i
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −12.0000 + 10.5830i −1.25109 + 1.10335i
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) −9.26013 + 3.50000i −0.935414 + 0.353553i
\(99\) 13.9373 13.9373i 1.40075 1.40075i
\(100\) −6.61438 7.50000i −0.661438 0.750000i
\(101\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −0.239870 + 0.531373i −0.0232983 + 0.0516115i
\(107\) −12.6458 12.6458i −1.22251 1.22251i −0.966736 0.255774i \(-0.917670\pi\)
−0.255774 0.966736i \(-0.582330\pi\)
\(108\) 0 0
\(109\) −3.70850 3.70850i −0.355210 0.355210i 0.506834 0.862044i \(-0.330816\pi\)
−0.862044 + 0.506834i \(0.830816\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 1.32288 10.5000i 0.125000 0.992157i
\(113\) 21.1660 1.99113 0.995565 0.0940721i \(-0.0299884\pi\)
0.995565 + 0.0940721i \(0.0299884\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −12.1144 0.760130i −1.12479 0.0705763i
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 32.1660i 2.92418i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 3.96863 + 10.5000i 0.353553 + 0.935414i
\(127\) 15.8745i 1.40863i 0.709885 + 0.704317i \(0.248747\pi\)
−0.709885 + 0.704317i \(0.751253\pi\)
\(128\) 9.26013 + 6.50000i 0.818488 + 0.574524i
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 4.88562 10.8229i 0.422053 0.934954i
\(135\) 0 0
\(136\) 0 0
\(137\) 21.1660i 1.80833i −0.427179 0.904167i \(-0.640493\pi\)
0.427179 0.904167i \(-0.359507\pi\)
\(138\) 0 0
\(139\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 7.00000 2.64575i 0.587427 0.222027i
\(143\) 0 0
\(144\) −11.9059 1.50000i −0.992157 0.125000i
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) −1.46863 + 23.4059i −0.120720 + 1.92395i
\(149\) 16.2915 16.2915i 1.33465 1.33465i 0.433497 0.901155i \(-0.357280\pi\)
0.901155 0.433497i \(-0.142720\pi\)
\(150\) 0 0
\(151\) 24.0000 1.95309 0.976546 0.215308i \(-0.0690756\pi\)
0.976546 + 0.215308i \(0.0690756\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) −22.4059 10.1144i −1.80552 0.815040i
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(158\) 4.00000 + 10.5830i 0.318223 + 0.841939i
\(159\) 0 0
\(160\) 0 0
\(161\) −21.1660 −1.66812
\(162\) 11.9059 4.50000i 0.935414 0.353553i
\(163\) −2.06275 + 2.06275i −0.161567 + 0.161567i −0.783260 0.621694i \(-0.786445\pi\)
0.621694 + 0.783260i \(0.286445\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) 13.0000i 1.00000i
\(170\) 0 0
\(171\) 0 0
\(172\) 9.46863 + 0.594119i 0.721976 + 0.0453012i
\(173\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(174\) 0 0
\(175\) 13.2288i 1.00000i
\(176\) 20.7601 16.1144i 1.56485 1.21467i
\(177\) 0 0
\(178\) 0 0
\(179\) −15.2288 + 15.2288i −1.13825 + 1.13825i −0.149487 + 0.988764i \(0.547762\pi\)
−0.988764 + 0.149487i \(0.952238\pi\)
\(180\) 0 0
\(181\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 10.5830 20.0000i 0.780189 1.47442i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 8.00000i 0.578860i 0.957199 + 0.289430i \(0.0934657\pi\)
−0.957199 + 0.289430i \(0.906534\pi\)
\(192\) 0 0
\(193\) −21.1660 −1.52356 −0.761781 0.647834i \(-0.775675\pi\)
−0.761781 + 0.647834i \(0.775675\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 10.5000 9.26013i 0.750000 0.661438i
