Properties

Label 112.10.p.c.31.3
Level $112$
Weight $10$
Character 112.31
Analytic conductor $57.684$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [112,10,Mod(31,112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(112, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 1])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("112.31"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 112.p (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,162] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(57.6840136504\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 31.3
Character \(\chi\) \(=\) 112.31
Dual form 112.10.p.c.47.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-85.3530 + 147.836i) q^{3} +(-1415.83 + 817.429i) q^{5} +(796.914 + 6302.26i) q^{7} +(-4728.77 - 8190.47i) q^{9} +(-76024.2 - 43892.6i) q^{11} +24846.5i q^{13} -279080. i q^{15} +(-98783.3 - 57032.6i) q^{17} +(-120315. - 208392. i) q^{19} +(-999719. - 420105. i) q^{21} +(-1.37851e6 + 795885. i) q^{23} +(359816. - 623220. i) q^{25} -1.74555e6 q^{27} -117163. q^{29} +(-1.04347e6 + 1.80734e6i) q^{31} +(1.29778e7 - 7.49272e6i) q^{33} +(-6.27994e6 - 8.27150e6i) q^{35} +(1.68888e6 + 2.92523e6i) q^{37} +(-3.67320e6 - 2.12072e6i) q^{39} -2.72870e7i q^{41} +1.43490e7i q^{43} +(1.33902e7 + 7.73086e6i) q^{45} +(1.34766e7 + 2.33421e7i) q^{47} +(-3.90835e7 + 1.00447e7i) q^{49} +(1.68629e7 - 9.73580e6i) q^{51} +(-3.45262e7 + 5.98012e7i) q^{53} +1.43516e8 q^{55} +4.10771e7 q^{57} +(-1.41959e7 + 2.45880e7i) q^{59} +(1.15548e8 - 6.67116e7i) q^{61} +(4.78501e7 - 3.63291e7i) q^{63} +(-2.03102e7 - 3.51783e7i) q^{65} +(4.49199e7 + 2.59345e7i) q^{67} -2.71725e8i q^{69} +3.87928e8i q^{71} +(4.09969e8 + 2.36696e8i) q^{73} +(6.14228e7 + 1.06387e8i) q^{75} +(2.16038e8 - 5.14103e8i) q^{77} +(3.35591e8 - 1.93753e8i) q^{79} +(2.42064e8 - 4.19267e8i) q^{81} -5.59811e8 q^{83} +1.86480e8 q^{85} +(1.00002e7 - 1.73208e7i) q^{87} +(4.49942e8 - 2.59774e8i) q^{89} +(-1.56589e8 + 1.98005e7i) q^{91} +(-1.78126e8 - 3.08524e8i) q^{93} +(3.40691e8 + 1.96698e8i) q^{95} -2.35445e8i q^{97} +8.30231e8i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 162 q^{3} - 852 q^{5} + 6744 q^{7} - 77884 q^{9} + 57534 q^{11} + 789336 q^{17} - 469098 q^{19} - 2104376 q^{21} - 1553682 q^{23} + 3602544 q^{25} - 6389244 q^{27} - 2462040 q^{29} + 10306686 q^{31}+ \cdots - 1433917218 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/112\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(17\) \(85\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −85.3530 + 147.836i −0.608378 + 1.05374i 0.383130 + 0.923694i \(0.374846\pi\)
−0.991508 + 0.130046i \(0.958487\pi\)
\(4\) 0 0
\(5\) −1415.83 + 817.429i −1.01308 + 0.584904i −0.912093 0.409983i \(-0.865535\pi\)
−0.100991 + 0.994887i \(0.532201\pi\)
\(6\) 0 0
\(7\) 796.914 + 6302.26i 0.125450 + 0.992100i
\(8\) 0 0
\(9\) −4728.77 8190.47i −0.240246 0.416119i
\(10\) 0 0
\(11\) −76024.2 43892.6i −1.56561 0.903907i −0.996671 0.0815299i \(-0.974019\pi\)
−0.568942 0.822377i \(-0.692647\pi\)
\(12\) 0 0
\(13\) 24846.5i 0.241279i 0.992696 + 0.120640i \(0.0384945\pi\)
−0.992696 + 0.120640i \(0.961505\pi\)
\(14\) 0 0
\(15\) 279080.i 1.42337i
\(16\) 0 0
\(17\) −98783.3 57032.6i −0.286856 0.165616i 0.349667 0.936874i \(-0.386295\pi\)
−0.636523 + 0.771258i \(0.719628\pi\)
\(18\) 0 0
\(19\) −120315. 208392.i −0.211802 0.366851i 0.740477 0.672082i \(-0.234600\pi\)
−0.952278 + 0.305231i \(0.901266\pi\)
\(20\) 0 0
\(21\) −999719. 420105.i −1.12174 0.471380i
\(22\) 0 0
\(23\) −1.37851e6 + 795885.i −1.02715 + 0.593028i −0.916168 0.400794i \(-0.868734\pi\)
−0.110986 + 0.993822i \(0.535401\pi\)
\(24\) 0 0
\(25\) 359816. 623220.i 0.184226 0.319089i
\(26\) 0 0
\(27\) −1.74555e6 −0.632113
\(28\) 0 0
\(29\) −117163. −0.0307609 −0.0153804 0.999882i \(-0.504896\pi\)
−0.0153804 + 0.999882i \(0.504896\pi\)
\(30\) 0 0
\(31\) −1.04347e6 + 1.80734e6i −0.202932 + 0.351489i −0.949472 0.313852i \(-0.898380\pi\)
0.746540 + 0.665341i \(0.231714\pi\)
\(32\) 0 0
\(33\) 1.29778e7 7.49272e6i 1.90497 1.09983i
\(34\) 0 0
\(35\) −6.27994e6 8.27150e6i −0.707375 0.931704i
\(36\) 0 0
\(37\) 1.68888e6 + 2.92523e6i 0.148147 + 0.256598i 0.930543 0.366184i \(-0.119336\pi\)
−0.782396 + 0.622782i \(0.786003\pi\)
\(38\) 0 0
\(39\) −3.67320e6 2.12072e6i −0.254246 0.146789i
\(40\) 0 0
\(41\) 2.72870e7i 1.50810i −0.656819 0.754048i \(-0.728098\pi\)
0.656819 0.754048i \(-0.271902\pi\)
\(42\) 0 0
\(43\) 1.43490e7i 0.640051i 0.947409 + 0.320025i \(0.103691\pi\)
−0.947409 + 0.320025i \(0.896309\pi\)
\(44\) 0 0
\(45\) 1.33902e7 + 7.73086e6i 0.486780 + 0.281042i
\(46\) 0 0
\(47\) 1.34766e7 + 2.33421e7i 0.402846 + 0.697749i 0.994068 0.108759i \(-0.0346878\pi\)
−0.591222 + 0.806509i \(0.701354\pi\)
\(48\) 0 0
\(49\) −3.90835e7 + 1.00447e7i −0.968525 + 0.248918i
\(50\) 0 0
\(51\) 1.68629e7 9.73580e6i 0.349033 0.201514i
\(52\) 0 0
\(53\) −3.45262e7 + 5.98012e7i −0.601046 + 1.04104i 0.391617 + 0.920128i \(0.371916\pi\)
−0.992663 + 0.120914i \(0.961417\pi\)
\(54\) 0 0
\(55\) 1.43516e8 2.11480
\(56\) 0 0
\(57\) 4.10771e7 0.515421
\(58\) 0 0
\(59\) −1.41959e7 + 2.45880e7i −0.152521 + 0.264174i −0.932153 0.362063i \(-0.882072\pi\)
0.779633 + 0.626237i \(0.215406\pi\)
\(60\) 0 0
\(61\) 1.15548e8 6.67116e7i 1.06851 0.616903i 0.140734 0.990047i \(-0.455054\pi\)
0.927773 + 0.373144i \(0.121720\pi\)
\(62\) 0 0
\(63\) 4.78501e7 3.63291e7i 0.382693 0.290551i
\(64\) 0 0
\(65\) −2.03102e7 3.51783e7i −0.141125 0.244436i
\(66\) 0 0
\(67\) 4.49199e7 + 2.59345e7i 0.272334 + 0.157232i 0.629948 0.776637i \(-0.283076\pi\)
