Properties

Label 112.10.p.b.31.9
Level $112$
Weight $10$
Character 112.31
Analytic conductor $57.684$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [112,10,Mod(31,112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(112, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 1])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("112.31"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 112.p (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(57.6840136504\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 31.9
Character \(\chi\) \(=\) 112.31
Dual form 112.10.p.b.47.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(48.7996 - 84.5234i) q^{3} +(-62.4476 + 36.0541i) q^{5} +(-6259.38 - 1083.41i) q^{7} +(5078.69 + 8796.55i) q^{9} +(44516.5 + 25701.6i) q^{11} -152010. i q^{13} +7037.71i q^{15} +(-93083.9 - 53742.0i) q^{17} +(-208545. - 361210. i) q^{19} +(-397029. + 476194. i) q^{21} +(-685413. + 395724. i) q^{23} +(-973963. + 1.68695e6i) q^{25} +2.91240e6 q^{27} -4.61586e6 q^{29} +(-1.95313e6 + 3.38291e6i) q^{31} +(4.34478e6 - 2.50846e6i) q^{33} +(429944. - 158020. i) q^{35} +(-8.08419e6 - 1.40022e7i) q^{37} +(-1.28484e7 - 7.41805e6i) q^{39} +1.48715e7i q^{41} +7.60496e6i q^{43} +(-634304. - 366216. i) q^{45} +(1.72883e7 + 2.99443e7i) q^{47} +(3.80061e7 + 1.35629e7i) q^{49} +(-9.08492e6 + 5.24518e6i) q^{51} +(-9.73612e6 + 1.68635e7i) q^{53} -3.70660e6 q^{55} -4.07076e7 q^{57} +(-9.12057e7 + 1.57973e8i) q^{59} +(1.50849e8 - 8.70927e7i) q^{61} +(-2.22592e7 - 6.05633e7i) q^{63} +(5.48060e6 + 9.49268e6i) q^{65} +(-5.72063e7 - 3.30281e7i) q^{67} +7.72447e7i q^{69} +3.98123e8i q^{71} +(5.72087e7 + 3.30295e7i) q^{73} +(9.50580e7 + 1.64645e8i) q^{75} +(-2.50800e8 - 2.09106e8i) q^{77} +(-3.94490e8 + 2.27759e8i) q^{79} +(4.21601e7 - 7.30234e7i) q^{81} -2.37486e8 q^{83} +7.75049e6 q^{85} +(-2.25252e8 + 3.90148e8i) q^{87} +(-8.45694e8 + 4.88262e8i) q^{89} +(-1.64689e8 + 9.51491e8i) q^{91} +(1.90624e8 + 3.30170e8i) q^{93} +(2.60462e7 + 1.50378e7i) q^{95} -1.18899e8i q^{97} +5.22122e8i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 1704 q^{5} - 80428 q^{9} - 1578672 q^{17} + 1219540 q^{21} + 8001240 q^{25} - 6709416 q^{29} - 29129772 q^{33} - 11130084 q^{37} + 57023292 q^{45} - 12671904 q^{49} - 93652164 q^{53} + 742621544 q^{57}+ \cdots - 1432348316 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/112\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(17\) \(85\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 48.7996 84.5234i 0.347833 0.602465i −0.638031 0.770011i \(-0.720251\pi\)