\(197\) 7.70850 7.70850i 0.549208 0.549208i −0.377004 0.926212i \(-0.623046\pi\)
0.926212 + 0.377004i \(0.123046\pi\)
\(198\) −11.4686 + 25.4059i −0.815040 + 1.80552i
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 12.5000 + 6.61438i 0.883883 + 0.467707i
\(201\) 0 0
\(202\) 0 0
\(203\) −11.3542 11.3542i −0.796912 0.796912i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 24.0000i 1.66812i
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 7.22876 7.22876i 0.497648 0.497648i −0.413057 0.910705i \(-0.635539\pi\)
0.910705 + 0.413057i \(0.135539\pi\)
\(212\) 0.0516322 0.822876i 0.00354611 0.0565153i
\(213\) 0 0
\(214\) 23.0516 + 10.4059i 1.57578 + 0.711331i
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 6.76013 + 3.05163i 0.457854 + 0.206683i
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 3.50000 + 14.5516i 0.233854 + 0.972272i
\(225\) −15.0000 −1.00000
\(226\) −28.0000 + 10.5830i −1.86253 + 0.703971i
\(227\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(228\) 0 0
\(229\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 16.4059 5.05163i 1.07710 0.331656i
\(233\) 21.1660i 1.38663i −0.720634 0.693316i \(-0.756149\pi\)
0.720634 0.693316i \(-0.243851\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 26.4575i 1.71139i 0.517477 + 0.855697i \(0.326871\pi\)
−0.517477 + 0.855697i \(0.673129\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) −16.0830 42.5516i −1.03385 2.73532i
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(252\) −10.5000 11.9059i −0.661438 0.750000i
\(253\) −37.1660 37.1660i −2.33661 2.33661i
\(254\) −7.93725 21.0000i −0.498028 1.31766i
\(255\) 0 0
\(256\) −15.5000 3.96863i −0.968750 0.248039i
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) −21.9373 + 21.9373i −1.36311 + 1.36311i
\(260\) 0 0
\(261\) −12.8745 + 12.8745i −0.796912 + 0.796912i
\(262\) 0 0
\(263\) 5.29150 0.326288 0.163144 0.986602i \(-0.447836\pi\)
0.163144 + 0.986602i \(0.447836\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −1.05163 + 16.7601i −0.0642387 + 1.02379i
\(269\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 10.5830 + 28.0000i 0.639343 + 1.69154i
\(275\) 23.2288 23.2288i 1.40075 1.40075i
\(276\) 0 0
\(277\) 20.8745 20.8745i 1.25423 1.25423i 0.300421 0.953807i \(-0.402873\pi\)
0.953807 0.300421i \(-0.0971271\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 21.1660i 1.26266i 0.775515 + 0.631329i \(0.217490\pi\)
−0.775515 + 0.631329i \(0.782510\pi\)
\(282\) 0 0
\(283\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(284\) −7.93725 + 7.00000i −0.470989 + 0.415374i
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 16.5000 3.96863i 0.972272 0.233854i
\(289\) 17.0000 1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −9.76013 31.6974i −0.567296 1.84237i
\(297\) 0 0
\(298\) −13.4059 + 29.6974i −0.776582 + 1.72032i
\(299\) 0 0
\(300\) 0 0
\(301\) 8.87451 + 8.87451i 0.511518 + 0.511518i
\(302\) −31.7490 + 12.0000i −1.82695 + 0.690522i
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(308\) 34.6974 + 2.17712i 1.97707 + 0.124053i
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) −10.5830 12.0000i −0.595341 0.675053i
\(317\) 11.7085 + 11.7085i 0.657615 + 0.657615i 0.954815 0.297200i \(-0.0960529\pi\)
−0.297200 + 0.954815i \(0.596053\pi\)
\(318\) 0 0
\(319\) 39.8745i 2.23254i