−0.357614 + 0.933870i \(0.616410\pi\)
\(68\) 0 0
\(69\) 2.71725e8i 1.44314i
\(70\) 0 0
\(71\) 3.87928e8i 1.81171i 0.423586 + 0.905856i \(0.360771\pi\)
−0.423586 + 0.905856i \(0.639229\pi\)
\(72\) 0 0
\(73\) 4.09969e8 + 2.36696e8i 1.68966 + 0.975524i 0.954775 + 0.297329i \(0.0960957\pi\)
0.734882 + 0.678195i \(0.237238\pi\)
\(74\) 0 0
\(75\) 6.14228e7 + 1.06387e8i 0.224158 + 0.388253i
\(76\) 0 0
\(77\) 2.16038e8 5.14103e8i 0.700360 1.66664i
\(78\) 0 0
\(79\) 3.35591e8 1.93753e8i 0.969367 0.559664i 0.0703235 0.997524i \(-0.477597\pi\)
0.899043 + 0.437860i \(0.144264\pi\)
\(80\) 0 0
\(81\) 2.42064e8 4.19267e8i 0.624810 1.08220i
\(82\) 0 0
\(83\) −5.59811e8 −1.29476 −0.647381 0.762166i \(-0.724136\pi\)
−0.647381 + 0.762166i \(0.724136\pi\)
\(84\) 0 0
\(85\) 1.86480e8 0.387478
\(86\) 0 0
\(87\) 1.00002e7 1.73208e7i 0.0187142 0.0324140i
\(88\) 0 0
\(89\) 4.49942e8 2.59774e8i 0.760154 0.438875i −0.0691969 0.997603i \(-0.522044\pi\)
0.829351 + 0.558728i \(0.188710\pi\)
\(90\) 0 0
\(91\) −1.56589e8 + 1.98005e7i −0.239373 + 0.0302684i
\(92\) 0 0
\(93\) −1.78126e8 3.08524e8i −0.246919 0.427676i
\(94\) 0 0
\(95\) 3.40691e8 + 1.96698e8i 0.429146 + 0.247767i
\(96\) 0 0
\(97\) 2.35445e8i 0.270032i −0.990843 0.135016i \(-0.956891\pi\)
0.990843 0.135016i \(-0.0431087\pi\)
\(98\) 0 0
\(99\) 8.30231e8i 0.868642i
\(100\) 0 0
\(101\) −1.51111e9 8.72439e8i −1.44494 0.834236i −0.446766 0.894651i \(-0.647424\pi\)
−0.998173 + 0.0604145i \(0.980758\pi\)
\(102\) 0 0
\(103\) 1.80854e8 + 3.13248e8i 0.158329 + 0.274234i 0.934266 0.356576i \(-0.116056\pi\)
−0.775937 + 0.630810i \(0.782723\pi\)
\(104\) 0 0
\(105\) 1.75884e9 2.22403e8i 1.41213 0.178562i
\(106\) 0 0
\(107\) 3.49756e8 2.01932e8i 0.257951 0.148928i −0.365448 0.930832i \(-0.619084\pi\)
0.623400 + 0.781903i \(0.285751\pi\)
\(108\) 0 0
\(109\) 6.92622e8 1.19966e9i 0.469977 0.814025i −0.529433 0.848352i \(-0.677595\pi\)
0.999411 + 0.0343269i \(0.0109287\pi\)
\(110\) 0 0
\(111\) −5.76605e8 −0.360517
\(112\) 0 0
\(113\) 1.10316e9 0.636482 0.318241 0.948010i \(-0.396908\pi\)
0.318241 + 0.948010i \(0.396908\pi\)
\(114\) 0 0
\(115\) 1.30116e9 2.25367e9i 0.693729 1.20157i
\(116\) 0 0
\(117\) 2.03504e8 1.17493e8i 0.100401 0.0579664i
\(118\) 0 0
\(119\) 2.80713e8 6.68009e8i 0.128322 0.305366i
\(120\) 0 0
\(121\) 2.67414e9 + 4.63175e9i 1.13410 + 1.96431i
\(122\) 0 0
\(123\) 4.03400e9 + 2.32903e9i 1.58914 + 0.917492i
\(124\) 0 0
\(125\) 2.01658e9i 0.738790i
\(126\) 0 0
\(127\) 4.53002e9i 1.54520i 0.634895 + 0.772598i \(0.281043\pi\)
−0.634895 + 0.772598i \(0.718957\pi\)
\(128\) 0 0
\(129\) −2.12130e9 1.22473e9i −0.674448 0.389393i
\(130\) 0 0
\(131\) 2.34526e9 + 4.06211e9i 0.695777 + 1.20512i 0.969918 + 0.243431i \(0.0782730\pi\)
−0.274142 + 0.961689i \(0.588394\pi\)
\(132\) 0 0
\(133\) 1.21746e9 9.24329e8i 0.337383 0.256150i
\(134\) 0 0
\(135\) 2.47139e9 1.42686e9i 0.640383 0.369726i
\(136\) 0 0
\(137\) −3.29257e9 + 5.70290e9i −0.798533 + 1.38310i 0.122039 + 0.992525i \(0.461057\pi\)
−0.920572 + 0.390574i \(0.872277\pi\)
\(138\) 0 0
\(139\) −7.24554e9 −1.64628 −0.823140 0.567838i \(-0.807780\pi\)
−0.823140 + 0.567838i \(0.807780\pi\)
\(140\) 0 0
\(141\) −4.60106e9 −0.980329
\(142\) 0 0
\(143\) 1.09058e9 1.88893e9i 0.218094 0.377750i
\(144\) 0 0
\(145\) 1.65882e8 9.57721e7i 0.0311633 0.0179922i
\(146\) 0 0
\(147\) 1.85092e9 6.63528e9i 0.326934 1.17201i
\(148\) 0 0
\(149\) −2.08581e8 3.61274e8i −0.0346687 0.0600479i 0.848170 0.529723i \(-0.177704\pi\)
−0.882839 + 0.469675i \(0.844371\pi\)
\(150\) 0 0
\(151\) −1.07162e10 6.18700e9i −1.67743 0.968465i −0.963290 0.268464i \(-0.913484\pi\)
−0.714142 0.700001i \(-0.753183\pi\)
\(152\) 0 0
\(153\) 1.07878e9i 0.159155i
\(154\) 0 0
\(155\) 3.41184e9i 0.474784i
\(156\) 0 0
\(157\) −1.41780e9 8.18567e8i −0.186237 0.107524i 0.403983 0.914767i \(-0.367626\pi\)
−0.590220 + 0.807243i \(0.700959\pi\)
\(158\) 0 0
\(159\) −5.89384e9 1.02084e10i −0.731326 1.26669i
\(160\) 0 0
\(161\) −6.11443e9 8.05350e9i −0.717199 0.944644i
\(162\) 0 0
\(163\) −7.88282e9 + 4.55115e9i −0.874656 + 0.504983i −0.868893 0.495000i \(-0.835168\pi\)
−0.00576346 + 0.999983i \(0.501835\pi\)
\(164\) 0 0
\(165\) −1.22495e10 + 2.12168e10i −1.28659 + 2.22845i
\(166\) 0 0
\(167\) −5.22224e9 −0.519557 −0.259778 0.965668i \(-0.583650\pi\)
−0.259778 + 0.965668i \(0.583650\pi\)
\(168\) 0 0
\(169\) 9.98715e9 0.941784
\(170\) 0 0
\(171\) −1.13789e9 + 1.97088e9i −0.101769 + 0.176269i
\(172\) 0 0
\(173\) −5.66969e9 + 3.27340e9i −0.481229 + 0.277838i −0.720929 0.693009i \(-0.756284\pi\)
0.239699 + 0.970847i \(0.422951\pi\)
\(174\) 0 0
\(175\) 4.21444e9 + 1.77101e9i 0.339679 + 0.142741i
\(176\) 0 0
\(177\) −2.42332e9 4.19732e9i −0.185580 0.321435i
\(178\) 0 0
\(179\) −2.12192e10 1.22509e10i −1.54487 0.891930i −0.998521 0.0543705i \(-0.982685\pi\)
−0.546347 0.837559i \(-0.683982\pi\)
\(180\) 0 0
\(181\) 5.81750e9i 0.402886i 0.979500 + 0.201443i \(0.0645631\pi\)
−0.979500 + 0.201443i \(0.935437\pi\)
\(182\) 0 0
\(183\) 2.27761e10i 1.50124i
\(184\) 0 0
\(185\) −4.78234e9 2.76108e9i −0.300170 0.173303i
\(186\) 0 0
\(187\) 5.00661e9 + 8.67171e9i 0.299403 + 0.518582i
\(188\) 0 0
\(189\) −1.39105e9 1.10009e10i −0.0792985 0.627119i
\(190\) 0 0
\(191\) 2.45560e10 1.41774e10i 1.33508 0.770809i 0.349006 0.937120i \(-0.386519\pi\)
0.986073 + 0.166312i \(0.0531858\pi\)
\(192\) 0 0
\(193\) −1.59065e10 + 2.75508e10i −0.825214 + 1.42931i 0.0765424 + 0.997066i \(0.475612\pi\)
−0.901756 + 0.432245i \(0.857721\pi\)
\(194\) 0 0
\(195\) 6.93415e9 0.343429
\(196\) 0 0