0.985864 + 0.167546i \(0.0535843\pi\)
\(4\) 0 0
\(5\) −62.4476 + 36.0541i −0.0446838 + 0.0257982i −0.522176 0.852838i \(-0.674879\pi\)
0.477492 + 0.878636i \(0.341546\pi\)
\(6\) 0 0
\(7\) −6259.38 1083.41i −0.985349 0.170550i
\(8\) 0 0
\(9\) 5078.69 + 8796.55i 0.258024 + 0.446911i
\(10\) 0 0
\(11\) 44516.5 + 25701.6i 0.916756 + 0.529290i 0.882599 0.470127i \(-0.155792\pi\)
0.0341576 + 0.999416i \(0.489125\pi\)
\(12\) 0 0
\(13\) 152010.i 1.47614i −0.674723 0.738071i \(-0.735737\pi\)
0.674723 0.738071i \(-0.264263\pi\)
\(14\) 0 0
\(15\) 7037.71i 0.0358939i
\(16\) 0 0
\(17\) −93083.9 53742.0i −0.270305 0.156061i 0.358721 0.933445i \(-0.383213\pi\)
−0.629026 + 0.777384i \(0.716546\pi\)
\(18\) 0 0
\(19\) −208545. 361210.i −0.367120 0.635870i 0.621994 0.783022i \(-0.286323\pi\)
−0.989114 + 0.147152i \(0.952989\pi\)
\(20\) 0 0
\(21\) −397029. + 476194.i −0.445487 + 0.534315i
\(22\) 0 0
\(23\) −685413. + 395724.i −0.510713 + 0.294861i −0.733127 0.680092i \(-0.761940\pi\)
0.222413 + 0.974952i \(0.428607\pi\)
\(24\) 0 0
\(25\) −973963. + 1.68695e6i −0.498669 + 0.863720i
\(26\) 0 0
\(27\) 2.91240e6 1.05466
\(28\) 0 0
\(29\) −4.61586e6 −1.21189 −0.605943 0.795508i \(-0.707204\pi\)
−0.605943 + 0.795508i \(0.707204\pi\)
\(30\) 0 0
\(31\) −1.95313e6 + 3.38291e6i −0.379842 + 0.657905i −0.991039 0.133573i \(-0.957355\pi\)
0.611197 + 0.791478i \(0.290688\pi\)
\(32\) 0 0
\(33\) 4.34478e6 2.50846e6i 0.637756 0.368209i
\(34\) 0 0
\(35\) 429944. 158020.i 0.0484291 0.0177995i
\(36\) 0 0
\(37\) −8.08419e6 1.40022e7i −0.709134 1.22826i −0.965179 0.261592i \(-0.915753\pi\)
0.256044 0.966665i \(-0.417581\pi\)
\(38\) 0 0
\(39\) −1.28484e7 7.41805e6i −0.889324 0.513451i
\(40\) 0 0
\(41\) 1.48715e7i 0.821914i 0.911655 + 0.410957i \(0.134805\pi\)
−0.911655 + 0.410957i \(0.865195\pi\)
\(42\) 0 0
\(43\) 7.60496e6i 0.339226i 0.985511 + 0.169613i \(0.0542518\pi\)
−0.985511 + 0.169613i \(0.945748\pi\)
\(44\) 0 0
\(45\) −634304. 366216.i −0.0230590 0.0133131i
\(46\) 0 0
\(47\) 1.72883e7 + 2.99443e7i 0.516788 + 0.895104i 0.999810 + 0.0194954i \(0.00620596\pi\)
−0.483021 + 0.875608i \(0.660461\pi\)
\(48\) 0 0
\(49\) 3.80061e7 + 1.35629e7i 0.941826 + 0.336102i
\(50\) 0 0
\(51\) −9.08492e6 + 5.24518e6i −0.188042 + 0.108566i
\(52\) 0 0
\(53\) −9.73612e6 + 1.68635e7i −0.169490 + 0.293566i −0.938241 0.345983i \(-0.887545\pi\)
0.768751 + 0.639549i \(0.220879\pi\)
\(54\) 0 0
\(55\) −3.70660e6 −0.0546189
\(56\) 0 0
\(57\) −4.07076e7 −0.510786
\(58\) 0 0
\(59\) −9.12057e7 + 1.57973e8i −0.979914 + 1.69726i −0.317253 + 0.948341i \(0.602760\pi\)
−0.662661 + 0.748920i \(0.730573\pi\)
