Properties

Label 112.10.p.b.47.7
Level $112$
Weight $10$
Character 112.47
Analytic conductor $57.684$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [112,10,Mod(31,112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(112, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 1])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("112.31"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 112.p (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(57.6840136504\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 47.7
Character \(\chi\) \(=\) 112.47
Dual form 112.10.p.b.31.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(29.1853 + 50.5504i) q^{3} +(2152.25 + 1242.60i) q^{5} +(-2216.90 - 5953.06i) q^{7} +(8137.94 - 14095.3i) q^{9} +(-71975.9 + 41555.3i) q^{11} -89784.7i q^{13} +145063. i q^{15} +(-329589. + 190288. i) q^{17} +(-517925. + 897073. i) q^{19} +(236229. - 285807. i) q^{21} +(-1.03488e6 - 597486. i) q^{23} +(2.11155e6 + 3.65731e6i) q^{25} +2.09894e6 q^{27} -3.28143e6 q^{29} +(215533. + 373313. i) q^{31} +(-4.20128e6 - 2.42561e6i) q^{33} +(2.62595e6 - 1.55672e7i) q^{35} +(1.55965e6 - 2.70140e6i) q^{37} +(4.53865e6 - 2.62039e6i) q^{39} +6.97186e6i q^{41} +1.88627e7i q^{43} +(3.50297e7 - 2.02244e7i) q^{45} +(-2.26013e7 + 3.91466e7i) q^{47} +(-3.05243e7 + 2.63947e7i) q^{49} +(-1.92383e7 - 1.11072e7i) q^{51} +(974600. + 1.68806e6i) q^{53} -2.06547e8 q^{55} -6.04632e7 q^{57} +(6.20310e7 + 1.07441e8i) q^{59} +(2.30614e7 + 1.33145e7i) q^{61} +(-1.01951e8 - 1.71977e7i) q^{63} +(1.11566e8 - 1.93239e8i) q^{65} +(7.12113e7 - 4.11139e7i) q^{67} -6.97512e7i q^{69} -7.73013e7i q^{71} +(-1.35016e8 + 7.79517e7i) q^{73} +(-1.23252e8 + 2.13479e8i) q^{75} +(4.06945e8 + 3.36353e8i) q^{77} +(-4.27239e8 - 2.46667e8i) q^{79} +(-9.89209e7 - 1.71336e8i) q^{81} -2.68553e8 q^{83} -9.45809e8 q^{85} +(-9.57693e7 - 1.65877e8i) q^{87} +(2.58286e8 + 1.49121e8i) q^{89} +(-5.34494e8 + 1.99044e8i) q^{91} +(-1.25808e7 + 2.17905e7i) q^{93} +(-2.22941e9 + 1.28715e9i) q^{95} +1.65606e9i q^{97} +1.35270e9i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 1704 q^{5} - 80428 q^{9} - 1578672 q^{17} + 1219540 q^{21} + 8001240 q^{25} - 6709416 q^{29} - 29129772 q^{33} - 11130084 q^{37} + 57023292 q^{45} - 12671904 q^{49} - 93652164 q^{53} + 742621544 q^{57}+ \cdots - 1432348316 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/112\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(17\) \(85\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 29.1853 + 50.5504i 0.208026 + 0.360312i 0.951093 0.308906i \(-0.0999627\pi\)
−0.743066 + 0.669218i \(0.766629\pi\)
\(4\) 0 0
\(5\) 2152.25 + 1242.60i 1.54002 + 0.889132i 0.998836 + 0.0482296i \(0.0153579\pi\)
0.541186 + 0.840903i \(0.317975\pi\)
\(6\) 0 0
\(7\) −2216.90 5953.06i −0.348984 0.937129i
\(8\) 0 0
\(9\) 8137.94 14095.3i 0.413450 0.716117i
\(10\) 0 0
\(11\) −71975.9 + 41555.3i −1.48225 + 0.855775i −0.999797 0.0201488i \(-0.993586\pi\)
−0.482449 + 0.875924i \(0.660253\pi\)
\(12\) 0 0
\(13\) 89784.7i 0.871881i −0.899975 0.435941i \(-0.856416\pi\)
0.899975 0.435941i \(-0.143584\pi\)
\(14\) 0 0
\(15\) 145063.i 0.739851i
\(16\) 0 0
\(17\) −329589. + 190288.i −0.957089 + 0.552576i −0.895276 0.445512i \(-0.853022\pi\)
−0.0618132 + 0.998088i \(0.519688\pi\)
\(18\) 0 0
\(19\) −517925. + 897073.i −0.911750 + 1.57920i −0.100159 + 0.994971i \(0.531935\pi\)
−0.811591 + 0.584226i \(0.801398\pi\)
\(20\) 0 0
\(21\) 236229. 285807.i 0.265061 0.320691i
\(22\) 0 0
\(23\) −1.03488e6 597486.i −0.771105 0.445197i 0.0621640 0.998066i \(-0.480200\pi\)
−0.833268 + 0.552869i \(0.813533\pi\)
\(24\) 0 0
\(25\) 2.11155e6 + 3.65731e6i 1.08111 + 1.87254i
\(26\) 0 0
\(27\) 2.09894e6 0.760086
\(28\) 0 0
\(29\) −3.28143e6 −0.861532 −0.430766 0.902464i \(-0.641757\pi\)
−0.430766 + 0.902464i \(0.641757\pi\)
\(30\) 0 0
\(31\) 215533. + 373313.i 0.0419165 + 0.0726015i 0.886223 0.463260i \(-0.153320\pi\)
−0.844306 + 0.535861i \(0.819987\pi\)
\(32\) 0 0
\(33\) −4.20128e6 2.42561e6i −0.616692 0.356047i
\(34\) 0 0
\(35\) 2.62595e6 1.55672e7i 0.295788 1.75349i
\(36\) 0 0
\(37\) 1.55965e6 2.70140e6i 0.136811 0.236963i −0.789477 0.613780i \(-0.789648\pi\)
0.926288 + 0.376817i \(0.122981\pi\)
\(38\) 0 0
\(39\) 4.53865e6 2.62039e6i 0.314149 0.181374i
\(40\) 0 0
\(41\) 6.97186e6i 0.385320i 0.981266 + 0.192660i \(0.0617114\pi\)
−0.981266 + 0.192660i \(0.938289\pi\)
\(42\) 0 0
\(43\) 1.88627e7i 0.841389i 0.907202 + 0.420694i \(0.138213\pi\)
−0.907202 + 0.420694i \(0.861787\pi\)
\(44\) 0 0
\(45\) 3.50297e7 2.02244e7i 1.27345 0.735224i
\(46\) 0 0
\(47\) −2.26013e7 + 3.91466e7i −0.675606 + 1.17018i 0.300686 + 0.953723i \(0.402785\pi\)
−0.976291 + 0.216460i \(0.930549\pi\)
\(48\) 0 0
\(49\) −3.05243e7 + 2.63947e7i −0.756420 + 0.654086i
\(50\) 0 0
\(51\) −1.92383e7 1.11072e7i −0.398199 0.229900i
\(52\) 0 0
\(53\) 974600. + 1.68806e6i 0.0169662 + 0.0293864i 0.874384 0.485235i \(-0.161266\pi\)
−0.857418 + 0.514621i \(0.827933\pi\)
\(54\) 0 0
\(55\) −2.06547e8 −3.04359
\(56\) 0 0
\(57\) −6.04632e7 −0.758672
\(58\) 0 0
\(59\) 6.20310e7 + 1.07441e8i 0.666461 + 1.15435i 0.978887 + 0.204403i \(0.0655252\pi\)
−0.312425 + 0.949942i \(0.601141\pi\)
\(60\) 0 0
\(61\) 2.30614e7 + 1.33145e7i 0.213256 + 0.123123i 0.602824 0.797874i \(-0.294042\pi\)
−0.389568 + 0.920998i \(0.627376\pi\)
\(62\) 0 0
\(63\) −1.01951e8 1.71977e7i −0.815381 0.137542i
\(64\) 0 0
\(65\) 1.11566e8 1.93239e8i 0.775218 1.34272i
\(66\) 0 0
\(67\) 7.12113e7 4.11139e7i 0.431730 0.249259i −0.268353 0.963321i \(-0.586479\pi\)
0.700083 + 0.714061i \(0.253146\pi\)