\(320\) 0 0
\(321\) 0 0
\(322\) 28.0000 10.5830i 1.56038 0.589768i
\(323\) 0 0
\(324\) −13.5000 + 11.9059i −0.750000 + 0.661438i
\(325\) 0 0
\(326\) 1.69738 3.76013i 0.0940094 0.208254i
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 20.6458 + 20.6458i 1.13479 + 1.13479i 0.989369 + 0.145424i \(0.0464545\pi\)
0.145424 + 0.989369i \(0.453545\pi\)
\(332\) 0 0
\(333\) 24.8745 + 24.8745i 1.36311 + 1.36311i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 21.1660 1.15299 0.576493 0.817102i \(-0.304421\pi\)
0.576493 + 0.817102i \(0.304421\pi\)
\(338\) −6.50000 17.1974i −0.353553 0.935414i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 18.5203 1.00000
\(344\) −12.8229 + 3.94837i −0.691363 + 0.212882i
\(345\) 0 0
\(346\) 0 0
\(347\) 16.5203 + 16.5203i 0.886854 + 0.886854i 0.994220 0.107366i \(-0.0342415\pi\)
−0.107366 + 0.994220i \(0.534242\pi\)
\(348\) 0 0
\(349\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(350\) 6.61438 + 17.5000i 0.353553 + 0.935414i
\(351\) 0 0
\(352\) −19.4059 + 31.6974i −1.03434 + 1.68948i
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 12.5314 27.7601i 0.662304 1.46717i
\(359\) 8.00000 0.422224 0.211112 0.977462i \(-0.432292\pi\)
0.211112 + 0.977462i \(0.432292\pi\)
\(360\) 0 0
\(361\) 19.0000i 1.00000i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) −4.00000 + 31.7490i −0.208514 + 1.65503i
\(369\) 0 0
\(370\) 0 0
\(371\) 0.771243 0.771243i 0.0400410 0.0400410i
\(372\) 0 0
\(373\) 4.87451 4.87451i 0.252392 0.252392i −0.569558 0.821951i \(-0.692886\pi\)
0.821951 + 0.569558i \(0.192886\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −24.5203 24.5203i −1.25952 1.25952i −0.951322 0.308199i \(-0.900274\pi\)
−0.308199 0.951322i \(-0.599726\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −4.00000 10.5830i −0.204658 0.541474i
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 28.0000 10.5830i 1.42516 0.538661i
\(387\) 10.0627 10.0627i 0.511518 0.511518i
\(388\) 0 0
\(389\) −24.2915 + 24.2915i −1.23163 + 1.23163i −0.268290 + 0.963338i \(0.586458\pi\)
−0.963338 + 0.268290i \(0.913542\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −9.26013 + 17.5000i −0.467707 + 0.883883i
\(393\) 0 0
\(394\) −6.34313 + 14.0516i −0.319563 + 0.707911i
\(395\) 0 0
\(396\) 2.46863 39.3431i 0.124053 1.97707i
\(397\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −19.8431 2.50000i −0.992157 0.125000i
\(401\) 21.1660 1.05698 0.528490 0.848939i \(-0.322758\pi\)
0.528490 + 0.848939i \(0.322758\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 20.6974 + 9.34313i 1.02719 + 0.463692i
\(407\) −77.0405 −3.81876
\(408\) 0 0
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) −12.0000 31.7490i −0.589768 1.56038i
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(420\) 0 0
\(421\) −28.8745 + 28.8745i −1.40726 + 1.40726i −0.633581 + 0.773676i \(0.718416\pi\)
−0.773676 + 0.633581i \(0.781584\pi\)
\(422\) −5.94837 + 13.1771i −0.289562 + 0.641452i
\(423\) 0 0
\(424\) 0.343135 + 1.11438i 0.0166641 + 0.0541190i
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) −35.6974 2.23987i −1.72550 0.108268i
\(429\) 0 0
\(430\) 0 0
\(431\) 26.4575i 1.27441i −0.770693 0.637207i \(-0.780090\pi\)