\(60\) 0 0
\(61\) 1.50849e8 8.70927e7i 1.39495 0.805374i 0.401091 0.916038i \(-0.368631\pi\)
0.993858 + 0.110664i \(0.0352977\pi\)
\(62\) 0 0
\(63\) −2.22592e7 6.05633e7i −0.178023 0.484370i
\(64\) 0 0
\(65\) 5.48060e6 + 9.49268e6i 0.0380819 + 0.0659597i
\(66\) 0 0
\(67\) −5.72063e7 3.30281e7i −0.346822 0.200238i 0.316463 0.948605i \(-0.397505\pi\)
−0.663285 + 0.748367i \(0.730838\pi\)
\(68\) 0 0
\(69\) 7.72447e7i 0.410249i
\(70\) 0 0
\(71\) 3.98123e8i 1.85932i 0.368413 + 0.929662i \(0.379901\pi\)
−0.368413 + 0.929662i \(0.620099\pi\)
\(72\) 0 0
\(73\) 5.72087e7 + 3.30295e7i 0.235781 + 0.136128i 0.613236 0.789900i \(-0.289867\pi\)
−0.377455 + 0.926028i \(0.623201\pi\)
\(74\) 0 0
\(75\) 9.50580e7 + 1.64645e8i 0.346907 + 0.600861i
\(76\) 0 0
\(77\) −2.50800e8 2.09106e8i −0.813055 0.677887i
\(78\) 0 0
\(79\) −3.94490e8 + 2.27759e8i −1.13950 + 0.657890i −0.946307 0.323271i \(-0.895218\pi\)
−0.193193 + 0.981161i \(0.561884\pi\)
\(80\) 0 0
\(81\) 4.21601e7 7.30234e7i 0.108823 0.188486i
\(82\) 0 0
\(83\) −2.37486e8 −0.549272 −0.274636 0.961548i \(-0.588557\pi\)
−0.274636 + 0.961548i \(0.588557\pi\)
\(84\) 0 0
\(85\) 7.75049e6 0.0161044
\(86\) 0 0
\(87\) −2.25252e8 + 3.90148e8i −0.421534 + 0.730118i
\(88\) 0 0
\(89\) −8.45694e8 + 4.88262e8i −1.42876 + 0.824893i −0.997023 0.0771078i \(-0.975431\pi\)
−0.431734 + 0.902001i \(0.642098\pi\)
\(90\) 0 0
\(91\) −1.64689e8 + 9.51491e8i −0.251756 + 1.45452i
\(92\) 0 0
\(93\) 1.90624e8 + 3.30170e8i 0.264243 + 0.457682i
\(94\) 0 0
\(95\) 2.60462e7 + 1.50378e7i 0.0328087 + 0.0189421i
\(96\) 0 0
\(97\) 1.18899e8i 0.136366i −0.997673 0.0681828i \(-0.978280\pi\)
0.997673 0.0681828i \(-0.0217201\pi\)
\(98\) 0 0
\(99\) 5.22122e8i 0.546278i
\(100\) 0 0
\(101\) −1.24465e8 7.18597e7i −0.119014 0.0687130i 0.439311 0.898335i \(-0.355223\pi\)
−0.558325 + 0.829622i \(0.688556\pi\)
\(102\) 0 0
\(103\) 3.48873e8 + 6.04265e8i 0.305421 + 0.529005i 0.977355 0.211606i \(-0.0678693\pi\)
−0.671934 + 0.740611i \(0.734536\pi\)
\(104\) 0 0
\(105\) 7.62471e6 4.40517e7i 0.00612169 0.0353680i
\(106\) 0 0
\(107\) −1.29804e9 + 7.49424e8i −0.957329 + 0.552714i −0.895350 0.445363i \(-0.853075\pi\)
−0.0619793 + 0.998077i \(0.519741\pi\)
\(108\) 0 0
\(109\) 6.36594e8 1.10261e9i 0.431960 0.748176i −0.565082 0.825035i \(-0.691156\pi\)
0.997042 + 0.0768584i \(0.0244889\pi\)
\(110\) 0 0
\(111\) −1.57802e9 −0.986641
\(112\) 0 0
\(113\) 2.39657e8 0.138273 0.0691365 0.997607i \(-0.477976\pi\)
0.0691365 + 0.997607i \(0.477976\pi\)
\(114\) 0 0
\(115\) 2.85349e7 4.94240e7i 0.0152138 0.0263510i
\(116\) 0 0