\(197\) 1.92054e10 0.908499 0.454250 0.890874i \(-0.349907\pi\)
0.454250 + 0.890874i \(0.349907\pi\)
\(198\) 0 0
\(199\) 9.72401e9 1.68425e10i 0.439548 0.761320i −0.558106 0.829769i \(-0.688472\pi\)
0.997655 + 0.0684497i \(0.0218053\pi\)
\(200\) 0 0
\(201\) −7.66810e9 + 4.42718e9i −0.331364 + 0.191313i
\(202\) 0 0
\(203\) −9.33686e7 7.38390e8i −0.00385894 0.0305178i
\(204\) 0 0
\(205\) 2.23052e10 + 3.86338e10i 0.882092 + 1.52783i
\(206\) 0 0
\(207\) 1.30373e10 + 7.52711e9i 0.493540 + 0.284946i
\(208\) 0 0
\(209\) 2.11238e10i 0.765796i
\(210\) 0 0
\(211\) 1.76978e10i 0.614679i −0.951600 0.307339i \(-0.900561\pi\)
0.951600 0.307339i \(-0.0994387\pi\)
\(212\) 0 0
\(213\) −5.73497e10 3.31109e10i −1.90907 1.10220i
\(214\) 0 0
\(215\) −1.17293e10 2.03158e10i −0.374368 0.648425i
\(216\) 0 0
\(217\) −1.22219e10 5.13591e9i −0.374170 0.157235i
\(218\) 0 0
\(219\) −6.99842e10 + 4.04054e10i −2.05590 + 1.18697i
\(220\) 0 0
\(221\) 1.41706e9 2.45442e9i 0.0399597 0.0692123i
\(222\) 0 0
\(223\) 4.26327e10 1.15444 0.577220 0.816589i \(-0.304138\pi\)
0.577220 + 0.816589i \(0.304138\pi\)
\(224\) 0 0
\(225\) −6.80596e9 −0.177039
\(226\) 0 0
\(227\) 1.99382e10 3.45339e10i 0.498389 0.863236i −0.501609 0.865094i \(-0.667258\pi\)
0.999998 + 0.00185884i \(0.000591688\pi\)
\(228\) 0 0
\(229\) 5.65491e10 3.26487e10i 1.35883 0.784523i 0.369367 0.929284i \(-0.379575\pi\)
0.989467 + 0.144761i \(0.0462413\pi\)
\(230\) 0 0
\(231\) 5.75633e10 + 7.58183e10i 1.33012 + 1.75194i
\(232\) 0 0
\(233\) −3.39245e9 5.87589e9i −0.0754070 0.130609i 0.825856 0.563881i \(-0.190692\pi\)
−0.901263 + 0.433272i \(0.857359\pi\)
\(234\) 0 0
\(235\) −3.81610e10 2.20323e10i −0.816233 0.471252i
\(236\) 0 0
\(237\) 6.61497e10i 1.36195i
\(238\) 0 0
\(239\) 3.37396e10i 0.668881i −0.942417 0.334441i \(-0.891453\pi\)
0.942417 0.334441i \(-0.108547\pi\)
\(240\) 0 0
\(241\) −7.04664e10 4.06838e10i −1.34557 0.776863i −0.357949 0.933741i \(-0.616524\pi\)
−0.987618 + 0.156878i \(0.949857\pi\)
\(242\) 0 0
\(243\) 2.41430e10 + 4.18169e10i 0.444184 + 0.769349i
\(244\) 0 0
\(245\) 4.71246e10 4.61695e10i 0.835604 0.818669i
\(246\) 0 0
\(247\) 5.17781e9 2.98941e9i 0.0885135 0.0511033i
\(248\) 0 0
\(249\) 4.77816e10 8.27601e10i 0.787704 1.36434i
\(250\) 0 0
\(251\) −1.95106e10 −0.310269 −0.155134 0.987893i \(-0.549581\pi\)
−0.155134 + 0.987893i \(0.549581\pi\)
\(252\) 0 0
\(253\) 1.39734e11 2.14417
\(254\) 0 0
\(255\) −1.59166e10 + 2.75684e10i −0.235733 + 0.408302i
\(256\) 0 0
\(257\) 7.94705e10 4.58823e10i 1.13634 0.656064i 0.190816 0.981626i \(-0.438887\pi\)
0.945521 + 0.325562i \(0.105553\pi\)
\(258\) 0 0
\(259\) −1.70897e10 + 1.29750e10i −0.235986 + 0.179167i
\(260\) 0 0
\(261\) 5.54035e8 + 9.59618e8i 0.00739018 + 0.0128002i
\(262\) 0 0
\(263\) −1.19700e10 6.91090e9i −0.154275 0.0890705i 0.420875 0.907118i \(-0.361723\pi\)
−0.575150 + 0.818048i \(0.695056\pi\)
\(264\) 0 0
\(265\) 1.12891e11i 1.40622i
\(266\) 0 0
\(267\) 8.86900e10i 1.06801i
\(268\) 0 0
\(269\) −9.34884e9 5.39755e9i −0.108861 0.0628509i 0.444581 0.895739i \(-0.353353\pi\)
−0.553442 + 0.832888i \(0.686686\pi\)
\(270\) 0 0
\(271\) −2.42736e10 4.20430e10i −0.273383 0.473513i 0.696343 0.717709i \(-0.254809\pi\)
−0.969726 + 0.244196i \(0.921476\pi\)
\(272\) 0 0
\(273\) 1.04381e10 2.48395e10i 0.113734 0.270652i
\(274\) 0 0
\(275\) −5.47095e10 + 3.15865e10i −0.576853 + 0.333046i
\(276\) 0 0
\(277\) −6.65015e9 + 1.15184e10i −0.0678691 + 0.117553i −0.897963 0.440071i \(-0.854953\pi\)
0.830094 + 0.557624i \(0.188287\pi\)
\(278\) 0 0
\(279\) 1.97373e10 0.195015
\(280\) 0 0
\(281\) 1.02607e11 0.981740 0.490870 0.871233i \(-0.336679\pi\)
0.490870 + 0.871233i \(0.336679\pi\)
\(282\) 0 0
\(283\) −2.00678e10 + 3.47584e10i −0.185977 + 0.322122i −0.943905 0.330216i \(-0.892878\pi\)
0.757928 + 0.652338i \(0.226212\pi\)
\(284\) 0 0
\(285\) −5.81580e10 + 3.35776e10i −0.522165 + 0.301472i
\(286\) 0 0
\(287\) 1.71970e11 2.17454e10i 1.49618 0.189190i
\(288\) 0 0
\(289\) −5.27885e10 9.14324e10i −0.445143 0.771010i
\(290\) 0 0
\(291\) 3.48071e10 + 2.00959e10i 0.284544 + 0.164282i
\(292\) 0 0
\(293\) 4.52666e10i 0.358818i −0.983775 0.179409i \(-0.942582\pi\)
0.983775 0.179409i \(-0.0574185\pi\)
\(294\) 0 0
\(295\) 4.64165e10i 0.356840i
\(296\) 0 0
\(297\) 1.32704e11 + 7.66166e10i 0.989645 + 0.571372i
\(298\) 0 0
\(299\) −1.97749e10 3.42512e10i −0.143085 0.247831i
\(300\) 0 0
\(301\) −9.04314e10 + 1.14349e10i −0.634994 + 0.0802943i
\(302\) 0 0
\(303\) 2.57955e11 1.48931e11i 1.75814 1.01506i
\(304\) 0 0
\(305\) −1.09064e11 + 1.88904e11i −0.721658 + 1.24995i
\(306\) 0 0
\(307\) 1.04134e11 0.669068 0.334534 0.942384i \(-0.391421\pi\)
0.334534 + 0.942384i \(0.391421\pi\)
\(308\) 0 0
\(309\) −6.17457e10 −0.385295
\(310\) 0 0
\(311\) −7.01012e10 + 1.21419e11i −0.424917 + 0.735977i −0.996413 0.0846275i \(-0.973030\pi\)
0.571496 + 0.820605i \(0.306363\pi\)
\(312\) 0 0
\(313\) 2.45677e10 1.41842e10i 0.144682 0.0835323i −0.425911 0.904765i \(-0.640046\pi\)
0.570594 + 0.821233i \(0.306713\pi\)
\(314\) 0 0
\(315\) −3.80511e10 + 9.05497e10i −0.217756 + 0.518191i
\(316\) 0 0
\(317\) −2.23399e9 3.86938e9i −0.0124255 0.0215216i 0.859746 0.510722i \(-0.170622\pi\)
−0.872171 + 0.489201i \(0.837289\pi\)
\(318\) 0 0
\(319\) 8.90720e9 + 5.14257e9i 0.0481596 + 0.0278050i
\(320\) 0 0
\(321\) 6.89418e10i 0.362418i
\(322\) 0 0
\(323\) 2.74475e10i 0.140311i
\(324\) 0 0
\(325\) 1.54848e10 + 8.94017e9i 0.0769894 + 0.0444499i
\(326\) 0 0
\(327\) 1.18235e11 + 2.04789e11i 0.571847 + 0.990469i
\(328\) 0 0
\(329\) −1.36368e11 + 1.03535e11i −0.641700 + 0.487196i