0.770693 0.637207i \(-0.219910\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −10.4686 0.656865i −0.501356 0.0314581i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 21.0000i 1.00000i
\(442\) 0 0
\(443\) −8.52026 8.52026i −0.404810 0.404810i 0.475114 0.879924i \(-0.342407\pi\)
−0.879924 + 0.475114i \(0.842407\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) −11.9059 17.5000i −0.562500 0.826797i
\(449\) −2.00000 −0.0943858 −0.0471929 0.998886i \(-0.515028\pi\)
−0.0471929 + 0.998886i \(0.515028\pi\)
\(450\) 19.8431 7.50000i 0.935414 0.353553i
\(451\) 0 0
\(452\) 31.7490 28.0000i 1.49335 1.31701i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 6.00000i 0.280668i 0.990104 + 0.140334i \(0.0448177\pi\)
−0.990104 + 0.140334i \(0.955182\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(462\) 0 0
\(463\) 40.0000i 1.85896i −0.368875 0.929479i \(-0.620257\pi\)
0.368875 0.929479i \(-0.379743\pi\)
\(464\) −19.1771 + 14.8856i −0.890276 + 0.691048i
\(465\) 0 0
\(466\) 10.5830 + 28.0000i 0.490248 + 1.29707i
\(467\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(468\) 0 0
\(469\) −15.7085 + 15.7085i −0.725351 + 0.725351i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 31.1660i 1.43301i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −0.874508 0.874508i −0.0400410 0.0400410i
\(478\) −13.2288 35.0000i −0.605069 1.60086i
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 42.5516 + 48.2490i 1.93417 + 2.19314i
\(485\) 0 0
\(486\) 0 0
\(487\) −24.0000 −1.08754 −0.543772 0.839233i \(-0.683004\pi\)
−0.543772 + 0.839233i \(0.683004\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 19.3542 + 19.3542i 0.873445 + 0.873445i 0.992846 0.119401i \(-0.0380974\pi\)
−0.119401 + 0.992846i \(0.538097\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −14.0000 −0.627986
\(498\) 0 0
\(499\) −31.2288 + 31.2288i −1.39799 + 1.39799i −0.592200 + 0.805791i \(0.701741\pi\)
−0.805791 + 0.592200i \(0.798259\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 19.8431 + 10.5000i 0.883883 + 0.467707i
\(505\) 0 0
\(506\) 67.7490 + 30.5830i 3.01181 + 1.35958i
\(507\) 0 0
\(508\) 21.0000 + 23.8118i 0.931724 + 1.05648i
\(509\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 22.4889 2.50000i 0.993878 0.110485i
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 18.0516 39.9889i 0.793143 1.75701i
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 10.5941 23.4686i 0.463692 1.02719i
\(523\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −7.00000 + 2.64575i −0.305215 + 0.115360i
\(527\) 0 0
\(528\) 0 0
\(529\) 41.0000 1.78261
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) −6.98889 22.6974i −0.301874 0.980378i
\(537\) 0 0
\(538\) 0 0
\(539\) 32.5203 + 32.5203i 1.40075 + 1.40075i
\(540\) 0 0
\(541\) −32.8745 32.8745i −1.41339 1.41339i −0.730887 0.682498i \(-0.760893\pi\)
−0.682498 0.730887i \(-0.739107\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 29.9373 29.9373i 1.28002 1.28002i 0.339372 0.940652i \(-0.389785\pi\)
0.940652 0.339372i \(-0.110215\pi\)
\(548\) −28.0000 31.7490i −1.19610 1.35625i
\(549\) 0 0
\(550\) −19.1144 + 42.3431i −0.815040 + 1.80552i
\(551\) 0 0
\(552\) 0 0
\(553\) 21.1660i 0.900070i
\(554\) −17.1771 + 38.0516i −0.729786 + 1.61666i
\(555\) 0 0
\(556\) 0 0
\(557\) 28.2915 + 28.2915i 1.19875 + 1.19875i 0.974541 + 0.224208i \(0.0719796\pi\)