\(117\) 1.33717e9 7.72014e8i 0.659705 0.380881i
\(118\) 0 0
\(119\) 5.24423e8 + 4.37240e8i 0.239729 + 0.199875i
\(120\) 0 0
\(121\) 1.42172e8 + 2.46249e8i 0.0602948 + 0.104434i
\(122\) 0 0
\(123\) 1.25699e9 + 7.25722e8i 0.495174 + 0.285889i
\(124\) 0 0
\(125\) 2.81298e8i 0.103056i
\(126\) 0 0
\(127\) 1.78644e9i 0.609356i 0.952455 + 0.304678i \(0.0985488\pi\)
−0.952455 + 0.304678i \(0.901451\pi\)
\(128\) 0 0
\(129\) 6.42798e8 + 3.71119e8i 0.204372 + 0.117994i
\(130\) 0 0
\(131\) −5.81656e8 1.00746e9i −0.172562 0.298887i 0.766753 0.641943i \(-0.221871\pi\)
−0.939315 + 0.343056i \(0.888538\pi\)
\(132\) 0 0
\(133\) 9.14023e8 + 2.48689e9i 0.253294 + 0.689166i
\(134\) 0 0
\(135\) −1.81872e8 + 1.05004e8i −0.0471264 + 0.0272085i
\(136\) 0 0
\(137\) −2.65942e9 + 4.60625e9i −0.644977 + 1.11713i 0.339330 + 0.940667i \(0.389800\pi\)
−0.984307 + 0.176465i \(0.943534\pi\)
\(138\) 0 0
\(139\) 2.59205e8 0.0588948 0.0294474 0.999566i \(-0.490625\pi\)
0.0294474 + 0.999566i \(0.490625\pi\)
\(140\) 0 0
\(141\) 3.37466e9 0.719024
\(142\) 0 0
\(143\) 3.90691e9 6.76697e9i 0.781307 1.35326i
\(144\) 0 0
\(145\) 2.88249e8 1.66421e8i 0.0541517 0.0312645i
\(146\) 0 0
\(147\) 3.00107e9 2.55054e9i 0.530088 0.450509i
\(148\) 0 0
\(149\) −4.97838e9 8.62281e9i −0.827465 1.43321i −0.900020 0.435848i \(-0.856449\pi\)
0.0725551 0.997364i \(-0.476885\pi\)
\(150\) 0 0
\(151\) −8.76599e9 5.06105e9i −1.37216 0.792217i −0.380960 0.924591i \(-0.624407\pi\)
−0.991200 + 0.132374i \(0.957740\pi\)
\(152\) 0 0
\(153\) 1.09176e9i 0.161070i
\(154\) 0 0
\(155\) 2.81673e8i 0.0391970i
\(156\) 0 0
\(157\) −3.82395e9 2.20776e9i −0.502301 0.290004i 0.227362 0.973810i \(-0.426990\pi\)
−0.729663 + 0.683807i \(0.760323\pi\)
\(158\) 0 0
\(159\) 9.50238e8 + 1.64586e9i 0.117909 + 0.204224i
\(160\) 0 0
\(161\) 4.71899e9 1.73440e9i 0.553519 0.203439i
\(162\) 0 0
\(163\) 1.13789e10 6.56962e9i 1.26257 0.728947i 0.289001 0.957329i \(-0.406677\pi\)
0.973572 + 0.228382i \(0.0733436\pi\)
\(164\) 0 0
\(165\) −1.80881e8 + 3.13294e8i −0.0189983 + 0.0329060i
\(166\) 0 0
\(167\) 1.16636e10 1.16041 0.580203 0.814472i \(-0.302973\pi\)
0.580203 + 0.814472i \(0.302973\pi\)
\(168\) 0 0
\(169\) −1.25027e10 −1.17900
\(170\) 0 0
\(171\) 2.11827e9 3.66895e9i 0.189452 0.328140i
\(172\) 0 0
\(173\) −2.83830e9 + 1.63869e9i −0.240908 + 0.139088i −0.615594 0.788064i \(-0.711084\pi\)
0.374686 + 0.927152i \(0.377750\pi\)
\(174\) 0 0
\(175\) 7.92406e9 9.50408e9i 0.638670 0.766018i
\(176\) 0 0
\(177\) 8.90161e9 + 1.54180e10i 0.681693 + 1.18073i
\(178\) 0 0
\(179\) −1.08411e10 6.25909e9i −0.789284 0.455694i 0.0504262 0.998728i \(-0.483942\pi\)