\(330\) 0 0
\(331\) −6.98188e9 + 4.03099e9i −0.0319703 + 0.0184580i −0.515900 0.856649i \(-0.672542\pi\)
0.483930 + 0.875107i \(0.339209\pi\)
\(332\) 0 0
\(333\) 1.59727e10 2.76655e10i 0.0711835 0.123293i
\(334\) 0 0
\(335\) −8.47985e10 −0.367863
\(336\) 0 0
\(337\) −2.25624e11 −0.952909 −0.476454 0.879199i \(-0.658078\pi\)
−0.476454 + 0.879199i \(0.658078\pi\)
\(338\) 0 0
\(339\) −9.41582e10 + 1.63087e11i −0.387221 + 0.670687i
\(340\) 0 0
\(341\) 1.58657e11 9.16009e10i 0.635427 0.366864i
\(342\) 0 0
\(343\) −9.44506e10 2.38310e11i −0.368452 0.929647i
\(344\) 0 0
\(345\) 2.22115e11 + 3.84715e11i 0.844098 + 1.46202i
\(346\) 0 0
\(347\) −1.52483e11 8.80360e10i −0.564597 0.325970i 0.190392 0.981708i \(-0.439024\pi\)
−0.754988 + 0.655738i \(0.772358\pi\)
\(348\) 0 0
\(349\) 3.27852e11i 1.18294i −0.806327 0.591470i \(-0.798548\pi\)
0.806327 0.591470i \(-0.201452\pi\)
\(350\) 0 0
\(351\) 4.33707e10i 0.152516i
\(352\) 0 0
\(353\) 2.30212e11 + 1.32913e11i 0.789117 + 0.455597i 0.839652 0.543125i \(-0.182759\pi\)
−0.0505347 + 0.998722i \(0.516093\pi\)
\(354\) 0 0
\(355\) −3.17104e11 5.49240e11i −1.05968 1.83542i
\(356\) 0 0
\(357\) 7.47959e10 + 9.85159e10i 0.243708 + 0.320996i
\(358\) 0 0
\(359\) 2.70703e11 1.56291e11i 0.860139 0.496602i −0.00391966 0.999992i \(-0.501248\pi\)
0.864059 + 0.503391i \(0.167914\pi\)
\(360\) 0 0
\(361\) 1.32392e11 2.29310e11i 0.410280 0.710626i
\(362\) 0 0
\(363\) −9.12984e11 −2.75984
\(364\) 0 0
\(365\) −7.73928e11 −2.28235
\(366\) 0 0
\(367\) 1.67183e11 2.89569e11i 0.481055 0.833212i −0.518708 0.854951i \(-0.673587\pi\)
0.999764 + 0.0217392i \(0.00692033\pi\)
\(368\) 0 0
\(369\) −2.23494e11 + 1.29034e11i −0.627548 + 0.362315i
\(370\) 0 0
\(371\) −4.04398e11 1.69937e11i −1.10822 0.465699i
\(372\) 0 0
\(373\) 7.56342e10 + 1.31002e11i 0.202315 + 0.350420i 0.949274 0.314450i \(-0.101820\pi\)
−0.746959 + 0.664870i \(0.768487\pi\)
\(374\) 0 0
\(375\) 2.98123e11 + 1.72121e11i 0.778493 + 0.449463i
\(376\) 0 0
\(377\) 2.91108e9i 0.00742195i
\(378\) 0 0
\(379\) 4.74193e11i 1.18053i 0.807208 + 0.590267i \(0.200978\pi\)
−0.807208 + 0.590267i \(0.799022\pi\)
\(380\) 0 0
\(381\) −6.69699e11 3.86651e11i −1.62824 0.940063i
\(382\) 0 0
\(383\) −1.36095e11 2.35724e11i −0.323184 0.559770i 0.657960 0.753053i \(-0.271420\pi\)
−0.981143 + 0.193283i \(0.938086\pi\)
\(384\) 0 0
\(385\) 1.14370e11 + 9.04477e11i 0.265301 + 2.09809i
\(386\) 0 0
\(387\) 1.17525e11 6.78533e10i 0.266337 0.153770i
\(388\) 0 0
\(389\) 5.63162e10 9.75424e10i 0.124698 0.215983i −0.796917 0.604089i \(-0.793537\pi\)
0.921615 + 0.388106i \(0.126870\pi\)
\(390\) 0 0
\(391\) 1.81565e11 0.392860
\(392\) 0 0
\(393\) −8.00699e11 −1.69318
\(394\) 0 0
\(395\) −3.16759e11 + 5.48643e11i −0.654700 + 1.13397i
\(396\) 0 0
\(397\) −6.39536e11 + 3.69236e11i −1.29213 + 0.746014i −0.979032 0.203706i \(-0.934701\pi\)
−0.313102 + 0.949720i \(0.601368\pi\)
\(398\) 0 0
\(399\) 3.27349e10 + 2.58878e11i 0.0646595 + 0.511350i
\(400\) 0 0
\(401\) −9.80108e10 1.69760e11i −0.189288 0.327857i 0.755725 0.654889i \(-0.227285\pi\)
−0.945013 + 0.327032i \(0.893951\pi\)
\(402\) 0 0
\(403\) −4.49060e10 2.59265e10i −0.0848070 0.0489633i
\(404\) 0 0
\(405\) 7.91480e11i 1.46182i
\(406\) 0 0
\(407\) 2.96518e11i 0.535644i
\(408\) 0 0
\(409\) 6.86903e11 + 3.96584e11i 1.21378 + 0.700777i 0.963581 0.267417i \(-0.0861701\pi\)
0.250201 + 0.968194i \(0.419503\pi\)
\(410\) 0 0
\(411\) −5.62062e11 9.73519e11i −0.971619 1.68289i
\(412\) 0 0
\(413\) −1.66273e11 6.98718e10i −0.281220 0.118175i
\(414\) 0 0
\(415\) 7.92596e11 4.57606e11i 1.31170 0.757312i
\(416\) 0 0
\(417\) 6.18428e11 1.07115e12i 1.00156 1.73475i
\(418\) 0 0
\(419\) −2.73830e11 −0.434029 −0.217014 0.976168i \(-0.569632\pi\)
−0.217014 + 0.976168i \(0.569632\pi\)
\(420\) 0 0
\(421\) 9.35590e11 1.45150 0.725749 0.687960i \(-0.241494\pi\)
0.725749 + 0.687960i \(0.241494\pi\)
\(422\) 0 0
\(423\) 1.27455e11 2.20759e11i 0.193565 0.335264i
\(424\) 0 0
\(425\) −7.10877e10 + 4.10425e10i −0.105693 + 0.0610216i
\(426\) 0 0
\(427\) 5.12516e11 + 6.75050e11i 0.746074 + 0.982676i
\(428\) 0 0
\(429\) 1.86168e11 + 3.22452e11i 0.265367 + 0.459629i
\(430\) 0 0
\(431\) 9.42075e11 + 5.43907e11i 1.31504 + 0.759237i 0.982926 0.184004i \(-0.0589058\pi\)
0.332111 + 0.943240i \(0.392239\pi\)
\(432\) 0 0
\(433\) 6.43180e11i 0.879300i −0.898169 0.439650i \(-0.855102\pi\)
0.898169 0.439650i \(-0.144898\pi\)
\(434\) 0 0
\(435\) 3.26978e10i 0.0437841i
\(436\) 0 0
\(437\) 3.31712e11 + 1.91514e11i 0.435106 + 0.251208i
\(438\) 0 0
\(439\) 2.79648e11 + 4.84365e11i 0.359353 + 0.622418i 0.987853 0.155392i \(-0.0496640\pi\)
−0.628500 + 0.777810i \(0.716331\pi\)
\(440\) 0 0
\(441\) 2.67088e11 + 2.72613e11i 0.336264 + 0.343220i
\(442\) 0 0
\(443\) 1.01336e12 5.85066e11i 1.25011 0.721752i 0.278980 0.960297i \(-0.410004\pi\)
0.971131 + 0.238545i \(0.0766704\pi\)
\(444\) 0 0
\(445\) −4.24694e11 + 7.35591e11i −0.513400 + 0.889235i
\(446\) 0 0
\(447\) 7.12122e10 0.0843666
\(448\) 0 0
\(449\) −1.60346e12 −1.86187 −0.930936 0.365181i \(-0.881007\pi\)
−0.930936 + 0.365181i \(0.881007\pi\)
\(450\) 0 0
\(451\) −1.19770e12 + 2.07447e12i −1.36318 + 2.36110i
\(452\) 0 0
\(453\) 1.82932e12 1.05616e12i 2.04102 1.17839i
\(454\) 0 0
\(455\) 2.05518e11 1.56034e11i 0.224801 0.170675i
\(456\) 0 0
\(457\) −3.53869e11 6.12920e11i −0.379507 0.657326i 0.611483 0.791257i \(-0.290573\pi\)
−0.990991 + 0.133931i \(0.957240\pi\)
\(458\) 0 0
\(459\) 1.72431e11 + 9.95531e10i 0.181325 + 0.104688i
\(460\) 0 0
\(461\) 6.31509e11i 0.651217i −0.945505 0.325608i \(-0.894431\pi\)