\(68\) 0 0
\(69\) 6.97512e7i 0.370451i
\(70\) 0 0
\(71\) 7.73013e7i 0.361014i −0.983574 0.180507i \(-0.942226\pi\)
0.983574 0.180507i \(-0.0577739\pi\)
\(72\) 0 0
\(73\) −1.35016e8 + 7.79517e7i −0.556459 + 0.321272i −0.751723 0.659479i \(-0.770777\pi\)
0.195264 + 0.980751i \(0.437444\pi\)
\(74\) 0 0
\(75\) −1.23252e8 + 2.13479e8i −0.449800 + 0.779076i
\(76\) 0 0
\(77\) 4.06945e8 + 3.36353e8i 1.31925 + 1.09040i
\(78\) 0 0
\(79\) −4.27239e8 2.46667e8i −1.23410 0.712506i −0.266216 0.963913i \(-0.585773\pi\)
−0.967881 + 0.251407i \(0.919107\pi\)
\(80\) 0 0
\(81\) −9.89209e7 1.71336e8i −0.255332 0.442248i
\(82\) 0 0
\(83\) −2.68553e8 −0.621125 −0.310562 0.950553i \(-0.600517\pi\)
−0.310562 + 0.950553i \(0.600517\pi\)
\(84\) 0 0
\(85\) −9.45809e8 −1.96525
\(86\) 0 0
\(87\) −9.57693e7 1.65877e8i −0.179221 0.310420i
\(88\) 0 0
\(89\) 2.58286e8 + 1.49121e8i 0.436361 + 0.251933i 0.702053 0.712125i \(-0.252267\pi\)
−0.265692 + 0.964058i \(0.585600\pi\)
\(90\) 0 0
\(91\) −5.34494e8 + 1.99044e8i −0.817065 + 0.304273i
\(92\) 0 0
\(93\) −1.25808e7 + 2.17905e7i −0.0174395 + 0.0302061i
\(94\) 0 0
\(95\) −2.22941e9 + 1.28715e9i −2.80823 + 1.62133i
\(96\) 0 0
\(97\) 1.65606e9i 1.89935i 0.313243 + 0.949673i \(0.398584\pi\)
−0.313243 + 0.949673i \(0.601416\pi\)
\(98\) 0 0
\(99\) 1.35270e9i 1.41528i
\(100\) 0 0
\(101\) 1.48485e9 8.57279e8i 1.41983 0.819740i 0.423548 0.905874i \(-0.360785\pi\)
0.996284 + 0.0861340i \(0.0274513\pi\)
\(102\) 0 0
\(103\) −2.42062e8 + 4.19263e8i −0.211914 + 0.367045i −0.952313 0.305122i \(-0.901303\pi\)
0.740400 + 0.672167i \(0.234636\pi\)
\(104\) 0 0
\(105\) 8.63566e8 3.21590e8i 0.693336 0.258197i
\(106\) 0 0
\(107\) −8.43775e8 4.87154e8i −0.622300 0.359285i 0.155464 0.987842i \(-0.450313\pi\)
−0.777764 + 0.628556i \(0.783646\pi\)
\(108\) 0 0
\(109\) −8.66668e8 1.50111e9i −0.588076 1.01858i −0.994484 0.104886i \(-0.966552\pi\)
0.406408 0.913692i \(-0.366781\pi\)
\(110\) 0 0
\(111\) 1.82076e8 0.113841
\(112\) 0 0
\(113\) −2.58942e9 −1.49400 −0.746998 0.664826i \(-0.768506\pi\)
−0.746998 + 0.664826i \(0.768506\pi\)
\(114\) 0 0
\(115\) −1.48487e9 2.57188e9i −0.791679 1.37123i
\(116\) 0 0
\(117\) −1.26554e9 7.30662e8i −0.624369 0.360479i
\(118\) 0 0
\(119\) 1.86346e9 + 1.54021e9i 0.851843 + 0.704075i
\(120\) 0 0
\(121\) 2.27472e9 3.93993e9i 0.964702 1.67091i
\(122\) 0 0
\(123\) −3.52430e8 + 2.03476e8i −0.138835 + 0.0801566i
\(124\) 0 0
\(125\) 5.64134e9i 2.06675i
\(126\) 0 0
\(127\) 4.99476e9i 1.70372i −0.523770 0.851860i \(-0.675475\pi\)
0.523770 0.851860i \(-0.324525\pi\)
\(128\) 0 0
\(129\) −9.53518e8 + 5.50514e8i −0.303162 + 0.175031i
\(130\) 0 0
\(131\) 6.49262e8 1.12456e9i 0.192619 0.333626i −0.753498 0.657450i \(-0.771635\pi\)
0.946117 + 0.323824i \(0.104968\pi\)
\(132\) 0 0
\(133\) 6.48852e9 + 1.09452e9i 1.79810 + 0.303312i
\(134\) 0 0
\(135\) 4.51744e9 + 2.60814e9i 1.17055 + 0.675817i
\(136\) 0 0
\(137\) 3.89707e8 + 6.74992e8i 0.0945138 + 0.163703i 0.909406 0.415910i \(-0.136537\pi\)
−0.814892 + 0.579613i \(0.803204\pi\)
\(138\) 0 0
\(139\) −2.33702e9 −0.531003 −0.265501 0.964111i \(-0.585537\pi\)
−0.265501 + 0.964111i \(0.585537\pi\)
\(140\) 0 0
\(141\) −2.63850e9 −0.562175
\(142\) 0 0
\(143\) 3.73103e9 + 6.46234e9i 0.746134 + 1.29234i
\(144\) 0 0
\(145\) −7.06244e9 4.07750e9i −1.32678 0.766016i
\(146\) 0 0
\(147\) −2.22512e9 7.72676e8i −0.393030 0.136480i
\(148\) 0 0
\(149\) 3.14380e9 5.44522e9i 0.522537 0.905060i −0.477120 0.878838i \(-0.658319\pi\)
0.999656 0.0262215i \(-0.00834752\pi\)
\(150\) 0 0
\(151\) 3.68614e9 2.12819e9i 0.577000 0.333131i −0.182940 0.983124i \(-0.558562\pi\)
0.759940 + 0.649993i \(0.225228\pi\)
\(152\) 0 0
\(153\) 6.19422e9i 0.913850i
\(154\) 0 0
\(155\) 1.07128e9i 0.149077i
\(156\) 0 0
\(157\) 6.51421e8 3.76098e8i 0.0855684 0.0494030i −0.456605 0.889669i \(-0.650935\pi\)
0.542174 + 0.840266i \(0.317601\pi\)
\(158\) 0 0
\(159\) −5.68880e7 + 9.85328e7i −0.00705884 + 0.0122263i
\(160\) 0 0
\(161\) −1.26265e9 + 7.48525e9i −0.148104 + 0.877991i
\(162\) 0 0
\(163\) −6.95067e9 4.01297e9i −0.771228 0.445269i 0.0620847 0.998071i \(-0.480225\pi\)
−0.833312 + 0.552802i \(0.813558\pi\)
\(164\) 0 0
\(165\) −6.02812e9 1.04410e10i −0.633147 1.09664i
\(166\) 0 0
\(167\) 1.00397e10 0.998842 0.499421 0.866359i \(-0.333546\pi\)
0.499421 + 0.866359i \(0.333546\pi\)
\(168\) 0 0
\(169\) 2.54321e9 0.239823
\(170\) 0 0
\(171\) 8.42969e9 + 1.46006e10i 0.753926 + 1.30584i
\(172\) 0 0
\(173\) 1.11373e10 + 6.43014e9i 0.945308 + 0.545774i 0.891620 0.452784i \(-0.149569\pi\)
0.0536877 + 0.998558i \(0.482902\pi\)
\(174\) 0 0
\(175\) 1.70911e10 2.06781e10i 1.37752 1.66663i
\(176\) 0 0
\(177\) −3.62079e9 + 6.27139e9i −0.277283 + 0.480268i
\(178\) 0 0
\(179\) 1.98066e10 1.14353e10i 1.44202 0.832549i 0.444032 0.896011i \(-0.353548\pi\)
0.997984 + 0.0634620i \(0.0202142\pi\)
\(180\) 0 0
\(181\) 8.35823e9i 0.578843i 0.957202 + 0.289421i \(0.0934629\pi\)
−0.957202 + 0.289421i \(0.906537\pi\)
\(182\) 0 0
\(183\) 1.55435e9i 0.102452i
\(184\) 0 0
\(185\) 6.71352e9 3.87605e9i 0.421383 0.243286i
\(186\) 0 0
\(187\) 1.58150e10 2.73923e10i 0.945761 1.63811i
\(188\) 0 0
\(189\) −4.65315e9 1.24951e10i −0.265258 0.712299i
\(190\) 0 0
\(191\) 5.61426e9 + 3.24140e9i 0.305241 + 0.176231i 0.644795 0.764356i \(-0.276943\pi\)
−0.339554 + 0.940587i \(0.610276\pi\)
\(192\) 0 0
\(193\) 7.60492e9 + 1.31721e10i 0.394536 + 0.683357i 0.993042 0.117762i \(-0.0375719\pi\)
−0.598506 + 0.801119i \(0.704239\pi\)
\(194\) 0 0
\(195\) 1.30244e10 0.645063
\(196\) 0 0