−0.839711 + 0.543034i \(0.817275\pi\)
\(180\) 0 0
\(181\) 9.48698e9i 0.657014i 0.944502 + 0.328507i \(0.106545\pi\)
−0.944502 + 0.328507i \(0.893455\pi\)
\(182\) 0 0
\(183\) 1.70004e10i 1.12054i
\(184\) 0 0
\(185\) 1.00968e9 + 5.82936e8i 0.0633737 + 0.0365888i
\(186\) 0 0
\(187\) −2.76251e9 4.78482e9i −0.165203 0.286140i
\(188\) 0 0
\(189\) −1.82298e10 3.15532e9i −1.03921 0.179873i
\(190\) 0 0
\(191\) −1.17903e10 + 6.80715e9i −0.641026 + 0.370097i −0.785010 0.619483i \(-0.787342\pi\)
0.143983 + 0.989580i \(0.454009\pi\)
\(192\) 0 0
\(193\) 1.18533e10 2.05306e10i 0.614940 1.06511i −0.375455 0.926841i \(-0.622513\pi\)
0.990395 0.138267i \(-0.0441532\pi\)
\(194\) 0 0
\(195\) 1.06981e9 0.0529845
\(196\) 0 0
\(197\) 2.43994e10 1.15420 0.577100 0.816673i \(-0.304184\pi\)
0.577100 + 0.816673i \(0.304184\pi\)
\(198\) 0 0
\(199\) 1.94957e10 3.37675e10i 0.881250 1.52637i 0.0312977 0.999510i \(-0.490036\pi\)
0.849952 0.526860i \(-0.176631\pi\)
\(200\) 0 0
\(201\) −5.58329e9 + 3.22351e9i −0.241272 + 0.139299i
\(202\) 0 0
\(203\) 2.88924e10 + 5.00086e9i 1.19413 + 0.206687i
\(204\) 0 0
\(205\) −5.36178e8 9.28687e8i −0.0212039 0.0367263i
\(206\) 0 0
\(207\) −6.96201e9 4.01952e9i −0.263553 0.152162i
\(208\) 0 0
\(209\) 2.14397e10i 0.777251i
\(210\) 0 0
\(211\) 4.21725e10i 1.46473i 0.680911 + 0.732367i \(0.261584\pi\)
−0.680911 + 0.732367i \(0.738416\pi\)
\(212\) 0 0
\(213\) 3.36508e10 + 1.94283e10i 1.12018 + 0.646735i
\(214\) 0 0
\(215\) −2.74190e8 4.74912e8i −0.00875143 0.0151579i
\(216\) 0 0
\(217\) 1.58904e10 1.90589e10i 0.486482 0.583484i
\(218\) 0 0
\(219\) 5.58353e9 3.22365e9i 0.164025 0.0946999i
\(220\) 0 0
\(221\) −8.16935e9 + 1.41497e10i −0.230368 + 0.399009i
\(222\) 0 0
\(223\) −3.52016e10 −0.953214 −0.476607 0.879116i \(-0.658134\pi\)
−0.476607 + 0.879116i \(0.658134\pi\)
\(224\) 0 0
\(225\) −1.97858e10 −0.514675
\(226\) 0 0
\(227\) 6.10064e9 1.05666e10i 0.152496 0.264131i −0.779648 0.626218i \(-0.784602\pi\)
0.932145 + 0.362086i \(0.117935\pi\)
\(228\) 0 0
\(229\) −2.23605e9 + 1.29099e9i −0.0537307 + 0.0310214i −0.526625 0.850098i \(-0.676543\pi\)
0.472894 + 0.881119i \(0.343209\pi\)
\(230\) 0 0
\(231\) −2.99133e10 + 1.09942e10i −0.691210 + 0.254045i
\(232\) 0 0
\(233\) −6.09373e9 1.05546e10i −0.135451 0.234608i 0.790319 0.612696i \(-0.209915\pi\)
−0.925770 + 0.378088i \(0.876582\pi\)
\(234\) 0 0
\(235\) −2.15923e9 1.24663e9i −0.0461842 0.0266645i
\(236\) 0 0
\(237\) 4.44582e10i 0.915344i
\(238\) 0 0
\(239\) 2.44231e10i 0.484185i 0.970253 + 0.242092i \(0.0778337\pi\)