0.945505 0.325608i \(-0.105569\pi\)
\(462\) 0 0
\(463\) 5.41413e11i 0.547538i 0.961795 + 0.273769i \(0.0882704\pi\)
−0.961795 + 0.273769i \(0.911730\pi\)
\(464\) 0 0
\(465\) 5.04392e11 + 2.91211e11i 0.500299 + 0.288848i
\(466\) 0 0
\(467\) −1.88032e11 3.25681e11i −0.182939 0.316859i 0.759941 0.649992i \(-0.225228\pi\)
−0.942880 + 0.333133i \(0.891894\pi\)
\(468\) 0 0
\(469\) −1.27649e11 + 3.03765e11i −0.121826 + 0.289907i
\(470\) 0 0
\(471\) 2.42027e11 1.39734e11i 0.226605 0.130830i
\(472\) 0 0
\(473\) 6.29816e11 1.09087e12i 0.578547 1.00207i
\(474\) 0 0
\(475\) −1.73166e11 −0.156077
\(476\) 0 0
\(477\) 6.53067e11 0.577597
\(478\) 0 0
\(479\) −3.31624e11 + 5.74389e11i −0.287830 + 0.498536i −0.973291 0.229573i \(-0.926267\pi\)
0.685462 + 0.728109i \(0.259600\pi\)
\(480\) 0 0
\(481\) −7.26817e10 + 4.19628e10i −0.0619117 + 0.0357447i
\(482\) 0 0
\(483\) 1.71248e12 2.16541e11i 1.43174 0.181042i
\(484\) 0 0
\(485\) 1.92459e11 + 3.33349e11i 0.157943 + 0.273566i
\(486\) 0 0
\(487\) −1.75884e12 1.01546e12i −1.41692 0.818059i −0.420893 0.907110i \(-0.638283\pi\)
−0.996027 + 0.0890514i \(0.971616\pi\)
\(488\) 0 0
\(489\) 1.55382e12i 1.22888i
\(490\) 0 0
\(491\) 1.25834e12i 0.977086i −0.872540 0.488543i \(-0.837529\pi\)
0.872540 0.488543i \(-0.162471\pi\)
\(492\) 0 0
\(493\) 1.15737e10 + 6.68209e9i 0.00882392 + 0.00509450i
\(494\) 0 0
\(495\) −6.78655e11 1.17546e12i −0.508072 0.880007i
\(496\) 0 0
\(497\) −2.44483e12 + 3.09146e11i −1.79740 + 0.227279i
\(498\) 0 0
\(499\) −4.40134e10 + 2.54111e10i −0.0317784 + 0.0183473i −0.515805 0.856706i \(-0.672507\pi\)
0.484027 + 0.875053i \(0.339174\pi\)
\(500\) 0 0
\(501\) 4.45734e11 7.72034e11i 0.316087 0.547478i
\(502\) 0 0
\(503\) 1.48741e12 1.03604 0.518019 0.855369i \(-0.326670\pi\)
0.518019 + 0.855369i \(0.326670\pi\)
\(504\) 0 0
\(505\) 2.85263e12 1.95179
\(506\) 0 0
\(507\) −8.52433e11 + 1.47646e12i −0.572960 + 0.992397i
\(508\) 0 0
\(509\) 1.80197e12 1.04037e12i 1.18992 0.687000i 0.231630 0.972804i \(-0.425594\pi\)
0.958288 + 0.285804i \(0.0922607\pi\)
\(510\) 0 0
\(511\) −1.16501e12 + 2.77236e12i −0.755850 + 1.79869i
\(512\) 0 0
\(513\) 2.10016e11 + 3.63758e11i 0.133883 + 0.231891i
\(514\) 0 0
\(515\) −5.12116e11 2.95670e11i −0.320801 0.185215i
\(516\) 0 0
\(517\) 2.36608e12i 1.45654i
\(518\) 0 0
\(519\) 1.11758e12i 0.676121i
\(520\) 0 0
\(521\) −2.19762e12 1.26880e12i −1.30672 0.754437i −0.325175 0.945654i \(-0.605423\pi\)
−0.981548 + 0.191217i \(0.938757\pi\)
\(522\) 0 0
\(523\) −3.49782e11 6.05841e11i −0.204428 0.354079i 0.745522 0.666481i \(-0.232200\pi\)
−0.949950 + 0.312401i \(0.898867\pi\)
\(524\) 0 0
\(525\) −6.21533e11 + 4.71884e11i −0.357065 + 0.271093i
\(526\) 0 0
\(527\) 2.06154e11 1.19023e11i 0.116425 0.0672178i
\(528\) 0 0
\(529\) 3.66289e11 6.34431e11i 0.203364 0.352236i
\(530\) 0 0
\(531\) 2.68517e11 0.146570
\(532\) 0 0
\(533\) 6.77987e11 0.363872
\(534\) 0 0
\(535\) −3.30129e11 + 5.71800e11i −0.174218 + 0.301754i
\(536\) 0 0
\(537\) 3.62225e12 2.09131e12i 1.87973 1.08526i
\(538\) 0 0
\(539\) 3.41218e12 + 9.51832e11i 1.74133 + 0.485748i
\(540\) 0 0
\(541\) 9.98576e11 + 1.72958e12i 0.501180 + 0.868069i 0.999999 + 0.00136264i \(0.000433743\pi\)
−0.498819 + 0.866706i \(0.666233\pi\)
\(542\) 0 0
\(543\) −8.60034e11 4.96541e11i −0.424538 0.245107i
\(544\) 0 0
\(545\) 2.26468e12i 1.09957i
\(546\) 0 0
\(547\) 3.30491e12i 1.57840i 0.614136 + 0.789200i \(0.289505\pi\)
−0.614136 + 0.789200i \(0.710495\pi\)
\(548\) 0 0
\(549\) −1.09280e12 6.30927e11i −0.513410 0.296417i
\(550\) 0 0
\(551\) 1.40965e10 + 2.44158e10i 0.00651520 + 0.0112847i
\(552\) 0 0
\(553\) 1.48852e12 + 1.96058e12i 0.676850 + 0.891499i
\(554\) 0 0
\(555\) 8.16374e11 4.71334e11i 0.365234 0.210868i
\(556\) 0 0
\(557\) −1.34411e12 + 2.32807e12i −0.591679 + 1.02482i 0.402327 + 0.915496i \(0.368202\pi\)
−0.994006 + 0.109323i \(0.965132\pi\)
\(558\) 0 0
\(559\) −3.56523e11 −0.154431
\(560\) 0 0
\(561\) −1.70932e12 −0.728601
\(562\) 0 0
\(563\) 1.00707e12 1.74430e12i 0.422448 0.731701i −0.573731 0.819044i \(-0.694504\pi\)
0.996178 + 0.0873431i \(0.0278377\pi\)
\(564\) 0 0
\(565\) −1.56189e12 + 9.01756e11i −0.644810 + 0.372281i
\(566\) 0 0
\(567\) 2.83524e12 + 1.19143e12i 1.15204 + 0.484112i
\(568\) 0 0
\(569\) 3.83942e11 + 6.65007e11i 0.153554 + 0.265963i 0.932531 0.361089i \(-0.117595\pi\)
−0.778978 + 0.627052i \(0.784262\pi\)
\(570\) 0 0
\(571\) 2.33966e12 + 1.35081e12i 0.921066 + 0.531778i 0.883975 0.467534i \(-0.154857\pi\)
0.0370913 + 0.999312i \(0.488191\pi\)
\(572\) 0 0
\(573\) 4.84034e12i 1.87577i
\(574\) 0 0
\(575\) 1.14549e12i 0.437004i
\(576\) 0 0
\(577\) −2.53310e12 1.46249e12i −0.951396 0.549289i −0.0578819 0.998323i \(-0.518435\pi\)
−0.893514 + 0.449035i \(0.851768\pi\)
\(578\) 0 0
\(579\) −2.71533e12 4.70309e12i −1.00408 1.73912i
\(580\) 0 0
\(581\) −4.46121e11 3.52808e12i −0.162428 1.28453i
\(582\) 0 0
\(583\) 5.24966e12 3.03089e12i 1.88201 1.08658i
\(584\) 0 0
\(585\) −1.92085e11 + 3.32700e11i −0.0678096 + 0.117450i
\(586\) 0 0
\(587\) −2.60113e12 −0.904253 −0.452127 0.891954i \(-0.649334\pi\)
−0.452127 + 0.891954i \(0.649334\pi\)
\(588\) 0 0
\(589\) 5.02180e11 0.171926
\(590\) 0 0
\(591\) −1.63924e12 + 2.83924e12i −0.552711 + 0.957323i
\(592\) 0 0
\(593\) −3.45745e12 + 1.99616e12i −1.14818 + 0.662901i −0.948443 0.316949i \(-0.897342\pi\)
−0.199736 + 0.979850i \(0.564008\pi\)
\(594\) 0 0
\(595\) 1.48609e11 + 1.17525e12i 0.0486091 + 0.384417i
\(596\) 0 0
\(597\) 1.65995e12 + 2.87511e12i 0.534822 + 0.926340i
\(598\) 0 0