\(197\) −2.52941e10 −1.19652 −0.598261 0.801302i \(-0.704141\pi\)
−0.598261 + 0.801302i \(0.704141\pi\)
\(198\) 0 0
\(199\) −3.55837e8 6.16329e8i −0.0160847 0.0278595i 0.857871 0.513865i \(-0.171787\pi\)
−0.873956 + 0.486006i \(0.838453\pi\)
\(200\) 0 0
\(201\) 4.15664e9 + 2.39984e9i 0.179622 + 0.103705i
\(202\) 0 0
\(203\) 7.27461e9 + 1.95345e10i 0.300661 + 0.807366i
\(204\) 0 0
\(205\) −8.66323e9 + 1.50052e10i −0.342600 + 0.593401i
\(206\) 0 0
\(207\) −1.68435e10 + 9.72461e9i −0.637627 + 0.368134i
\(208\) 0 0
\(209\) 8.60902e10i 3.12101i
\(210\) 0 0
\(211\) 2.31910e10i 0.805467i −0.915317 0.402733i \(-0.868060\pi\)
0.915317 0.402733i \(-0.131940\pi\)
\(212\) 0 0
\(213\) 3.90761e9 2.25606e9i 0.130078 0.0751004i
\(214\) 0 0
\(215\) −2.34388e10 + 4.05973e10i −0.748106 + 1.29576i
\(216\) 0 0
\(217\) 1.74454e9 2.11068e9i 0.0534088 0.0646180i
\(218\) 0 0
\(219\) −7.88098e9 4.55008e9i −0.231516 0.133666i
\(220\) 0 0
\(221\) 1.70850e10 + 2.95920e10i 0.481780 + 0.834468i
\(222\) 0 0
\(223\) −2.99761e10 −0.811714 −0.405857 0.913937i \(-0.633027\pi\)
−0.405857 + 0.913937i \(0.633027\pi\)
\(224\) 0 0
\(225\) 6.87346e10 1.78795
\(226\) 0 0
\(227\) −2.89596e9 5.01595e9i −0.0723896 0.125382i 0.827559 0.561379i \(-0.189729\pi\)
−0.899948 + 0.435997i \(0.856396\pi\)
\(228\) 0 0
\(229\) −3.07465e9 1.77515e9i −0.0738816 0.0426556i 0.462604 0.886565i \(-0.346915\pi\)
−0.536486 + 0.843909i \(0.680248\pi\)
\(230\) 0 0
\(231\) −5.12596e9 + 3.03878e10i −0.118446 + 0.702175i
\(232\) 0 0
\(233\) −2.81224e10 + 4.87094e10i −0.625101 + 1.08271i 0.363420 + 0.931625i \(0.381609\pi\)
−0.988521 + 0.151082i \(0.951724\pi\)
\(234\) 0 0
\(235\) −9.72872e10 + 5.61688e10i −2.08090 + 1.20141i
\(236\) 0 0
\(237\) 2.87962e10i 0.592880i
\(238\) 0 0
\(239\) 4.15634e10i 0.823988i −0.911187 0.411994i \(-0.864833\pi\)
0.911187 0.411994i \(-0.135167\pi\)
\(240\) 0 0
\(241\) −5.60364e10 + 3.23526e10i −1.07002 + 0.617779i −0.928188 0.372112i \(-0.878634\pi\)
−0.141836 + 0.989890i \(0.545301\pi\)
\(242\) 0 0
\(243\) 2.64308e10 4.57795e10i 0.486275 0.842253i
\(244\) 0 0
\(245\) −9.84939e10 + 1.88785e10i −1.74647 + 0.334750i
\(246\) 0 0
\(247\) 8.05434e10 + 4.65018e10i 1.37687 + 0.794938i
\(248\) 0 0
\(249\) −7.83780e9 1.35755e10i −0.129210 0.223799i
\(250\) 0 0
\(251\) −1.85774e10 −0.295429 −0.147714 0.989030i \(-0.547192\pi\)
−0.147714 + 0.989030i \(0.547192\pi\)
\(252\) 0 0
\(253\) 9.93150e10 1.52396
\(254\) 0 0
\(255\) −2.76037e10 4.78110e10i −0.408824 0.708104i
\(256\) 0 0
\(257\) 2.25283e10 + 1.30067e10i 0.322129 + 0.185981i 0.652341 0.757925i \(-0.273787\pi\)
−0.330212 + 0.943907i \(0.607120\pi\)
\(258\) 0 0
\(259\) −1.95392e10 3.29597e9i −0.269810 0.0455129i
\(260\) 0 0
\(261\) −2.67040e10 + 4.62528e10i −0.356201 + 0.616958i
\(262\) 0 0
\(263\) −8.27723e9 + 4.77886e9i −0.106680 + 0.0615919i −0.552391 0.833585i \(-0.686284\pi\)
0.445711 + 0.895177i \(0.352951\pi\)
\(264\) 0 0
\(265\) 4.84415e9i 0.0603409i
\(266\) 0 0
\(267\) 1.74086e10i 0.209635i
\(268\) 0 0
\(269\) 8.12919e10 4.69339e10i 0.946591 0.546514i 0.0545705 0.998510i \(-0.482621\pi\)
0.892020 + 0.451996i \(0.149288\pi\)
\(270\) 0 0
\(271\) −3.83247e10 + 6.63803e10i −0.431635 + 0.747614i −0.997014 0.0772173i \(-0.975396\pi\)
0.565379 + 0.824831i \(0.308730\pi\)
\(272\) 0 0
\(273\) −2.56611e10 2.12097e10i −0.279604 0.231101i
\(274\) 0 0
\(275\) −3.03961e11 1.75492e11i −3.20495 1.85038i
\(276\) 0 0
\(277\) 3.62619e9 + 6.28075e9i 0.0370077 + 0.0640992i 0.883936 0.467608i \(-0.154884\pi\)
−0.846928 + 0.531707i \(0.821551\pi\)
\(278\) 0 0
\(279\) 7.01596e9 0.0693216
\(280\) 0 0
\(281\) 9.54552e10 0.913316 0.456658 0.889642i \(-0.349046\pi\)
0.456658 + 0.889642i \(0.349046\pi\)
\(282\) 0 0
\(283\) 2.85912e10 + 4.95214e10i 0.264968 + 0.458938i 0.967555 0.252660i \(-0.0813053\pi\)
−0.702587 + 0.711598i \(0.747972\pi\)
\(284\) 0 0
\(285\) −1.30132e11 7.51315e10i −1.16837 0.674560i
\(286\) 0 0
\(287\) 4.15039e10 1.54559e10i 0.361094 0.134471i
\(288\) 0 0
\(289\) 1.31253e10 2.27336e10i 0.110680 0.191703i
\(290\) 0 0
\(291\) −8.37146e10 + 4.83327e10i −0.684357 + 0.395114i
\(292\) 0 0
\(293\) 4.51828e10i 0.358153i −0.983835 0.179077i \(-0.942689\pi\)
0.983835 0.179077i \(-0.0573110\pi\)
\(294\) 0 0
\(295\) 3.08319e11i 2.37029i
\(296\) 0 0
\(297\) −1.51073e11 + 8.72221e10i −1.12664 + 0.650463i
\(298\) 0 0
\(299\) −5.36451e10 + 9.29161e10i −0.388159 + 0.672311i
\(300\) 0 0
\(301\) 1.12291e11 4.18169e10i 0.788489 0.293631i
\(302\) 0 0
\(303\) 8.66716e10 + 5.00399e10i 0.590724 + 0.341055i
\(304\) 0 0
\(305\) 3.30892e10 + 5.73121e10i 0.218946 + 0.379225i
\(306\) 0 0
\(307\) −2.64255e11 −1.69785 −0.848926 0.528511i \(-0.822750\pi\)
−0.848926 + 0.528511i \(0.822750\pi\)
\(308\) 0 0
\(309\) −2.82586e10 −0.176334
\(310\) 0 0
\(311\) 1.06956e11 + 1.85253e11i 0.648310 + 1.12291i 0.983526 + 0.180764i \(0.0578572\pi\)
−0.335217 + 0.942141i \(0.608810\pi\)
\(312\) 0 0
\(313\) −7.19103e10 4.15174e10i −0.423488 0.244501i 0.273080 0.961991i \(-0.411957\pi\)
−0.696569 + 0.717490i \(0.745291\pi\)
\(314\) 0 0
\(315\) −1.98055e11 1.63698e11i −1.13341 0.936800i
\(316\) 0 0
\(317\) −1.17673e11 + 2.03815e11i −0.654498 + 1.13362i 0.327521 + 0.944844i \(0.393787\pi\)
−0.982019 + 0.188780i \(0.939547\pi\)
\(318\) 0 0
\(319\) 2.36184e11 1.36361e11i 1.27700 0.737278i
\(320\) 0 0
\(321\) 5.68709e10i 0.298963i
\(322\) 0 0
\(323\) 3.94220e11i 2.01524i
\(324\) 0 0
\(325\) 3.28370e11 1.89585e11i 1.63263 0.942602i
\(326\) 0 0
\(327\) 5.05879e10 8.76208e10i 0.244670 0.423782i
\(328\) 0 0
\(329\) 2.83147e11 + 4.77627e10i 1.33239 + 0.224754i
\(330\) 0 0