0.224208 + 0.974541i \(0.428020\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) −10.5830 28.0000i −0.446417 1.18111i
\(563\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −23.8118 −1.00000
\(568\) 7.00000 13.2288i 0.293713 0.555066i
\(569\) 22.0000i 0.922288i −0.887325 0.461144i \(-0.847439\pi\)
0.887325 0.461144i \(-0.152561\pi\)
\(570\) 0 0
\(571\) −25.8118 25.8118i −1.08019 1.08019i −0.996491 0.0836974i \(-0.973327\pi\)
−0.0836974 0.996491i \(-0.526673\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 40.0000i 1.66812i
\(576\) −19.8431 + 13.5000i −0.826797 + 0.562500i
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) −22.4889 + 8.50000i −0.935414 + 0.353553i
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 2.70850 0.112174
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 28.7601 + 37.0516i 1.18203 + 1.52281i
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 2.88562 45.9889i 0.118200 1.88378i
\(597\) 0 0
\(598\) 0 0
\(599\) 37.0405 1.51343 0.756717 0.653742i \(-0.226802\pi\)
0.756717 + 0.653742i \(0.226802\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(602\) −16.1771 7.30262i −0.659330 0.297632i
\(603\) 17.8118 + 17.8118i 0.725351 + 0.725351i
\(604\) 36.0000 31.7490i 1.46482 1.29185i
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 3.12549 3.12549i 0.126237 0.126237i −0.641165 0.767403i \(-0.721549\pi\)
0.767403 + 0.641165i \(0.221549\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) −46.9889 + 14.4686i −1.89324 + 0.582958i
\(617\) 26.0000i 1.04672i −0.852111 0.523360i \(-0.824678\pi\)
0.852111 0.523360i \(-0.175322\pi\)
\(618\) 0 0
\(619\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −25.0000 −1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 47.6235 1.89586 0.947931 0.318475i \(-0.103171\pi\)
0.947931 + 0.318475i \(0.103171\pi\)
\(632\) 20.0000 + 10.5830i 0.795557 + 0.420969i
\(633\) 0 0
\(634\) −21.3431 9.63464i −0.847644 0.382640i
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 19.9373 + 52.7490i 0.789323 + 2.08835i
\(639\) 15.8745i 0.627986i
\(640\) 0 0
\(641\) −21.1660 −0.836007 −0.418004 0.908445i \(-0.637270\pi\)
−0.418004 + 0.908445i \(0.637270\pi\)
\(642\) 0 0
\(643\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(644\) −31.7490 + 28.0000i −1.25109 + 1.10335i
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 11.9059 22.5000i 0.467707 0.883883i
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −0.365363 + 5.82288i −0.0143087 + 0.228041i
\(653\) −19.7085 19.7085i −0.771253 0.771253i 0.207072 0.978326i \(-0.433606\pi\)
−0.978326 + 0.207072i \(0.933606\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −8.77124 + 8.77124i −0.341679 + 0.341679i −0.856998 0.515319i \(-0.827673\pi\)
0.515319 + 0.856998i \(0.327673\pi\)
\(660\) 0 0
\(661\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(662\) −37.6346 16.9889i −1.46271 0.660292i
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) −45.3431 20.4686i −1.75701 0.793143i
\(667\) 34.3320 + 34.3320i 1.32934 + 1.32934i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 30.0000 1.15642 0.578208 0.815890i \(-0.303752\pi\)
0.578208 + 0.815890i \(0.303752\pi\)
\(674\) −28.0000 + 10.5830i −1.07852 + 0.407642i
\(675\) 0 0