\(599\) −3.50447e12 2.02331e12i −1.11225 0.642156i −0.172837 0.984950i \(-0.555293\pi\)
−0.939411 + 0.342794i \(0.888627\pi\)
\(600\) 0 0
\(601\) 1.98218e12i 0.619737i 0.950779 + 0.309869i \(0.100285\pi\)
−0.950779 + 0.309869i \(0.899715\pi\)
\(602\) 0 0
\(603\) 4.90553e11i 0.151098i
\(604\) 0 0
\(605\) −7.57225e12 4.37184e12i −2.29787 1.32668i
\(606\) 0 0
\(607\) −2.18180e12 3.77898e12i −0.652326 1.12986i −0.982557 0.185962i \(-0.940460\pi\)
0.330230 0.943900i \(-0.392874\pi\)
\(608\) 0 0
\(609\) 1.17130e11 + 4.92206e10i 0.0345056 + 0.0145000i
\(610\) 0 0
\(611\) −5.79969e11 + 3.34845e11i −0.168352 + 0.0971983i
\(612\) 0 0
\(613\) −1.60668e12 + 2.78285e12i −0.459576 + 0.796010i −0.998938 0.0460643i \(-0.985332\pi\)
0.539362 + 0.842074i \(0.318665\pi\)
\(614\) 0 0
\(615\) −7.61527e12 −2.14658
\(616\) 0 0
\(617\) −5.12033e12 −1.42238 −0.711189 0.703001i \(-0.751843\pi\)
−0.711189 + 0.703001i \(0.751843\pi\)
\(618\) 0 0
\(619\) 1.30204e12 2.25520e12i 0.356464 0.617414i −0.630903 0.775862i \(-0.717315\pi\)
0.987367 + 0.158447i \(0.0506488\pi\)
\(620\) 0 0
\(621\) 2.40626e12 1.38925e12i 0.649277 0.374860i
\(622\) 0 0
\(623\) 1.99573e12 + 2.62864e12i 0.530769 + 0.699092i
\(624\) 0 0
\(625\) 2.35118e12 + 4.07236e12i 0.616348 + 1.06755i
\(626\) 0 0
\(627\) −3.12285e12 1.80298e12i −0.806951 0.465893i
\(628\) 0 0
\(629\) 3.85286e11i 0.0981420i
\(630\) 0 0
\(631\) 1.69466e12i 0.425549i 0.977101 + 0.212774i \(0.0682500\pi\)
−0.977101 + 0.212774i \(0.931750\pi\)
\(632\) 0 0
\(633\) 2.61637e12 + 1.51056e12i 0.647712 + 0.373957i
\(634\) 0 0
\(635\) −3.70297e12 6.41373e12i −0.903792 1.56541i
\(636\) 0 0
\(637\) −2.49576e11 9.71086e11i −0.0600586 0.233685i
\(638\) 0 0
\(639\) 3.17732e12 1.83442e12i 0.753888 0.435257i
\(640\) 0 0
\(641\) −9.15438e11 + 1.58559e12i −0.214175 + 0.370961i −0.953017 0.302917i \(-0.902039\pi\)
0.738842 + 0.673878i \(0.235373\pi\)
\(642\) 0 0
\(643\) 4.26517e12 0.983982 0.491991 0.870600i \(-0.336269\pi\)
0.491991 + 0.870600i \(0.336269\pi\)
\(644\) 0 0
\(645\) 4.00453e12 0.911029
\(646\) 0 0
\(647\) −2.48457e12 + 4.30340e12i −0.557419 + 0.965478i 0.440292 + 0.897855i \(0.354875\pi\)
−0.997711 + 0.0676232i \(0.978458\pi\)
\(648\) 0 0
\(649\) 2.15846e12 1.24619e12i 0.477577 0.275729i
\(650\) 0 0
\(651\) 1.80245e12 1.36846e12i 0.393322 0.298620i
\(652\) 0 0
\(653\) 5.01849e11 + 8.69228e11i 0.108010 + 0.187079i 0.914964 0.403536i \(-0.132219\pi\)
−0.806954 + 0.590614i \(0.798886\pi\)
\(654\) 0 0
\(655\) −6.64096e12 3.83416e12i −1.40976 0.813925i
\(656\) 0 0
\(657\) 4.47712e12i 0.937464i
\(658\) 0 0
\(659\) 4.12361e12i 0.851714i 0.904791 + 0.425857i \(0.140027\pi\)
−0.904791 + 0.425857i \(0.859973\pi\)
\(660\) 0 0
\(661\) −6.67049e12 3.85121e12i −1.35910 0.784676i −0.369596 0.929193i \(-0.620504\pi\)
−0.989502 + 0.144517i \(0.953837\pi\)
\(662\) 0 0
\(663\) 2.41900e11 + 4.18984e11i 0.0486212 + 0.0842144i
\(664\) 0 0
\(665\) −9.68142e11 + 2.30388e12i −0.191974 + 0.456838i
\(666\) 0 0
\(667\) 1.61510e11 9.32480e10i 0.0315961 0.0182420i
\(668\) 0 0
\(669\) −3.63883e12 + 6.30264e12i −0.702335 + 1.21648i
\(670\) 0 0
\(671\) −1.17126e13 −2.23049
\(672\) 0 0
\(673\) 5.08885e12 0.956206 0.478103 0.878304i \(-0.341325\pi\)
0.478103 + 0.878304i \(0.341325\pi\)
\(674\) 0 0
\(675\) −6.28077e11 + 1.08786e12i −0.116452 + 0.201700i
\(676\) 0 0
\(677\) 2.84738e12 1.64394e12i 0.520951 0.300771i −0.216373 0.976311i \(-0.569423\pi\)
0.737324 + 0.675540i \(0.236089\pi\)
\(678\) 0 0
\(679\) 1.48383e12 1.87629e11i 0.267899 0.0338755i
\(680\) 0 0
\(681\) 3.40356e12 + 5.89515e12i 0.606418 + 1.05035i
\(682\) 0 0
\(683\) 6.16040e12 + 3.55671e12i 1.08322 + 0.625396i 0.931763 0.363068i \(-0.118271\pi\)
0.151455 + 0.988464i \(0.451604\pi\)
\(684\) 0 0
\(685\) 1.07658e13i 1.86826i
\(686\) 0 0
\(687\) 1.11466e13i 1.90914i
\(688\) 0 0
\(689\) −1.48585e12 8.57856e11i −0.251182 0.145020i
\(690\) 0 0
\(691\) 1.42639e12 + 2.47057e12i 0.238005 + 0.412236i 0.960142 0.279514i \(-0.0901733\pi\)
−0.722137 + 0.691750i \(0.756840\pi\)
\(692\) 0 0
\(693\) −5.23234e12 + 6.61623e11i −0.861780 + 0.108971i
\(694\) 0 0
\(695\) 1.02584e13 5.92271e12i 1.66782 0.962917i
\(696\) 0 0
\(697\) −1.55625e12 + 2.69550e12i −0.249765 + 0.432606i
\(698\) 0 0
\(699\) 1.15822e12 0.183504
\(700\) 0 0
\(701\) −1.02186e13 −1.59831 −0.799153 0.601127i \(-0.794718\pi\)
−0.799153 + 0.601127i \(0.794718\pi\)
\(702\) 0 0
\(703\) 4.06397e11 7.03900e11i 0.0627555 0.108696i
\(704\) 0 0
\(705\) 6.51431e12 3.76104e12i 0.993156 0.573399i
\(706\) 0 0
\(707\) 4.29412e12 1.02187e13i 0.646378 1.53818i
\(708\) 0 0
\(709\) 4.08353e12 + 7.07288e12i 0.606915 + 1.05121i 0.991746 + 0.128220i \(0.0409264\pi\)
−0.384831 + 0.922987i \(0.625740\pi\)
\(710\) 0 0
\(711\) −3.17386e12 1.83243e12i −0.465774 0.268915i
\(712\) 0 0
\(713\) 3.32192e12i 0.481378i
\(714\) 0 0
\(715\) 3.56587e12i 0.510256i
\(716\) 0 0
\(717\) 4.98792e12 + 2.87977e12i 0.704828 + 0.406932i
\(718\) 0 0
\(719\) −1.13356e12 1.96338e12i −0.158185 0.273984i 0.776029 0.630697i \(-0.217231\pi\)
−0.934214 + 0.356713i \(0.883897\pi\)
\(720\) 0 0
\(721\) −1.83005e12 + 1.38942e12i −0.252205 + 0.191481i
\(722\) 0 0
\(723\) 1.20290e13 6.94496e12i 1.63722 0.945252i
\(724\) 0 0
\(725\) −4.21571e10 + 7.30182e10i −0.00566695 + 0.00981544i
\(726\) 0 0
\(727\) −1.26124e13 −1.67453 −0.837267 0.546794i \(-0.815848\pi\)
−0.837267 + 0.546794i \(0.815848\pi\)
\(728\) 0 0
\(729\) 1.28639e12 0.168693
\(730\) 0 0
\(731\) 8.18362e11 1.41744e12i 0.106003 0.183602i
\(732\) 0 0
\(733\) 6.36963e12 3.67751e12i 0.814978 0.470528i −0.0337033 0.999432i \(-0.510730\pi\)