\(331\) 1.87403e11 + 1.08197e11i 0.858125 + 0.495439i 0.863384 0.504547i \(-0.168341\pi\)
−0.00525888 + 0.999986i \(0.501674\pi\)
\(332\) 0 0
\(333\) −2.53847e10 4.39676e10i −0.113129 0.195945i
\(334\) 0 0
\(335\) 2.04352e11 0.886499
\(336\) 0 0
\(337\) −3.41693e11 −1.44312 −0.721559 0.692352i \(-0.756574\pi\)
−0.721559 + 0.692352i \(0.756574\pi\)
\(338\) 0 0
\(339\) −7.55730e10 1.30896e11i −0.310791 0.538305i
\(340\) 0 0
\(341\) −3.10263e10 1.79131e10i −0.124261 0.0717422i
\(342\) 0 0
\(343\) 2.24799e11 + 1.23198e11i 0.876942 + 0.480597i
\(344\) 0 0
\(345\) 8.66729e10 1.50122e11i 0.329380 0.570503i
\(346\) 0 0
\(347\) 4.04359e11 2.33457e11i 1.49722 0.864418i 0.497220 0.867624i \(-0.334354\pi\)
0.999995 + 0.00320653i \(0.00102067\pi\)
\(348\) 0 0
\(349\) 4.37317e11i 1.57791i 0.614451 + 0.788955i \(0.289378\pi\)
−0.614451 + 0.788955i \(0.710622\pi\)
\(350\) 0 0
\(351\) 1.88453e11i 0.662705i
\(352\) 0 0
\(353\) 1.10179e11 6.36117e10i 0.377669 0.218048i −0.299134 0.954211i \(-0.596698\pi\)
0.676804 + 0.736163i \(0.263365\pi\)
\(354\) 0 0
\(355\) 9.60546e10 1.66371e11i 0.320989 0.555970i
\(356\) 0 0
\(357\) −2.34726e10 + 1.39150e11i −0.0764810 + 0.453396i
\(358\) 0 0
\(359\) 2.61664e11 + 1.51072e11i 0.831418 + 0.480019i 0.854338 0.519718i \(-0.173963\pi\)
−0.0229198 + 0.999737i \(0.507296\pi\)
\(360\) 0 0
\(361\) −3.75149e11 6.49777e11i −1.16258 2.01364i
\(362\) 0 0
\(363\) 2.65553e11 0.802734
\(364\) 0 0
\(365\) −3.87451e11 −1.14261
\(366\) 0 0
\(367\) 3.18846e10 + 5.52258e10i 0.0917453 + 0.158908i 0.908246 0.418437i \(-0.137422\pi\)
−0.816500 + 0.577345i \(0.804089\pi\)
\(368\) 0 0
\(369\) 9.82706e10 + 5.67366e10i 0.275934 + 0.159310i
\(370\) 0 0
\(371\) 7.88851e9 9.54412e9i 0.0216178 0.0261549i
\(372\) 0 0
\(373\) 6.70986e10 1.16218e11i 0.179483 0.310874i −0.762220 0.647317i \(-0.775891\pi\)
0.941704 + 0.336444i \(0.109224\pi\)
\(374\) 0 0
\(375\) −2.85172e11 + 1.64644e11i −0.744673 + 0.429937i
\(376\) 0 0
\(377\) 2.94622e11i 0.751154i
\(378\) 0 0
\(379\) 5.13591e11i 1.27862i 0.768950 + 0.639309i \(0.220780\pi\)
−0.768950 + 0.639309i \(0.779220\pi\)
\(380\) 0 0
\(381\) 2.52487e11 1.45774e11i 0.613871 0.354418i
\(382\) 0 0
\(383\) 2.86881e10 4.96892e10i 0.0681251 0.117996i −0.829951 0.557836i \(-0.811632\pi\)
0.898076 + 0.439840i \(0.144965\pi\)
\(384\) 0 0
\(385\) 4.57894e11 + 1.22959e12i 1.06217 + 2.85223i
\(386\) 0 0
\(387\) 2.65876e11 + 1.53504e11i 0.602532 + 0.347872i
\(388\) 0 0
\(389\) 1.94868e11 + 3.37521e11i 0.431486 + 0.747355i 0.997001 0.0773823i \(-0.0246562\pi\)
−0.565516 + 0.824737i \(0.691323\pi\)
\(390\) 0 0
\(391\) 4.54778e11 0.984021
\(392\) 0 0
\(393\) 7.57956e10 0.160279
\(394\) 0 0
\(395\) −6.13016e11 1.06178e12i −1.26703 2.19455i
\(396\) 0 0
\(397\) −4.64609e11 2.68242e11i −0.938708 0.541964i −0.0491532 0.998791i \(-0.515652\pi\)
−0.889555 + 0.456828i \(0.848986\pi\)
\(398\) 0 0
\(399\) 1.34041e11 + 3.59941e11i 0.264765 + 0.710973i
\(400\) 0 0
\(401\) 3.41886e10 5.92164e10i 0.0660285 0.114365i −0.831121 0.556091i \(-0.812301\pi\)
0.897150 + 0.441727i \(0.145634\pi\)
\(402\) 0 0
\(403\) 3.35178e10 1.93515e10i 0.0632999 0.0365462i
\(404\) 0 0
\(405\) 4.91677e11i 0.908097i
\(406\) 0 0
\(407\) 2.59248e11i 0.468317i
\(408\) 0 0
\(409\) 5.31461e10 3.06839e10i 0.0939110 0.0542196i −0.452309 0.891861i \(-0.649400\pi\)
0.546220 + 0.837642i \(0.316066\pi\)
\(410\) 0 0
\(411\) −2.27474e10 + 3.93996e10i −0.0393227 + 0.0681089i
\(412\) 0 0
\(413\) 5.02085e11 6.07461e11i 0.849185 1.02741i
\(414\) 0 0
\(415\) −5.77993e11 3.33704e11i −0.956546 0.552262i
\(416\) 0 0
\(417\) −6.82067e10 1.18137e11i −0.110462 0.191327i
\(418\) 0 0
\(419\) 6.07126e11 0.962312 0.481156 0.876635i \(-0.340217\pi\)
0.481156 + 0.876635i \(0.340217\pi\)
\(420\) 0 0
\(421\) −5.49372e11 −0.852308 −0.426154 0.904651i \(-0.640132\pi\)
−0.426154 + 0.904651i \(0.640132\pi\)
\(422\) 0 0
\(423\) 3.67856e11 + 6.37146e11i 0.558659 + 0.967625i
\(424\) 0 0
\(425\) −1.39189e12 8.03606e11i −2.06944 1.19479i
\(426\) 0 0
\(427\) 2.81371e10 1.66803e11i 0.0409594 0.242816i
\(428\) 0 0
\(429\) −2.17782e11 + 3.77210e11i −0.310431 + 0.537682i
\(430\) 0 0
\(431\) 3.78947e11 2.18785e11i 0.528969 0.305401i −0.211627 0.977350i \(-0.567876\pi\)
0.740597 + 0.671950i \(0.234543\pi\)
\(432\) 0 0
\(433\) 4.02080e11i 0.549689i −0.961489 0.274844i \(-0.911374\pi\)
0.961489 0.274844i \(-0.0886263\pi\)
\(434\) 0 0
\(435\) 4.76012e11i 0.637406i
\(436\) 0 0
\(437\) 1.07198e12 6.18906e11i 1.40611 0.811818i
\(438\) 0 0
\(439\) 4.96649e11 8.60222e11i 0.638204 1.10540i −0.347623 0.937635i \(-0.613011\pi\)
0.985827 0.167767i \(-0.0536557\pi\)
\(440\) 0 0
\(441\) 1.23638e11 + 6.45048e11i 0.155660 + 0.812117i
\(442\) 0 0
\(443\) 2.92029e11 + 1.68603e11i 0.360254 + 0.207993i 0.669192 0.743089i \(-0.266640\pi\)
−0.308938 + 0.951082i \(0.599974\pi\)
\(444\) 0 0
\(445\) 3.70597e11 + 6.41892e11i 0.448004 + 0.775965i
\(446\) 0 0
\(447\) 3.67011e11 0.434805
\(448\) 0 0
\(449\) 1.37315e12 1.59444 0.797220 0.603688i \(-0.206303\pi\)
0.797220 + 0.603688i \(0.206303\pi\)
\(450\) 0 0
\(451\) −2.89718e11 5.01806e11i −0.329747 0.571139i
\(452\) 0 0
\(453\) 2.15162e11 + 1.24224e11i 0.240062 + 0.138600i
\(454\) 0 0
\(455\) −1.39769e12 2.35770e11i −1.52884 0.257892i
\(456\) 0 0
\(457\) −3.27135e11 + 5.66614e11i −0.350836 + 0.607665i −0.986396 0.164386i \(-0.947436\pi\)
0.635560 + 0.772051i \(0.280769\pi\)
\(458\) 0 0
\(459\) −6.91787e11 + 3.99403e11i −0.727470 + 0.420005i
\(460\) 0 0
\(461\) 2.56491e11i 0.264495i 0.991217 + 0.132248i \(0.0422194\pi\)
−0.991217 + 0.132248i \(0.957781\pi\)