−0.970253 + 0.242092i \(0.922166\pi\)
\(240\) 0 0
\(241\) −2.20902e10 1.27538e10i −0.421816 0.243536i 0.274038 0.961719i \(-0.411641\pi\)
−0.695854 + 0.718183i \(0.744974\pi\)
\(242\) 0 0
\(243\) 2.45476e10 + 4.25177e10i 0.451628 + 0.782242i
\(244\) 0 0
\(245\) −2.86239e9 + 5.23304e8i −0.0507552 + 0.00927911i
\(246\) 0 0
\(247\) −5.49077e10 + 3.17010e10i −0.938635 + 0.541921i
\(248\) 0 0
\(249\) −1.15892e10 + 2.00732e10i −0.191055 + 0.330917i
\(250\) 0 0
\(251\) −3.10608e10 −0.493947 −0.246974 0.969022i \(-0.579436\pi\)
−0.246974 + 0.969022i \(0.579436\pi\)
\(252\) 0 0
\(253\) −4.06829e10 −0.624266
\(254\) 0 0
\(255\) 3.78221e8 6.55098e8i 0.00560163 0.00970232i
\(256\) 0 0
\(257\) 7.91694e9 4.57085e9i 0.113203 0.0653578i −0.442329 0.896853i \(-0.645848\pi\)
0.555532 + 0.831495i \(0.312514\pi\)
\(258\) 0 0
\(259\) 3.54319e10 + 9.64037e10i 0.489266 + 1.33120i
\(260\) 0 0
\(261\) −2.34425e10 4.06037e10i −0.312696 0.541605i
\(262\) 0 0
\(263\) −1.21844e10 7.03465e9i −0.157037 0.0906654i 0.419422 0.907791i \(-0.362233\pi\)
−0.576459 + 0.817126i \(0.695566\pi\)
\(264\) 0 0
\(265\) 1.40411e9i 0.0174902i
\(266\) 0 0
\(267\) 9.53080e10i 1.14770i
\(268\) 0 0
\(269\) −6.87971e10 3.97200e10i −0.801097 0.462513i 0.0427579 0.999085i \(-0.486386\pi\)
−0.843854 + 0.536572i \(0.819719\pi\)
\(270\) 0 0
\(271\) −5.55245e9 9.61712e9i −0.0625349 0.108314i 0.833063 0.553178i \(-0.186585\pi\)
−0.895598 + 0.444865i \(0.853252\pi\)
\(272\) 0 0
\(273\) 7.23865e10 + 6.03525e10i 0.788725 + 0.657603i
\(274\) 0 0
\(275\) −8.67148e10 + 5.00648e10i −0.914316 + 0.527880i
\(276\) 0 0
\(277\) −2.01780e10 + 3.49493e10i −0.205930 + 0.356681i −0.950429 0.310943i \(-0.899355\pi\)
0.744499 + 0.667624i \(0.232688\pi\)
\(278\) 0 0
\(279\) −3.96773e10 −0.392034
\(280\) 0 0
\(281\) 8.75112e10 0.837308 0.418654 0.908146i \(-0.362502\pi\)
0.418654 + 0.908146i \(0.362502\pi\)
\(282\) 0 0
\(283\) −7.08902e10 + 1.22785e11i −0.656973 + 1.13791i 0.324423 + 0.945912i \(0.394830\pi\)
−0.981395 + 0.191998i \(0.938503\pi\)
\(284\) 0 0
\(285\) 2.54209e9 1.46768e9i 0.0228239 0.0131774i
\(286\) 0 0
\(287\) 1.61119e10 9.30862e10i 0.140177 0.809872i
\(288\) 0 0
\(289\) −5.35175e10 9.26951e10i −0.451290 0.781657i
\(290\) 0 0
\(291\) −1.00497e10 5.80222e9i −0.0821555 0.0474325i
\(292\) 0 0
\(293\) 8.36333e10i 0.662941i −0.943466 0.331471i \(-0.892455\pi\)
0.943466 0.331471i \(-0.107545\pi\)
\(294\) 0 0
\(295\) 1.31534e10i 0.101120i
\(296\) 0 0
\(297\) 1.29650e11 + 7.48534e10i 0.966870 + 0.558222i
\(298\) 0 0
\(299\) 6.01541e10 + 1.04190e11i 0.435256 + 0.753886i
\(300\) 0 0