0.848682 + 0.528904i \(0.177397\pi\)
\(734\) 0 0
\(735\) 2.80328e12 + 1.09074e13i 0.354302 + 1.37857i
\(736\) 0 0
\(737\) −2.27666e12 3.94330e12i −0.284247 0.492330i
\(738\) 0 0
\(739\) 4.72198e12 + 2.72624e12i 0.582403 + 0.336251i 0.762088 0.647473i \(-0.224174\pi\)
−0.179685 + 0.983724i \(0.557508\pi\)
\(740\) 0 0
\(741\) 1.02062e12i 0.124360i
\(742\) 0 0
\(743\) 1.39812e13i 1.68304i −0.540229 0.841518i \(-0.681662\pi\)
0.540229 0.841518i \(-0.318338\pi\)
\(744\) 0 0
\(745\) 5.90631e11 + 3.41001e11i 0.0702446 + 0.0405557i
\(746\) 0 0
\(747\) 2.64722e12 + 4.58512e12i 0.311062 + 0.538775i
\(748\) 0 0
\(749\) 1.55135e12 + 2.04333e12i 0.180112 + 0.237230i
\(750\) 0 0
\(751\) 2.51802e12 1.45378e12i 0.288855 0.166771i −0.348570 0.937283i \(-0.613333\pi\)
0.637425 + 0.770512i \(0.279999\pi\)
\(752\) 0 0
\(753\) 1.66528e12 2.88436e12i 0.188760 0.326943i
\(754\) 0 0
\(755\) 2.02297e13 2.26584
\(756\) 0 0
\(757\) 2.43736e12 0.269767 0.134883 0.990861i \(-0.456934\pi\)
0.134883 + 0.990861i \(0.456934\pi\)
\(758\) 0 0
\(759\) −1.19267e13 + 2.06576e13i −1.30446 + 2.25940i
\(760\) 0 0
\(761\) 2.41393e11 1.39369e11i 0.0260912 0.0150638i −0.486898 0.873459i \(-0.661872\pi\)
0.512989 + 0.858395i \(0.328538\pi\)
\(762\) 0 0
\(763\) 8.11251e12 + 3.40906e12i 0.866552 + 0.364145i
\(764\) 0 0
\(765\) −8.81822e11 1.52736e12i −0.0930903 0.161237i
\(766\) 0 0
\(767\) −6.10925e11 3.52718e11i −0.0637396 0.0368001i
\(768\) 0 0
\(769\) 1.07508e12i 0.110859i −0.998463 0.0554296i \(-0.982347\pi\)
0.998463 0.0554296i \(-0.0176528\pi\)
\(770\) 0 0
\(771\) 1.56648e13i 1.59654i
\(772\) 0 0
\(773\) 1.21102e12 + 6.99185e11i 0.121996 + 0.0704343i 0.559756 0.828657i \(-0.310895\pi\)
−0.437760 + 0.899092i \(0.644228\pi\)
\(774\) 0 0
\(775\) 7.50913e11 + 1.30062e12i 0.0747708 + 0.129507i
\(776\) 0 0
\(777\) −4.59505e11 3.63392e12i −0.0452268 0.357669i
\(778\) 0 0
\(779\) −5.68640e12 + 3.28305e12i −0.553247 + 0.319417i
\(780\) 0 0
\(781\) 1.70272e13 2.94919e13i 1.63762 2.83644i
\(782\) 0 0
\(783\) 2.04513e11 0.0194443
\(784\) 0 0
\(785\) 2.67648e12 0.251565
\(786\) 0 0
\(787\) −4.35554e12 + 7.54402e12i −0.404721 + 0.700997i −0.994289 0.106722i \(-0.965965\pi\)
0.589568 + 0.807719i \(0.299298\pi\)
\(788\) 0 0
\(789\) 2.04336e12 1.17973e12i 0.187715 0.108377i
\(790\) 0 0
\(791\) 8.79125e11 + 6.95242e12i 0.0798466 + 0.631454i
\(792\) 0 0
\(793\) 1.65755e12 + 2.87096e12i 0.148846 + 0.257808i
\(794\) 0 0
\(795\) 1.66893e13 + 9.63558e12i 1.48179 + 0.855512i
\(796\) 0 0
\(797\) 2.41480e12i 0.211992i −0.994367 0.105996i \(-0.966197\pi\)
0.994367 0.105996i \(-0.0338031\pi\)
\(798\) 0 0
\(799\) 3.07441e12i 0.266871i
\(800\) 0 0
\(801\) −4.25535e12 2.45683e12i −0.365249 0.210876i
\(802\) 0 0
\(803\) −2.07784e13 3.59892e13i −1.76357 3.05459i
\(804\) 0 0
\(805\) 1.52401e13 + 6.40426e12i 1.27911 + 0.537511i
\(806\) 0 0
\(807\) 1.59590e12 9.21395e11i 0.132457 0.0764742i
\(808\) 0 0
\(809\) 3.03123e12 5.25024e12i 0.248800 0.430934i −0.714393 0.699744i \(-0.753297\pi\)
0.963193 + 0.268810i \(0.0866305\pi\)
\(810\) 0 0
\(811\) −2.03991e13 −1.65584 −0.827919 0.560848i \(-0.810475\pi\)
−0.827919 + 0.560848i \(0.810475\pi\)
\(812\) 0 0
\(813\) 8.28728e12 0.665280
\(814\) 0 0
\(815\) 7.44048e12 1.28873e13i 0.590733 1.02318i
\(816\) 0 0
\(817\) 2.99022e12 1.72641e12i 0.234803 0.135564i
\(818\) 0 0
\(819\) 9.02649e11 + 1.18891e12i 0.0701038 + 0.0923358i
\(820\) 0 0
\(821\) −9.17133e12 1.58852e13i −0.704511 1.22025i −0.966868 0.255278i \(-0.917833\pi\)
0.262356 0.964971i \(-0.415500\pi\)
\(822\) 0 0
\(823\) −8.75404e12 5.05415e12i −0.665135 0.384016i 0.129096 0.991632i \(-0.458792\pi\)
−0.794231 + 0.607617i \(0.792126\pi\)
\(824\) 0 0
\(825\) 1.07840e13i 0.810472i
\(826\) 0 0
\(827\) 1.17899e13i 0.876465i −0.898862 0.438232i \(-0.855605\pi\)
0.898862 0.438232i \(-0.144395\pi\)
\(828\) 0 0
\(829\) 1.68645e13 + 9.73674e12i 1.24016 + 0.716008i 0.969127 0.246561i \(-0.0793005\pi\)
0.271036 + 0.962569i \(0.412634\pi\)
\(830\) 0 0
\(831\) −1.13522e12 1.96626e12i −0.0825801 0.143033i
\(832\) 0 0
\(833\) 4.43367e12 + 1.23678e12i 0.319052 + 0.0890000i
\(834\) 0 0
\(835\) 7.39380e12 4.26881e12i 0.526355 0.303891i
\(836\) 0 0
\(837\) 1.82142e12 3.15479e12i 0.128276 0.222181i
\(838\) 0 0
\(839\) 1.86414e12 0.129882 0.0649412 0.997889i \(-0.479314\pi\)
0.0649412 + 0.997889i \(0.479314\pi\)
\(840\) 0 0
\(841\) −1.44934e13 −0.999054
\(842\) 0 0
\(843\) −8.75778e12 + 1.51689e13i −0.597269 + 1.03450i
\(844\) 0 0
\(845\) −1.41401e13 + 8.16378e12i −0.954107 + 0.550854i
\(846\) 0 0
\(847\) −2.70594e13 + 2.05442e13i −1.80652 + 1.37156i
\(848\) 0 0
\(849\) −3.42569e12 5.93346e12i −0.226289 0.391944i
\(850\) 0 0
\(851\) −4.65630e12 2.68831e12i −0.304339 0.175710i
\(852\) 0 0
\(853\) 2.83795e13i 1.83542i 0.397255 + 0.917708i \(0.369963\pi\)
−0.397255 + 0.917708i \(0.630037\pi\)
\(854\) 0 0
\(855\) 3.72056e12i 0.238101i
\(856\) 0 0
\(857\) −2.45848e13 1.41940e13i −1.55687 0.898860i −0.997554 0.0699060i \(-0.977730\pi\)
−0.559317 0.828954i \(-0.688937\pi\)
\(858\) 0 0
\(859\) 2.96769e12 + 5.14019e12i 0.185973 + 0.322114i 0.943904 0.330220i \(-0.107123\pi\)
−0.757931 + 0.652335i \(0.773790\pi\)
\(860\) 0 0
\(861\) −1.14634e13 + 2.72794e13i −0.710886 + 1.69169i
\(862\) 0 0
\(863\) 1.13888e13 6.57533e12i 0.698923 0.403523i −0.108023 0.994148i \(-0.534452\pi\)
0.806946 + 0.590625i \(0.201119\pi\)
\(864\) 0 0
\(865\) 5.35154e12 9.26914e12i 0.325017 0.562946i
\(866\) 0 0
\(867\) 1.80226e13 1.08326
\(868\) 0 0
\(869\) −3.40173e13 −2.02354
\(870\) 0 0
\(871\) −6.44381e11 + 1.11610e12i −0.0379368 + 0.0657085i