\(462\) 0 0
\(463\) 8.11617e11i 0.820799i 0.911906 + 0.410399i \(0.134611\pi\)
−0.911906 + 0.410399i \(0.865389\pi\)
\(464\) 0 0
\(465\) −5.41538e10 + 3.12657e10i −0.0537144 + 0.0310120i
\(466\) 0 0
\(467\) −7.21242e11 + 1.24923e12i −0.701706 + 1.21539i 0.266161 + 0.963929i \(0.414245\pi\)
−0.967867 + 0.251462i \(0.919089\pi\)
\(468\) 0 0
\(469\) −4.02622e11 3.32780e11i −0.384255 0.317599i
\(470\) 0 0
\(471\) 3.80238e10 + 2.19531e10i 0.0356010 + 0.0205542i
\(472\) 0 0
\(473\) −7.83847e11 1.35766e12i −0.720039 1.24714i
\(474\) 0 0
\(475\) −4.37450e12 −3.94282
\(476\) 0 0
\(477\) 3.17250e10 0.0280587
\(478\) 0 0
\(479\) 7.50986e11 + 1.30075e12i 0.651811 + 1.12897i 0.982683 + 0.185294i \(0.0593239\pi\)
−0.330872 + 0.943676i \(0.607343\pi\)
\(480\) 0 0
\(481\) −2.42544e11 1.40033e11i −0.206604 0.119283i
\(482\) 0 0
\(483\) −4.15233e11 + 1.54632e11i −0.347160 + 0.129282i
\(484\) 0 0
\(485\) −2.05782e12 + 3.56426e12i −1.68877 + 2.92504i
\(486\) 0 0
\(487\) 1.02043e12 5.89145e11i 0.822058 0.474615i −0.0290676 0.999577i \(-0.509254\pi\)
0.851126 + 0.524962i \(0.175920\pi\)
\(488\) 0 0
\(489\) 4.68479e11i 0.370510i
\(490\) 0 0
\(491\) 8.44909e11i 0.656059i −0.944667 0.328030i \(-0.893615\pi\)
0.944667 0.328030i \(-0.106385\pi\)
\(492\) 0 0
\(493\) 1.08152e12 6.24417e11i 0.824563 0.476062i
\(494\) 0 0
\(495\) −1.68086e12 + 2.91134e12i −1.25837 + 2.17957i
\(496\) 0 0
\(497\) −4.60179e11 + 1.71370e11i −0.338317 + 0.125988i
\(498\) 0 0
\(499\) −1.38358e12 7.98810e11i −0.998968 0.576755i −0.0910253 0.995849i \(-0.529014\pi\)
−0.907943 + 0.419094i \(0.862348\pi\)
\(500\) 0 0
\(501\) 2.93011e11 + 5.07511e11i 0.207785 + 0.359895i
\(502\) 0 0
\(503\) −9.48827e11 −0.660893 −0.330447 0.943825i \(-0.607199\pi\)
−0.330447 + 0.943825i \(0.607199\pi\)
\(504\) 0 0
\(505\) 4.26102e12 2.91543
\(506\) 0 0
\(507\) 7.42242e10 + 1.28560e11i 0.0498896 + 0.0864113i
\(508\) 0 0
\(509\) −2.33878e12 1.35029e12i −1.54440 0.891658i −0.998553 0.0537715i \(-0.982876\pi\)
−0.545844 0.837887i \(-0.683791\pi\)
\(510\) 0 0
\(511\) 7.63370e11 + 6.30949e11i 0.495269 + 0.409355i
\(512\) 0 0
\(513\) −1.08709e12 + 1.88290e12i −0.693009 + 1.20033i
\(514\) 0 0
\(515\) −1.04195e12 + 6.01572e11i −0.652703 + 0.376839i
\(516\) 0 0
\(517\) 3.75682e12i 2.31267i
\(518\) 0 0
\(519\) 7.50661e11i 0.454141i
\(520\) 0 0
\(521\) −9.17021e11 + 5.29443e11i −0.545268 + 0.314810i −0.747211 0.664587i \(-0.768608\pi\)
0.201943 + 0.979397i \(0.435274\pi\)
\(522\) 0 0
\(523\) 7.07915e11 1.22615e12i 0.413736 0.716613i −0.581558 0.813505i \(-0.697557\pi\)
0.995295 + 0.0968921i \(0.0308902\pi\)
\(524\) 0 0
\(525\) 1.54409e12 + 2.60465e11i 0.887067 + 0.149635i
\(526\) 0 0
\(527\) −1.42074e11 8.20266e10i −0.0802357 0.0463241i
\(528\) 0 0
\(529\) −1.86597e11 3.23195e11i −0.103599 0.179438i
\(530\) 0 0
\(531\) 2.01922e12 1.10219
\(532\) 0 0
\(533\) 6.25966e11 0.335953
\(534\) 0 0
\(535\) −1.21068e12 2.09695e12i −0.638904 1.10661i
\(536\) 0 0
\(537\) 1.15612e12 + 6.67486e11i 0.599955 + 0.346384i
\(538\) 0 0
\(539\) 1.10017e12 3.16823e12i 0.561450 1.61684i
\(540\) 0 0
\(541\) −1.22382e12 + 2.11972e12i −0.614228 + 1.06387i 0.376291 + 0.926502i \(0.377199\pi\)
−0.990519 + 0.137373i \(0.956134\pi\)
\(542\) 0 0
\(543\) −4.22512e11 + 2.43937e11i −0.208564 + 0.120414i
\(544\) 0 0
\(545\) 4.30769e12i 2.09151i
\(546\) 0 0
\(547\) 2.83833e12i 1.35556i 0.735264 + 0.677781i \(0.237058\pi\)
−0.735264 + 0.677781i \(0.762942\pi\)
\(548\) 0 0
\(549\) 3.75344e11 2.16705e11i 0.176341 0.101811i
\(550\) 0 0
\(551\) 1.69953e12 2.94368e12i 0.785502 1.36053i
\(552\) 0 0
\(553\) −5.21273e11 + 3.09022e12i −0.237030 + 1.40516i
\(554\) 0 0
\(555\) 3.91872e11 + 2.26247e11i 0.175318 + 0.101220i
\(556\) 0 0
\(557\) 1.33865e12 + 2.31861e12i 0.589277 + 1.02066i 0.994327 + 0.106363i \(0.0339205\pi\)
−0.405051 + 0.914294i \(0.632746\pi\)
\(558\) 0 0
\(559\) 1.69358e12 0.733591
\(560\) 0 0
\(561\) 1.84626e12 0.786972
\(562\) 0 0
\(563\) 7.47974e11 + 1.29553e12i 0.313761 + 0.543450i 0.979173 0.203026i \(-0.0650777\pi\)
−0.665413 + 0.746476i \(0.731744\pi\)
\(564\) 0 0
\(565\) −5.57307e12 3.21762e12i −2.30079 1.32836i
\(566\) 0 0
\(567\) −8.00676e11 + 9.68718e11i −0.325337 + 0.393617i
\(568\) 0 0
\(569\) −7.93951e11 + 1.37516e12i −0.317533 + 0.549983i −0.979973 0.199132i \(-0.936188\pi\)
0.662440 + 0.749115i \(0.269521\pi\)
\(570\) 0 0
\(571\) −1.50607e12 + 8.69530e11i −0.592902 + 0.342312i −0.766244 0.642550i \(-0.777877\pi\)
0.173342 + 0.984862i \(0.444543\pi\)
\(572\) 0 0
\(573\) 3.78404e11i 0.146643i
\(574\) 0 0
\(575\) 5.04648e12i 1.92523i
\(576\) 0 0
\(577\) 1.47729e12 8.52914e11i 0.554849 0.320342i −0.196227 0.980559i \(-0.562869\pi\)
0.751075 + 0.660216i \(0.229535\pi\)
\(578\) 0 0
\(579\) −4.43903e11 + 7.68863e11i −0.164148 + 0.284312i
\(580\) 0 0
\(581\) 5.95357e11 + 1.59871e12i 0.216763 + 0.582074i
\(582\) 0 0
\(583\) −1.40296e11 8.09997e10i −0.0502962 0.0290385i
\(584\) 0 0
\(585\) −1.81584e12 3.14513e12i −0.641028 1.11029i
\(586\) 0 0
\(587\) 4.02356e12 1.39875 0.699374 0.714756i \(-0.253462\pi\)
0.699374 + 0.714756i \(0.253462\pi\)
\(588\) 0 0
\(589\) −4.46519e11 −0.152870
\(590\) 0 0
\(591\) −7.38214e11 1.27862e12i −0.248908 0.431121i
\(592\) 0 0
\(593\) 6.89387e11 + 3.98018e11i 0.228938 + 0.132177i 0.610082 0.792338i \(-0.291137\pi\)
−0.381144 + 0.924516i \(0.624470\pi\)
\(594\) 0 0
\(595\) 2.09677e12 + 5.63046e12i 0.685842 + 1.84169i
\(596\) 0 0
\(597\) 2.07704e10 3.59754e10i 0.00669208 0.0115910i
\(598\) 0 0
\(599\) −2.11011e12 + 1.21827e12i −0.669705 + 0.386654i −0.795965 0.605343i \(-0.793036\pi\)