\(301\) 8.23928e9 4.76024e10i 0.0578549 0.334256i
\(302\) 0 0
\(303\) −1.21477e10 + 7.01345e9i −0.0827943 + 0.0478013i
\(304\) 0 0
\(305\) −6.28011e9 + 1.08775e10i −0.0415545 + 0.0719744i
\(306\) 0 0
\(307\) 1.47456e11 0.947414 0.473707 0.880683i \(-0.342916\pi\)
0.473707 + 0.880683i \(0.342916\pi\)
\(308\) 0 0
\(309\) 6.80994e10 0.424943
\(310\) 0 0
\(311\) −1.59072e10 + 2.75520e10i −0.0964208 + 0.167006i −0.910201 0.414167i \(-0.864073\pi\)
0.813780 + 0.581173i \(0.197406\pi\)
\(312\) 0 0
\(313\) −1.66358e11 + 9.60466e10i −0.979700 + 0.565630i −0.902180 0.431361i \(-0.858034\pi\)
−0.0775206 + 0.996991i \(0.524700\pi\)
\(314\) 0 0
\(315\) 3.57359e9 + 2.97949e9i 0.0204507 + 0.0170508i
\(316\) 0 0
\(317\) 4.47297e10 + 7.74742e10i 0.248788 + 0.430914i 0.963190 0.268822i \(-0.0866344\pi\)
−0.714402 + 0.699736i \(0.753301\pi\)
\(318\) 0 0
\(319\) −2.05482e11 1.18635e11i −1.11100 0.641438i
\(320\) 0 0
\(321\) 1.46286e11i 0.769009i
\(322\) 0 0
\(323\) 4.48305e10i 0.229172i
\(324\) 0 0
\(325\) 2.56434e11 + 1.48053e11i 1.27497 + 0.736106i
\(326\) 0 0
\(327\) −6.21311e10 1.07614e11i −0.300500 0.520481i
\(328\) 0 0
\(329\) −7.57724e10 2.06163e11i −0.356557 0.970128i
\(330\) 0 0
\(331\) 2.56920e11 1.48333e11i 1.17645 0.679221i 0.221256 0.975216i \(-0.428984\pi\)
0.955190 + 0.295994i \(0.0956510\pi\)
\(332\) 0 0
\(333\) 8.21142e10 1.42226e11i 0.365948 0.633840i
\(334\) 0 0
\(335\) 4.76319e9 0.0206631
\(336\) 0 0
\(337\) 2.11598e10 0.0893668 0.0446834 0.999001i \(-0.485772\pi\)
0.0446834 + 0.999001i \(0.485772\pi\)
\(338\) 0 0
\(339\) 1.16952e10 2.02567e10i 0.0480959 0.0833046i
\(340\) 0 0
\(341\) −1.73893e11 + 1.00397e11i −0.696445 + 0.402092i
\(342\) 0 0
\(343\) −2.23200e11 1.26072e11i −0.870705 0.491806i
\(344\) 0 0
\(345\) −2.78499e9 4.82374e9i −0.0105837 0.0183315i
\(346\) 0 0
\(347\) 4.16624e11 + 2.40538e11i 1.54263 + 0.890638i 0.998672 + 0.0515258i \(0.0164085\pi\)
0.543959 + 0.839112i \(0.316925\pi\)
\(348\) 0 0
\(349\) 1.98773e11i 0.717204i −0.933490 0.358602i \(-0.883253\pi\)
0.933490 0.358602i \(-0.116747\pi\)
\(350\) 0 0
\(351\) 4.42715e11i 1.55683i
\(352\) 0 0
\(353\) −3.20642e11 1.85123e11i −1.09909 0.634562i −0.163111 0.986608i \(-0.552153\pi\)
−0.935983 + 0.352046i \(0.885486\pi\)
\(354\) 0 0
\(355\) −1.43540e10 2.48618e10i −0.0479673 0.0830818i
\(356\) 0 0
\(357\) 6.25487e10 2.29889e10i 0.203803 0.0749051i
\(358\) 0 0
\(359\) 2.40132e11 1.38640e11i 0.763000 0.440518i −0.0673720 0.997728i \(-0.521461\pi\)
0.830372 + 0.557210i \(0.188128\pi\)
\(360\) 0 0
\(361\) 7.43621e10 1.28799e11i 0.230446 0.399144i
\(362\) 0 0