\(676\) 17.1974 + 19.5000i 0.661438 + 0.750000i
\(677\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −28.6458 28.6458i −1.09610 1.09610i −0.994862 0.101237i \(-0.967720\pi\)
−0.101237 0.994862i \(-0.532280\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −24.5000 + 9.26013i −0.935414 + 0.353553i
\(687\) 0 0
\(688\) 14.9889 11.6346i 0.571446 0.443566i
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(692\) 0 0
\(693\) 36.8745 36.8745i 1.40075 1.40075i
\(694\) −30.1144 13.5941i −1.14313 0.516026i
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) −17.5000 19.8431i −0.661438 0.750000i
\(701\) 25.4575 + 25.4575i 0.961517 + 0.961517i 0.999286 0.0377695i \(-0.0120253\pi\)
−0.0377695 + 0.999286i \(0.512025\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 9.82288 51.6346i 0.370214 1.94605i
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 29.4575 29.4575i 1.10630 1.10630i 0.112667 0.993633i \(-0.464061\pi\)
0.993633 0.112667i \(-0.0359394\pi\)
\(710\) 0 0
\(711\) −24.0000 −0.900070
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) −2.69738 + 42.9889i −0.100806 + 1.60657i
\(717\) 0 0
\(718\) −10.5830 + 4.00000i −0.394954 + 0.149279i
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 9.50000 + 25.1346i 0.353553 + 0.935414i
\(723\) 0 0
\(724\) 0 0
\(725\) −21.4575 + 21.4575i −0.796912 + 0.796912i
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 27.0000i 1.00000i
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) −10.5830 44.0000i −0.390095 1.62186i
\(737\) −55.1660 −2.03207
\(738\) 0 0
\(739\) −18.0627 + 18.0627i −0.664449 + 0.664449i −0.956425 0.291977i \(-0.905687\pi\)
0.291977 + 0.956425i \(0.405687\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −0.634637 + 1.40588i −0.0232983 + 0.0516115i
\(743\) 40.0000 1.46746 0.733729 0.679442i \(-0.237778\pi\)
0.733729 + 0.679442i \(0.237778\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −4.01111 + 8.88562i −0.146857 + 0.325326i
\(747\) 0 0
\(748\) 0 0
\(749\) −33.4575 33.4575i −1.22251 1.22251i
\(750\) 0 0
\(751\) 26.4575i 0.965448i 0.875772 + 0.482724i \(0.160353\pi\)
−0.875772 + 0.482724i \(0.839647\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 32.2915 32.2915i 1.17365 1.17365i 0.192323 0.981332i \(-0.438398\pi\)
0.981332 0.192323i \(-0.0616021\pi\)
\(758\) 44.6974 + 20.1771i 1.62348 + 0.732866i
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) −9.81176 9.81176i −0.355210 0.355210i
\(764\) 10.5830 + 12.0000i 0.382880 + 0.434145i
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −31.7490 + 28.0000i −1.14267 + 1.00774i
\(773\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(774\) −8.28039 + 18.3431i −0.297632 + 0.659330i
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 19.9889 44.2804i 0.716636 1.58753i
\(779\) 0 0
\(780\) 0 0
\(781\) −24.5830 24.5830i −0.879649 0.879649i
\(782\) 0 0
\(783\) 0 0
\(784\) 3.50000 27.7804i 0.125000 0.992157i
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(788\) 1.36536 21.7601i 0.0486390 0.775173i
\(789\) 0 0
\(790\) 0 0
\(791\) 56.0000 1.99113
\(792\) 16.4059 + 53.2804i 0.582958 + 1.89324i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 27.5000 6.61438i 0.972272 0.233854i
\(801\) 0 0