0.126260 + 0.991997i \(0.459703\pi\)
\(600\) 0 0
\(601\) 7.25690e11i 0.226890i −0.993544 0.113445i \(-0.963811\pi\)
0.993544 0.113445i \(-0.0361886\pi\)
\(602\) 0 0
\(603\) 1.33833e12i 0.412225i
\(604\) 0 0
\(605\) 9.79151e12 5.65313e12i 2.97133 1.71550i
\(606\) 0 0
\(607\) −7.63980e11 + 1.32325e12i −0.228419 + 0.395634i −0.957340 0.288964i \(-0.906689\pi\)
0.728920 + 0.684598i \(0.240022\pi\)
\(608\) 0 0
\(609\) −7.75166e11 + 9.37855e11i −0.228358 + 0.276285i
\(610\) 0 0
\(611\) 3.51477e12 + 2.02925e12i 1.02026 + 0.589048i
\(612\) 0 0
\(613\) 1.73311e12 + 3.00183e12i 0.495739 + 0.858645i 0.999988 0.00491362i \(-0.00156406\pi\)
−0.504249 + 0.863558i \(0.668231\pi\)
\(614\) 0 0
\(615\) −1.01136e12 −0.285079
\(616\) 0 0
\(617\) −3.35261e12 −0.931321 −0.465661 0.884963i \(-0.654183\pi\)
−0.465661 + 0.884963i \(0.654183\pi\)
\(618\) 0 0
\(619\) 3.28716e12 + 5.69353e12i 0.899939 + 1.55874i 0.827571 + 0.561361i \(0.189722\pi\)
0.0723679 + 0.997378i \(0.476944\pi\)
\(620\) 0 0
\(621\) −2.17214e12 1.25409e12i −0.586106 0.338388i
\(622\) 0 0
\(623\) 3.15134e11 1.86818e12i 0.0838106 0.496847i
\(624\) 0 0
\(625\) −2.88581e12 + 4.99837e12i −0.756497 + 1.31029i
\(626\) 0 0
\(627\) 4.35189e12 2.51257e12i 1.12454 0.649253i
\(628\) 0 0
\(629\) 1.18713e12i 0.302393i
\(630\) 0 0
\(631\) 2.96004e11i 0.0743303i 0.999309 + 0.0371652i \(0.0118328\pi\)
−0.999309 + 0.0371652i \(0.988167\pi\)
\(632\) 0 0
\(633\) 1.17231e12 6.76835e11i 0.290219 0.167558i
\(634\) 0 0
\(635\) 6.20649e12 1.07500e13i 1.51483 2.62377i
\(636\) 0 0
\(637\) 2.36984e12 + 2.74061e12i 0.570285 + 0.659508i
\(638\) 0 0
\(639\) −1.08959e12 6.29073e11i −0.258528 0.149261i
\(640\) 0 0
\(641\) −2.43613e12 4.21950e12i −0.569954 0.987188i −0.996570 0.0827557i \(-0.973628\pi\)
0.426616 0.904433i \(-0.359705\pi\)
\(642\) 0 0
\(643\) 2.28925e12 0.528133 0.264066 0.964505i \(-0.414936\pi\)
0.264066 + 0.964505i \(0.414936\pi\)
\(644\) 0 0
\(645\) −2.73628e12 −0.622503
\(646\) 0 0
\(647\) −3.35031e12 5.80291e12i −0.751650 1.30190i −0.947022 0.321167i \(-0.895925\pi\)
0.195372 0.980729i \(-0.437409\pi\)
\(648\) 0 0
\(649\) −8.92949e12 5.15544e12i −1.97572 1.14068i
\(650\) 0 0
\(651\) 1.57611e11 + 2.65865e10i 0.0343931 + 0.00580159i
\(652\) 0 0
\(653\) −1.72814e12 + 2.99323e12i −0.371938 + 0.644215i −0.989864 0.142021i \(-0.954640\pi\)
0.617926 + 0.786236i \(0.287973\pi\)
\(654\) 0 0
\(655\) 2.79475e12 1.61355e12i 0.593276 0.342528i
\(656\) 0 0
\(657\) 2.53747e12i 0.531320i
\(658\) 0 0
\(659\) 5.65948e12i 1.16894i −0.811415 0.584470i \(-0.801302\pi\)
0.811415 0.584470i \(-0.198698\pi\)
\(660\) 0 0
\(661\) 3.74441e11 2.16184e11i 0.0762916 0.0440470i −0.461369 0.887208i \(-0.652642\pi\)
0.537661 + 0.843161i \(0.319308\pi\)
\(662\) 0 0
\(663\) −9.97259e11 + 1.72730e12i −0.200446 + 0.347182i
\(664\) 0 0
\(665\) 1.26049e13 + 1.04183e13i 2.49943 + 2.06585i
\(666\) 0 0
\(667\) 3.39587e12 + 1.96061e12i 0.664331 + 0.383552i
\(668\) 0 0
\(669\) −8.74861e11 1.51530e12i −0.168858 0.292470i
\(670\) 0 0
\(671\) −2.21315e12 −0.421463
\(672\) 0 0
\(673\) 3.60551e12 0.677483 0.338742 0.940879i \(-0.389999\pi\)
0.338742 + 0.940879i \(0.389999\pi\)
\(674\) 0 0
\(675\) 4.43201e12 + 7.67647e12i 0.821739 + 1.42329i
\(676\) 0 0
\(677\) −2.14791e11 1.24010e11i −0.0392978 0.0226886i 0.480222 0.877147i \(-0.340556\pi\)
−0.519520 + 0.854458i \(0.673889\pi\)
\(678\) 0 0
\(679\) 9.85864e12 3.67133e12i 1.77993 0.662842i
\(680\) 0 0
\(681\) 1.69039e11 2.92784e11i 0.0301179 0.0521657i
\(682\) 0 0
\(683\) 4.72312e12 2.72690e12i 0.830493 0.479485i −0.0235284 0.999723i \(-0.507490\pi\)
0.854021 + 0.520238i \(0.174157\pi\)
\(684\) 0 0
\(685\) 1.93700e12i 0.336141i
\(686\) 0 0
\(687\) 2.07233e11i 0.0354939i
\(688\) 0 0
\(689\) 1.51562e11 8.75042e10i 0.0256214 0.0147925i
\(690\) 0 0
\(691\) −5.16449e12 + 8.94516e12i −0.861740 + 1.49258i 0.00850730 + 0.999964i \(0.497292\pi\)
−0.870248 + 0.492614i \(0.836041\pi\)
\(692\) 0 0
\(693\) 8.05270e12 2.99881e12i 1.32630 0.493911i
\(694\) 0 0
\(695\) −5.02985e12 2.90399e12i −0.817756 0.472132i
\(696\) 0 0
\(697\) −1.32666e12 2.29785e12i −0.212918 0.368785i
\(698\) 0 0
\(699\) −3.28304e12 −0.520150
\(700\) 0 0
\(701\) −7.88262e12 −1.23293 −0.616467 0.787381i \(-0.711437\pi\)
−0.616467 + 0.787381i \(0.711437\pi\)
\(702\) 0 0
\(703\) 1.61557e12 + 2.79825e12i 0.249475 + 0.432103i
\(704\) 0 0
\(705\) −5.67871e12 3.27860e12i −0.865762 0.499848i
\(706\) 0 0
\(707\) −8.39521e12 6.93890e12i −1.26370 1.04449i
\(708\) 0 0
\(709\) 2.05623e12 3.56150e12i 0.305608 0.529328i −0.671789 0.740743i \(-0.734474\pi\)
0.977396 + 0.211415i \(0.0678070\pi\)
\(710\) 0 0
\(711\) −6.95370e12 + 4.01472e12i −1.02048 + 0.589172i
\(712\) 0 0
\(713\) 5.15111e11i 0.0746445i
\(714\) 0 0
\(715\) 1.85447e13i 2.65365i
\(716\) 0 0
\(717\) 2.10105e12 1.21304e12i 0.296893 0.171411i
\(718\) 0 0
\(719\) −1.88257e12 + 3.26071e12i −0.262707 + 0.455022i −0.966960 0.254927i \(-0.917949\pi\)
0.704253 + 0.709949i \(0.251282\pi\)
\(720\) 0 0
\(721\) 3.03253e12 + 5.11542e11i 0.417923 + 0.0704973i
\(722\) 0 0
\(723\) −3.27087e12 1.88844e12i −0.445186 0.257028i
\(724\) 0 0
\(725\) −6.92889e12 1.20012e13i −0.931414 1.61326i
\(726\) 0 0
\(727\) −1.10216e13 −1.46332 −0.731661 0.681668i \(-0.761255\pi\)
−0.731661 + 0.681668i \(0.761255\pi\)
\(728\) 0 0
\(729\) −8.08563e11 −0.106033
\(730\) 0 0
\(731\) −3.58936e12 6.21695e12i −0.464931 0.805284i
\(732\) 0 0
\(733\) −5.56265e12 3.21160e12i −0.711728 0.410916i 0.0999726 0.994990i \(-0.468124\pi\)
−0.811700 + 0.584074i \(0.801458\pi\)