\(872\) 0 0
\(873\) −1.92840e12 + 1.11336e12i −0.112366 + 0.0648743i
\(874\) 0 0
\(875\) 1.27090e13 1.60704e12i 0.732954 0.0926811i
\(876\) 0 0
\(877\) 1.38775e13 + 2.40365e13i 0.792161 + 1.37206i 0.924627 + 0.380875i \(0.124377\pi\)
−0.132466 + 0.991188i \(0.542290\pi\)
\(878\) 0 0
\(879\) 6.69202e12 + 3.86364e12i 0.378101 + 0.218297i
\(880\) 0 0
\(881\) 7.81392e11i 0.0436996i −0.999761 0.0218498i \(-0.993044\pi\)
0.999761 0.0218498i \(-0.00695556\pi\)
\(882\) 0 0
\(883\) 2.74212e13i 1.51797i −0.651108 0.758985i \(-0.725696\pi\)
0.651108 0.758985i \(-0.274304\pi\)
\(884\) 0 0
\(885\) 6.86202e12 + 3.96179e12i 0.376017 + 0.217093i
\(886\) 0 0
\(887\) 7.82207e12 + 1.35482e13i 0.424293 + 0.734897i 0.996354 0.0853142i \(-0.0271894\pi\)
−0.572061 + 0.820211i \(0.693856\pi\)
\(888\) 0 0
\(889\) −2.85494e13 + 3.61004e12i −1.53299 + 0.193845i
\(890\) 0 0
\(891\) −3.68054e13 + 2.12496e13i −1.95642 + 1.12954i
\(892\) 0 0
\(893\) 3.24287e12 5.61682e12i 0.170647 0.295569i
\(894\) 0 0
\(895\) 4.00571e13 2.08677
\(896\) 0 0
\(897\) 6.75140e12 0.348199
\(898\) 0 0
\(899\) 1.22255e11 2.11753e11i 0.00624237 0.0108121i
\(900\) 0 0
\(901\) 6.82123e12 3.93824e12i 0.344827 0.199086i
\(902\) 0 0
\(903\) 6.02810e12 1.43450e13i 0.301707 0.717969i
\(904\) 0 0
\(905\) −4.75539e12 8.23657e12i −0.235650 0.408158i
\(906\) 0 0
\(907\) 2.35999e12 + 1.36254e12i 0.115792 + 0.0668524i 0.556777 0.830662i \(-0.312038\pi\)
−0.440986 + 0.897514i \(0.645371\pi\)
\(908\) 0 0
\(909\) 1.65023e13i 0.801689i
\(910\) 0 0
\(911\) 2.33160e12i 0.112156i −0.998426 0.0560779i \(-0.982140\pi\)
0.998426 0.0560779i \(-0.0178595\pi\)
\(912\) 0 0
\(913\) 4.25592e13 + 2.45715e13i 2.02710 + 1.17035i
\(914\) 0 0
\(915\) −1.86179e13 3.22471e13i −0.878081 1.52088i
\(916\) 0 0
\(917\) −2.37315e13 + 1.80176e13i −1.10831 + 0.841462i
\(918\) 0 0
\(919\) 1.10859e13 6.40045e12i 0.512686 0.295999i −0.221251 0.975217i \(-0.571014\pi\)
0.733937 + 0.679217i \(0.237681\pi\)
\(920\) 0 0
\(921\) −8.88816e12 + 1.53947e13i −0.407046 + 0.705025i
\(922\) 0 0
\(923\) −9.63865e12 −0.437128
\(924\) 0 0
\(925\) 2.43075e12 0.109170
\(926\) 0 0
\(927\) 1.71043e12 2.96256e12i 0.0760759 0.131767i
\(928\) 0 0
\(929\) −6.95688e12 + 4.01655e12i −0.306439 + 0.176922i −0.645332 0.763902i \(-0.723281\pi\)
0.338893 + 0.940825i \(0.389948\pi\)
\(930\) 0 0
\(931\) 6.79558e12 + 6.93615e12i 0.296451 + 0.302583i
\(932\) 0 0
\(933\) −1.19667e13 2.07269e13i −0.517020 0.895504i
\(934\) 0 0
\(935\) −1.41770e13 8.18509e12i −0.606641 0.350245i
\(936\) 0 0
\(937\) 1.66323e13i 0.704893i 0.935832 + 0.352446i \(0.114650\pi\)
−0.935832 + 0.352446i \(0.885350\pi\)
\(938\) 0 0
\(939\) 4.84265e12i 0.203277i
\(940\) 0 0
\(941\) −2.01805e12 1.16512e12i −0.0839031 0.0484415i 0.457461 0.889229i \(-0.348759\pi\)
−0.541365 + 0.840788i \(0.682092\pi\)
\(942\) 0 0
\(943\) 2.17173e13 + 3.76155e13i 0.894343 + 1.54905i
\(944\) 0 0
\(945\) 1.09619e13 + 1.44383e13i 0.447141 + 0.588942i
\(946\) 0 0
\(947\) −2.69273e12 + 1.55465e12i −0.108797 + 0.0628141i −0.553411 0.832908i \(-0.686674\pi\)
0.444614 + 0.895722i \(0.353341\pi\)
\(948\) 0 0
\(949\) −5.88106e12 + 1.01863e13i −0.235374 + 0.407679i
\(950\) 0 0
\(951\) 7.62710e11 0.0302376
\(952\) 0 0
\(953\) −7.44898e12 −0.292535 −0.146268 0.989245i \(-0.546726\pi\)
−0.146268 + 0.989245i \(0.546726\pi\)
\(954\) 0 0
\(955\) −2.31780e13 + 4.01455e13i −0.901698 + 1.56179i
\(956\) 0 0
\(957\) −1.52051e12 + 8.77868e11i −0.0585984 + 0.0338318i
\(958\) 0 0
\(959\) −3.85651e13 1.62059e13i −1.47235 0.618715i
\(960\) 0 0
\(961\) 1.10422e13 + 1.91256e13i 0.417637 + 0.723368i
\(962\) 0 0
\(963\) −3.30783e12 1.90978e12i −0.123944 0.0715590i
\(964\) 0 0
\(965\) 5.20097e13i 1.93068i
\(966\) 0 0
\(967\) 4.67375e13i 1.71888i −0.511233 0.859442i \(-0.670811\pi\)
0.511233 0.859442i \(-0.329189\pi\)
\(968\) 0 0
\(969\) −4.05773e12 2.34273e12i −0.147852 0.0853621i
\(970\) 0 0
\(971\) −4.16152e12 7.20797e12i −0.150233 0.260212i 0.781080 0.624431i \(-0.214669\pi\)
−0.931313 + 0.364220i \(0.881336\pi\)
\(972\) 0 0
\(973\) −5.77407e12 4.56633e13i −0.206526 1.63328i
\(974\) 0 0
\(975\) −2.64335e12 + 1.52614e12i −0.0936773 + 0.0540846i
\(976\) 0 0
\(977\) −2.18149e13 + 3.77845e13i −0.765998 + 1.32675i 0.173720 + 0.984795i \(0.444421\pi\)
−0.939718 + 0.341952i \(0.888912\pi\)
\(978\) 0 0
\(979\) −4.56086e13 −1.58681
\(980\) 0 0
\(981\) −1.31010e13 −0.451641
\(982\) 0 0
\(983\) 1.53980e13 2.66702e13i 0.525986 0.911034i −0.473556 0.880764i \(-0.657030\pi\)
0.999542 0.0302705i \(-0.00963688\pi\)
\(984\) 0 0
\(985\) −2.71915e13 + 1.56990e13i −0.920386 + 0.531385i
\(986\) 0 0
\(987\) −3.66665e12 2.89971e13i −0.122982 0.972585i
\(988\) 0 0
\(989\) −1.14202e13 1.97803e13i −0.379568 0.657431i
\(990\) 0 0
\(991\) −2.79061e13 1.61116e13i −0.919109 0.530648i −0.0357585 0.999360i \(-0.511385\pi\)
−0.883351 + 0.468712i \(0.844718\pi\)
\(992\) 0 0
\(993\) 1.37623e12i 0.0449178i
\(994\) 0 0
\(995\) 3.17947e13i 1.02837i
\(996\) 0 0
\(997\) 2.01141e13 + 1.16129e13i 0.644723 + 0.372231i 0.786432 0.617677i \(-0.211926\pi\)
−0.141708 + 0.989908i \(0.545260\pi\)
\(998\) 0 0
\(999\) −2.94803e12 5.10613e12i −0.0936455 0.162199i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 112.10.p.c.31.3 yes 24
4.3 odd 2 112.10.p.a.31.10 24
7.5 odd 6 112.10.p.a.47.10 yes 24
28.19 even 6 inner 112.10.p.c.47.3 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.10.p.a.31.10 24 4.3 odd 2
112.10.p.a.47.10 yes 24 7.5 odd 6
112.10.p.c.31.3 yes 24 1.1 even 1 trivial
112.10.p.c.47.3 yes 24 28.19 even 6 inner