Properties

Label 112.2
Level 112
Weight 2
Dimension 185
Nonzero newspaces 8
Newform subspaces 23
Sturm bound 1536
Trace bound 3

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 8 \)
Newform subspaces: \( 23 \)
Sturm bound: \(1536\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(112))\).

Total New Old
Modular forms 468 229 239
Cusp forms 301 185 116
Eisenstein series 167 44 123

Trace form

\( 185 q - 8 q^{2} - 5 q^{3} - 12 q^{4} - 11 q^{5} - 20 q^{6} - 9 q^{7} - 32 q^{8} - 3 q^{9} - 12 q^{10} - 13 q^{11} - 4 q^{12} - 14 q^{13} - 8 q^{14} - 26 q^{15} + 4 q^{16} - 19 q^{17} - 16 q^{18} - 27 q^{19}+ \cdots + 100 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(112))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
112.2.a \(\chi_{112}(1, \cdot)\) 112.2.a.a 1 1
112.2.a.b 1
112.2.a.c 1
112.2.b \(\chi_{112}(57, \cdot)\) None 0 1
112.2.e \(\chi_{112}(55, \cdot)\) None 0 1
112.2.f \(\chi_{112}(111, \cdot)\) 112.2.f.a 2 1
112.2.f.b 2
112.2.i \(\chi_{112}(65, \cdot)\) 112.2.i.a 2 2
112.2.i.b 2
112.2.i.c 2
112.2.j \(\chi_{112}(27, \cdot)\) 112.2.j.a 4 2
112.2.j.b 4
112.2.j.c 4
112.2.j.d 16
112.2.m \(\chi_{112}(29, \cdot)\) 112.2.m.a 2 2
112.2.m.b 2
112.2.m.c 8
112.2.m.d 12
112.2.p \(\chi_{112}(31, \cdot)\) 112.2.p.a 2 2
112.2.p.b 2
112.2.p.c 4
112.2.q \(\chi_{112}(87, \cdot)\) None 0 2
112.2.t \(\chi_{112}(9, \cdot)\) None 0 2
112.2.v \(\chi_{112}(3, \cdot)\) 112.2.v.a 56 4
112.2.w \(\chi_{112}(37, \cdot)\) 112.2.w.a 4 4
112.2.w.b 4
112.2.w.c 48

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(112))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(112)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(56))\)\(^{\oplus 2}\)