\(734\) 0 0
\(735\) −3.82889e12 4.42793e12i −0.483927 0.559638i
\(736\) 0 0
\(737\) −3.41700e12 + 5.91842e12i −0.426620 + 0.738928i
\(738\) 0 0
\(739\) −1.24518e13 + 7.18904e12i −1.53579 + 0.886689i −0.536711 + 0.843766i \(0.680334\pi\)
−0.999078 + 0.0429225i \(0.986333\pi\)
\(740\) 0 0
\(741\) 5.42867e12i 0.661472i
\(742\) 0 0
\(743\) 7.40249e12i 0.891103i −0.895256 0.445552i \(-0.853008\pi\)
0.895256 0.445552i \(-0.146992\pi\)
\(744\) 0 0
\(745\) 1.35325e13 7.81297e12i 1.60944 0.929208i
\(746\) 0 0
\(747\) −2.18547e12 + 3.78534e12i −0.256804 + 0.444798i
\(748\) 0 0
\(749\) −1.02949e12 + 6.10302e12i −0.119523 + 0.708560i
\(750\) 0 0
\(751\) −3.01374e12 1.73998e12i −0.345721 0.199602i 0.317078 0.948400i \(-0.397298\pi\)
−0.662799 + 0.748797i \(0.730632\pi\)
\(752\) 0 0
\(753\) −5.42186e11 9.39093e11i −0.0614569 0.106446i
\(754\) 0 0
\(755\) 1.05780e13 1.18479
\(756\) 0 0
\(757\) 1.57468e13 1.74285 0.871427 0.490526i \(-0.163195\pi\)
0.871427 + 0.490526i \(0.163195\pi\)
\(758\) 0 0
\(759\) 2.89853e12 + 5.02041e12i 0.317023 + 0.549100i
\(760\) 0 0
\(761\) −5.70866e12 3.29590e12i −0.617026 0.356240i 0.158684 0.987329i \(-0.449275\pi\)
−0.775710 + 0.631089i \(0.782608\pi\)
\(762\) 0 0
\(763\) −7.01490e12 + 8.48715e12i −0.749309 + 0.906570i
\(764\) 0 0
\(765\) −7.69693e12 + 1.33315e13i −0.812534 + 1.40735i
\(766\) 0 0
\(767\) 9.64655e12 5.56944e12i 1.00645 0.581075i
\(768\) 0 0
\(769\) 8.20496e12i 0.846073i 0.906113 + 0.423036i \(0.139036\pi\)
−0.906113 + 0.423036i \(0.860964\pi\)
\(770\) 0 0
\(771\) 1.51842e12i 0.154756i
\(772\) 0 0
\(773\) 3.52090e11 2.03279e11i 0.0354687 0.0204779i −0.482161 0.876083i \(-0.660148\pi\)
0.517630 + 0.855605i \(0.326815\pi\)
\(774\) 0 0
\(775\) −9.10215e11 + 1.57654e12i −0.0906330 + 0.156981i
\(776\) 0 0
\(777\) −4.03644e11 1.08391e12i −0.0397287 0.106684i
\(778\) 0 0
\(779\) −6.25426e12 3.61090e12i −0.608496 0.351315i
\(780\) 0 0
\(781\) 3.21228e12 + 5.56383e12i 0.308947 + 0.535112i
\(782\) 0 0
\(783\) −6.88751e12 −0.654839
\(784\) 0 0
\(785\) 1.86936e12 0.175703
\(786\) 0 0
\(787\) −3.98054e12 6.89450e12i −0.369876 0.640644i 0.619670 0.784863i \(-0.287266\pi\)
−0.989546 + 0.144219i \(0.953933\pi\)
\(788\) 0 0
\(789\) −4.83146e11 2.78945e11i −0.0443846 0.0256255i
\(790\) 0 0
\(791\) 5.74050e12 + 1.54150e13i 0.521381 + 1.40007i
\(792\) 0 0
\(793\) 1.19544e12 2.07056e12i 0.107349 0.185934i
\(794\) 0 0
\(795\) −2.44874e11 + 1.41378e11i −0.0217415 + 0.0125525i
\(796\) 0 0
\(797\) 1.89899e13i 1.66709i −0.552450 0.833546i \(-0.686307\pi\)
0.552450 0.833546i \(-0.313693\pi\)
\(798\) 0 0
\(799\) 1.72031e13i 1.49329i
\(800\) 0 0
\(801\) 4.20383e12 2.42708e12i 0.360827 0.208323i
\(802\) 0 0
\(803\) 6.47862e12 1.12213e13i 0.549873 0.952408i
\(804\) 0 0
\(805\) −1.20187e13 + 1.45411e13i −1.00873 + 1.22044i
\(806\) 0 0
\(807\) 4.74505e12 + 2.73956e12i 0.393831 + 0.227379i
\(808\) 0 0
\(809\) 9.20201e12 + 1.59383e13i 0.755291 + 1.30820i 0.945229 + 0.326407i \(0.105838\pi\)
−0.189938 + 0.981796i \(0.560829\pi\)
\(810\) 0 0
\(811\) −6.96575e12 −0.565424 −0.282712 0.959205i \(-0.591234\pi\)
−0.282712 + 0.959205i \(0.591234\pi\)
\(812\) 0 0
\(813\) −4.47406e12 −0.359166
\(814\) 0 0
\(815\) −9.97304e12 1.72738e13i −0.791805 1.37145i
\(816\) 0 0
\(817\) −1.69212e13 9.76949e12i −1.32872 0.767136i
\(818\) 0 0
\(819\) −1.54409e12 + 9.15367e12i −0.119921 + 0.710915i
\(820\) 0 0
\(821\) −8.32207e12 + 1.44143e13i −0.639274 + 1.10726i 0.346318 + 0.938117i \(0.387432\pi\)
−0.985592 + 0.169138i \(0.945902\pi\)
\(822\) 0 0
\(823\) −1.29668e13 + 7.48636e12i −0.985218 + 0.568816i −0.903841 0.427868i \(-0.859265\pi\)
−0.0813765 + 0.996683i \(0.525932\pi\)
\(824\) 0 0
\(825\) 2.04872e13i 1.53971i
\(826\) 0 0
\(827\) 2.84386e12i 0.211414i 0.994397 + 0.105707i \(0.0337105\pi\)
−0.994397 + 0.105707i \(0.966290\pi\)
\(828\) 0 0
\(829\) 6.59291e12 3.80642e12i 0.484821 0.279912i −0.237602 0.971363i \(-0.576361\pi\)
0.722424 + 0.691451i \(0.243028\pi\)
\(830\) 0 0
\(831\) −2.11663e11 + 3.66611e11i −0.0153971 + 0.0266686i
\(832\) 0 0
\(833\) 5.03785e12 1.45078e13i 0.362529 1.04400i
\(834\) 0 0
\(835\) 2.16079e13 + 1.24753e13i 1.53824 + 0.888103i
\(836\) 0 0
\(837\) 4.52390e11 + 7.83562e11i 0.0318602 + 0.0551834i
\(838\) 0 0
\(839\) 8.65465e11 0.0603004 0.0301502 0.999545i \(-0.490401\pi\)
0.0301502 + 0.999545i \(0.490401\pi\)
\(840\) 0 0
\(841\) −3.73939e12 −0.257762
\(842\) 0 0
\(843\) 2.78589e12 + 4.82530e12i 0.189994 + 0.329079i
\(844\) 0 0
\(845\) 5.47361e12 + 3.16019e12i 0.369333 + 0.213235i
\(846\) 0 0
\(847\) −2.84975e13 4.80709e12i −1.90253 0.320928i
\(848\) 0 0
\(849\) −1.66888e12 + 2.89059e12i −0.110241 + 0.190942i
\(850\) 0 0
\(851\) −3.22810e12 + 1.86374e12i −0.210991 + 0.121816i
\(852\) 0 0
\(853\) 1.59456e13i 1.03127i −0.856810 0.515633i \(-0.827557\pi\)
0.856810 0.515633i \(-0.172443\pi\)
\(854\) 0 0
\(855\) 4.18989e13i 2.68136i
\(856\) 0 0
\(857\) −1.67500e13 + 9.67061e12i −1.06072 + 0.612407i −0.925631 0.378427i \(-0.876465\pi\)
−0.135088 + 0.990834i \(0.543132\pi\)
\(858\) 0 0
\(859\) 5.69926e11 9.87141e11i 0.0357149 0.0618600i −0.847615 0.530611i \(-0.821963\pi\)
0.883330 + 0.468751i \(0.155296\pi\)
\(860\) 0 0
\(861\) 1.99261e12 + 1.64695e12i 0.123568 + 0.102133i
\(862\) 0 0
\(863\) −2.10087e13 1.21294e13i −1.28929 0.744371i −0.310761 0.950488i \(-0.600584\pi\)
−0.978527 + 0.206117i \(0.933917\pi\)
\(864\) 0 0
\(865\) 1.59802e13 + 2.76785e13i 0.970530 + 1.68101i
\(866\) 0 0
\(867\) 1.53226e12 0.0920971
\(868\) 0 0
\(869\) 4.10013e13 2.43898
\(870\) 0 0
\(871\) −3.69140e12 6.39369e12i −0.217325 0.376417i