\(802\) −28.0000 + 10.5830i −0.988714 + 0.373699i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 38.0000i 1.33601i 0.744157 + 0.668004i \(0.232851\pi\)
−0.744157 + 0.668004i \(0.767149\pi\)
\(810\) 0 0
\(811\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(812\) −32.0516 2.01111i −1.12479 0.0705763i
\(813\) 0 0
\(814\) 101.915 38.5203i 3.57212 1.35013i
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −37.4575 + 37.4575i −1.30728 + 1.30728i −0.383903 + 0.923374i \(0.625420\pi\)
−0.923374 + 0.383903i \(0.874580\pi\)
\(822\) 0 0
\(823\) −47.6235 −1.66005 −0.830026 0.557725i \(-0.811674\pi\)
−0.830026 + 0.557725i \(0.811674\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −40.5203 40.5203i −1.40903 1.40903i −0.765015 0.644013i \(-0.777268\pi\)
−0.644013 0.765015i \(-0.722732\pi\)
\(828\) 31.7490 + 36.0000i 1.10335 + 1.25109i
\(829\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) 7.83399i 0.270138i
\(842\) 23.7601 52.6346i 0.818828 1.81391i
\(843\) 0 0
\(844\) 1.28039 20.4059i 0.0440728 0.702399i
\(845\) 0 0
\(846\) 0 0
\(847\) 85.1033i 2.92418i
\(848\) −1.01111 1.30262i −0.0347218 0.0447320i
\(849\) 0 0
\(850\) 0 0
\(851\) 66.3320 66.3320i 2.27383 2.27383i
\(852\) 0 0
\(853\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 48.3431 14.8856i 1.65233 0.508780i
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 13.2288 + 35.0000i 0.450573 + 1.19210i
\(863\) 8.00000i 0.272323i 0.990687 + 0.136162i \(0.0434766\pi\)
−0.990687 + 0.136162i \(0.956523\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 37.1660 37.1660i 1.26077 1.26077i
\(870\) 0 0
\(871\) 0 0
\(872\) 14.1771 4.36536i 0.480098 0.147830i
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 40.8745 + 40.8745i 1.38023 + 1.38023i 0.844190 + 0.536044i \(0.180082\pi\)
0.536044 + 0.844190i \(0.319918\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) 10.5000 + 27.7804i 0.353553 + 0.935414i
\(883\) −35.1033 + 35.1033i −1.18132 + 1.18132i −0.201916 + 0.979403i \(0.564717\pi\)
−0.979403 + 0.201916i \(0.935283\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 15.5314 + 7.01111i 0.521787 + 0.235543i
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) 42.0000i 1.40863i
\(890\) 0 0
\(891\) −41.8118 41.8118i −1.40075 1.40075i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 24.5000 + 17.1974i 0.818488 + 0.574524i
\(897\) 0 0
\(898\) 2.64575 1.00000i 0.0882899 0.0333704i
\(899\) 0 0
\(900\) −22.5000 + 19.8431i −0.750000 + 0.661438i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) −28.0000 + 52.9150i −0.931266 + 1.75993i
\(905\) 0 0
\(906\) 0 0
\(907\) −27.3542 27.3542i −0.908283 0.908283i 0.0878507 0.996134i \(-0.472000\pi\)
−0.996134 + 0.0878507i \(0.972000\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 58.2065i 1.92847i −0.265052 0.964234i \(-0.585389\pi\)
0.265052 0.964234i \(-0.414611\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −3.00000 7.93725i −0.0992312 0.262541i
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −37.0405 −1.22185 −0.610927 0.791687i \(-0.709203\pi\)
−0.610927 + 0.791687i \(0.709203\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 41.4575 + 41.4575i 1.36311 + 1.36311i
\(926\) 20.0000 + 52.9150i 0.657241 + 1.73890i
\(927\) 0 0
\(928\) 17.9261 29.2804i 0.588454 0.961176i