\(872\) 0 0
\(873\) 2.33427e13 + 1.34769e13i 1.36015 + 0.785285i
\(874\) 0 0
\(875\) 3.35832e13 1.25063e13i 1.93681 0.721262i
\(876\) 0 0
\(877\) −1.59793e12 + 2.76769e12i −0.0912134 + 0.157986i −0.908022 0.418923i \(-0.862408\pi\)
0.816809 + 0.576909i \(0.195741\pi\)
\(878\) 0 0
\(879\) 2.28401e12 1.31867e12i 0.129047 0.0745052i
\(880\) 0 0
\(881\) 9.42039e12i 0.526838i −0.964681 0.263419i \(-0.915150\pi\)
0.964681 0.263419i \(-0.0848502\pi\)
\(882\) 0 0
\(883\) 1.06804e13i 0.591239i −0.955306 0.295619i \(-0.904474\pi\)
0.955306 0.295619i \(-0.0955260\pi\)
\(884\) 0 0
\(885\) −1.55857e13 + 8.99838e12i −0.854044 + 0.493082i
\(886\) 0 0
\(887\) −3.80802e12 + 6.59568e12i −0.206558 + 0.357770i −0.950628 0.310332i \(-0.899560\pi\)
0.744070 + 0.668102i \(0.232893\pi\)
\(888\) 0 0
\(889\) −2.97341e13 + 1.10729e13i −1.59660 + 0.594571i
\(890\) 0 0
\(891\) 1.42399e13 + 8.22139e12i 0.756930 + 0.437014i
\(892\) 0 0
\(893\) −2.34116e13 4.05501e13i −1.23197 2.13383i
\(894\) 0 0
\(895\) 5.68381e13 2.96098
\(896\) 0 0
\(897\) −6.26259e12 −0.322989
\(898\) 0 0
\(899\) −7.07254e11 1.22500e12i −0.0361124 0.0625486i
\(900\) 0 0
\(901\) −6.42435e11 3.70910e11i −0.0324764 0.0187502i
\(902\) 0 0
\(903\) 5.39110e12 + 4.45592e12i 0.269825 + 0.223019i
\(904\) 0 0
\(905\) −1.03859e13 + 1.79890e13i −0.514668 + 0.891431i
\(906\) 0 0
\(907\) 2.36956e13 1.36806e13i 1.16261 0.671234i 0.210683 0.977555i \(-0.432431\pi\)
0.951928 + 0.306321i \(0.0990980\pi\)
\(908\) 0 0
\(909\) 2.79059e13i 1.35569i
\(910\) 0 0
\(911\) 2.65027e13i 1.27484i −0.770515 0.637422i \(-0.780001\pi\)
0.770515 0.637422i \(-0.219999\pi\)
\(912\) 0 0
\(913\) 1.93294e13 1.11598e13i 0.920659 0.531543i
\(914\) 0 0
\(915\) −1.93143e12 + 3.34534e12i −0.0910930 + 0.157778i
\(916\) 0 0
\(917\) −8.13390e12 1.37207e12i −0.379872 0.0640786i
\(918\) 0 0
\(919\) 3.27652e12 + 1.89170e12i 0.151528 + 0.0874848i 0.573847 0.818963i \(-0.305450\pi\)
−0.422319 + 0.906447i \(0.638784\pi\)
\(920\) 0 0
\(921\) −7.71235e12 1.33582e13i −0.353198 0.611757i
\(922\) 0 0
\(923\) −6.94047e12 −0.314761
\(924\) 0 0
\(925\) 1.31731e13 0.591632
\(926\) 0 0
\(927\) 3.93977e12 + 6.82388e12i 0.175231 + 0.303510i
\(928\) 0 0
\(929\) 1.44452e13 + 8.33993e12i 0.636286 + 0.367360i 0.783182 0.621792i \(-0.213595\pi\)
−0.146897 + 0.989152i \(0.546928\pi\)
\(930\) 0 0
\(931\) −7.86871e12 4.10530e13i −0.343266 1.79090i
\(932\) 0 0
\(933\) −6.24307e12 + 1.08133e13i −0.269731 + 0.467188i
\(934\) 0 0
\(935\) 6.80755e13 3.93034e13i 2.91299 1.68181i
\(936\) 0 0
\(937\) 7.13660e12i 0.302456i 0.988499 + 0.151228i \(0.0483228\pi\)
−0.988499 + 0.151228i \(0.951677\pi\)
\(938\) 0 0
\(939\) 4.84679e12i 0.203451i
\(940\) 0 0
\(941\) −9.29370e12 + 5.36572e12i −0.386398 + 0.223087i −0.680598 0.732657i \(-0.738280\pi\)
0.294200 + 0.955744i \(0.404947\pi\)
\(942\) 0 0
\(943\) 4.16559e12 7.21501e12i 0.171543 0.297122i
\(944\) 0 0
\(945\) 5.51171e12 3.26746e13i 0.224824 1.33281i
\(946\) 0 0
\(947\) 1.13857e13 + 6.57351e12i 0.460027 + 0.265597i 0.712055 0.702123i \(-0.247764\pi\)
−0.252029 + 0.967720i \(0.581098\pi\)
\(948\) 0 0
\(949\) 6.99887e12 + 1.21224e13i 0.280111 + 0.485166i
\(950\) 0 0
\(951\) −1.37372e13 −0.544611
\(952\) 0 0
\(953\) 1.09968e13 0.431866 0.215933 0.976408i \(-0.430721\pi\)
0.215933 + 0.976408i \(0.430721\pi\)
\(954\) 0 0
\(955\) 8.05552e12 + 1.39526e13i 0.313385 + 0.542799i
\(956\) 0 0
\(957\) 1.37862e13 + 7.95945e12i 0.531300 + 0.306746i
\(958\) 0 0
\(959\) 3.15433e12 3.81634e12i 0.120427 0.145701i
\(960\) 0 0
\(961\) 1.31269e13 2.27365e13i 0.496486 0.859939i
\(962\) 0 0
\(963\) −1.37332e13 + 7.92886e12i −0.514580 + 0.297093i
\(964\) 0 0
\(965\) 3.77995e13i 1.40318i
\(966\) 0 0
\(967\) 2.61514e13i 0.961779i 0.876781 + 0.480890i \(0.159686\pi\)
−0.876781 + 0.480890i \(0.840314\pi\)
\(968\) 0 0
\(969\) 1.99280e13 1.15054e13i 0.726116 0.419224i
\(970\) 0 0
\(971\) 7.99792e12 1.38528e13i 0.288729 0.500093i −0.684778 0.728752i \(-0.740101\pi\)
0.973507 + 0.228659i \(0.0734340\pi\)
\(972\) 0 0
\(973\) 5.18096e12 + 1.39124e13i 0.185312 + 0.497618i
\(974\) 0 0
\(975\) 1.91672e13 + 1.10662e13i 0.679262 + 0.392172i
\(976\) 0 0
\(977\) 7.74111e12 + 1.34080e13i 0.271818 + 0.470802i 0.969327 0.245773i \(-0.0790419\pi\)
−0.697510 + 0.716575i \(0.745709\pi\)
\(978\) 0 0
\(979\) −2.47872e13 −0.862392
\(980\) 0 0
\(981\) −2.82116e13 −0.972560
\(982\) 0 0
\(983\) 1.47957e13 + 2.56270e13i 0.505413 + 0.875400i 0.999980 + 0.00626135i \(0.00199306\pi\)
−0.494568 + 0.869139i \(0.664674\pi\)
\(984\) 0 0
\(985\) −5.44391e13 3.14304e13i −1.84267 1.06387i
\(986\) 0 0
\(987\) 5.84931e12 + 1.57072e13i 0.196190 + 0.526830i
\(988\) 0 0
\(989\) 1.12702e13 1.95206e13i 0.374584 0.648798i
\(990\) 0 0
\(991\) −1.08807e13 + 6.28199e12i −0.358366 + 0.206903i −0.668364 0.743835i \(-0.733005\pi\)
0.309998 + 0.950737i \(0.399672\pi\)
\(992\) 0 0
\(993\) 1.26311e13i 0.412257i
\(994\) 0 0
\(995\) 1.76865e12i 0.0572057i
\(996\) 0 0
\(997\) −3.97938e13 + 2.29750e13i −1.27552 + 0.736422i −0.976021 0.217674i \(-0.930153\pi\)
−0.299499 + 0.954097i \(0.596820\pi\)
\(998\) 0 0
\(999\) 3.27362e12 5.67007e12i 0.103988 0.180113i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 112.10.p.b.47.7 yes 24
4.3 odd 2 inner 112.10.p.b.47.6 yes 24
7.3 odd 6 inner 112.10.p.b.31.6 24
28.3 even 6 inner 112.10.p.b.31.7 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.10.p.b.31.6 24 7.3 odd 6 inner
112.10.p.b.31.7 yes 24 28.3 even 6 inner
112.10.p.b.47.6 yes 24 4.3 odd 2 inner
112.10.p.b.47.7 yes 24 1.1 even 1 trivial