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −28.0000 31.7490i −0.917170 1.03997i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) 12.9261 28.6346i 0.422053 0.934954i
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) −15.5830 41.2288i −0.506647 1.34046i
\(947\) −19.1033 + 19.1033i −0.620773 + 0.620773i −0.945729 0.324956i \(-0.894650\pi\)
0.324956 + 0.945729i \(0.394650\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 21.1660i 0.685634i 0.939402 + 0.342817i \(0.111381\pi\)
−0.939402 + 0.342817i \(0.888619\pi\)
\(954\) 1.59412 + 0.719611i 0.0516115 + 0.0232983i
\(955\) 0 0
\(956\) 35.0000 + 39.6863i 1.13198 + 1.28355i
\(957\) 0 0
\(958\) 0 0
\(959\) 56.0000i 1.80833i
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) −37.9373 + 37.9373i −1.22251 + 1.22251i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 40.0000 1.28631 0.643157 0.765735i \(-0.277624\pi\)
0.643157 + 0.765735i \(0.277624\pi\)
\(968\) −80.4150 42.5516i −2.58464 1.36766i
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 31.7490 12.0000i 1.01730 0.384505i
\(975\) 0 0
\(976\) 0 0
\(977\) −46.0000 −1.47167 −0.735835 0.677161i \(-0.763210\pi\)
−0.735835 + 0.677161i \(0.763210\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −11.1255 + 11.1255i −0.355210 + 0.355210i
\(982\) −35.2804 15.9261i −1.12584 0.508224i
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −26.8340 26.8340i −0.853271 0.853271i
\(990\) 0 0
\(991\) 24.0000i 0.762385i −0.924496 0.381193i \(-0.875513\pi\)
0.924496 0.381193i \(-0.124487\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 18.5203 7.00000i 0.587427 0.222027i
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(998\) 25.6974 56.9261i 0.813436 1.80197i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 112.2.j.b.83.1 yes 4
4.3 odd 2 448.2.j.a.111.1 4
7.2 even 3 784.2.w.c.227.2 8
7.3 odd 6 784.2.w.c.19.2 8
7.4 even 3 784.2.w.c.19.2 8
7.5 odd 6 784.2.w.c.227.2 8
7.6 odd 2 CM 112.2.j.b.83.1 yes 4
8.3 odd 2 896.2.j.d.223.1 4
8.5 even 2 896.2.j.c.223.2 4
16.3 odd 4 896.2.j.c.671.2 4
16.5 even 4 448.2.j.a.335.1 4
16.11 odd 4 inner 112.2.j.b.27.1 4
16.13 even 4 896.2.j.d.671.1 4
28.27 even 2 448.2.j.a.111.1 4
56.13 odd 2 896.2.j.c.223.2 4
56.27 even 2 896.2.j.d.223.1 4
112.11 odd 12 784.2.w.c.411.2 8
112.13 odd 4 896.2.j.d.671.1 4
112.27 even 4 inner 112.2.j.b.27.1 4
112.59 even 12 784.2.w.c.411.2 8
112.69 odd 4 448.2.j.a.335.1 4
112.75 even 12 784.2.w.c.619.2 8
112.83 even 4 896.2.j.c.671.2 4
112.107 odd 12 784.2.w.c.619.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.2.j.b.27.1 4 16.11 odd 4 inner
112.2.j.b.27.1 4 112.27 even 4 inner
112.2.j.b.83.1 yes 4 1.1 even 1 trivial
112.2.j.b.83.1 yes 4 7.6 odd 2 CM
448.2.j.a.111.1 4 4.3 odd 2
448.2.j.a.111.1 4 28.27 even 2
448.2.j.a.335.1 4 16.5 even 4
448.2.j.a.335.1 4 112.69 odd 4
784.2.w.c.19.2 8 7.3 odd 6
784.2.w.c.19.2 8 7.4 even 3
784.2.w.c.227.2 8 7.2 even 3
784.2.w.c.227.2 8 7.5 odd 6
784.2.w.c.411.2 8 112.11 odd 12
784.2.w.c.411.2 8 112.59 even 12
784.2.w.c.619.2 8 112.75 even 12
784.2.w.c.619.2 8 112.107 odd 12
896.2.j.c.223.2 4 8.5 even 2
896.2.j.c.223.2 4 56.13 odd 2
896.2.j.c.671.2 4 16.3 odd 4
896.2.j.c.671.2 4 112.83 even 4
896.2.j.d.223.1 4 8.3 odd 2
896.2.j.d.223.1 4 56.27 even 2
896.2.j.d.671.1 4 16.13 even 4
896.2.j.d.671.1 4 112.13 odd 4