\(363\) 2.77518e10 0.0838901
\(364\) 0 0
\(365\) −4.76339e9 −0.0140475
\(366\) 0 0
\(367\) 1.79004e11 3.10044e11i 0.515069 0.892125i −0.484778 0.874637i \(-0.661100\pi\)
0.999847 0.0174880i \(-0.00556689\pi\)
\(368\) 0 0
\(369\) −1.30818e11 + 7.55276e10i −0.367323 + 0.212074i
\(370\) 0 0
\(371\) 7.92121e10 9.50066e10i 0.217075 0.260358i
\(372\) 0 0
\(373\) −1.58340e11 2.74253e11i −0.423546 0.733604i 0.572737 0.819739i \(-0.305882\pi\)
−0.996283 + 0.0861352i \(0.972548\pi\)
\(374\) 0 0
\(375\) −2.37763e10 1.37272e10i −0.0620873 0.0358461i
\(376\) 0 0
\(377\) 7.01659e11i 1.78892i
\(378\) 0 0
\(379\) 1.66427e11i 0.414331i −0.978306 0.207165i \(-0.933576\pi\)
0.978306 0.207165i \(-0.0664238\pi\)
\(380\) 0 0
\(381\) 1.50996e11 + 8.71775e10i 0.367115 + 0.211954i
\(382\) 0 0
\(383\) −3.48979e11 6.04450e11i −0.828715 1.43538i −0.899047 0.437852i \(-0.855739\pi\)
0.0703324 0.997524i \(-0.477594\pi\)
\(384\) 0 0
\(385\) 2.32010e10 + 4.01576e9i 0.0538187 + 0.00931524i
\(386\) 0 0
\(387\) −6.68975e10 + 3.86233e10i −0.151604 + 0.0875285i
\(388\) 0 0
\(389\) −3.53548e11 + 6.12363e11i −0.782844 + 1.35592i 0.147435 + 0.989072i \(0.452898\pi\)
−0.930279 + 0.366853i \(0.880435\pi\)
\(390\) 0 0
\(391\) 8.50680e10 0.184065
\(392\) 0 0
\(393\) −1.13538e11 −0.240091
\(394\) 0 0
\(395\) 1.64233e10 2.84460e10i 0.0339448 0.0587941i
\(396\) 0 0
\(397\) −4.53041e10 + 2.61563e10i −0.0915335 + 0.0528469i −0.545068 0.838392i \(-0.683496\pi\)
0.453535 + 0.891239i \(0.350163\pi\)
\(398\) 0 0
\(399\) 2.54804e11 + 4.41029e10i 0.503302 + 0.0871143i
\(400\) 0 0
\(401\) −3.34552e11 5.79461e11i −0.646121 1.11911i −0.984041 0.177940i \(-0.943057\pi\)
0.337920 0.941175i \(-0.390277\pi\)
\(402\) 0 0
\(403\) 5.14238e11 + 2.96896e11i 0.971162 + 0.560701i
\(404\) 0 0
\(405\) 6.08018e9i 0.0112297i
\(406\) 0 0
\(407\) 8.31106e11i 1.50135i
\(408\) 0 0
\(409\) 8.65580e11 + 4.99743e11i 1.52951 + 0.883063i 0.999382 + 0.0351448i \(0.0111893\pi\)
0.530127 + 0.847918i \(0.322144\pi\)
\(410\) 0 0
\(411\) 2.59557e11 + 4.49566e11i 0.448688 + 0.777151i
\(412\) 0 0
\(413\) 7.42040e11 8.89999e11i 1.25502 1.50527i
\(414\) 0 0
\(415\) 1.48304e10 8.56236e9i 0.0245436 0.0141702i
\(416\) 0 0
\(417\) 1.26491e10 2.19089e10i 0.0204855 0.0354820i
\(418\) 0 0
\(419\) 3.34939e11 0.530887 0.265444 0.964126i \(-0.414482\pi\)
0.265444 + 0.964126i \(0.414482\pi\)
\(420\) 0 0
\(421\) −1.25766e11 −0.195117 −0.0975584 0.995230i \(-0.531103\pi\)
−0.0975584 + 0.995230i \(0.531103\pi\)
\(422\) 0 0
\(423\) −1.75604e11 + 3.04156e11i −0.266688 + 0.461917i
\(424\) 0 0
\(425\) 1.81321e11 1.04685e11i 0.269586 0.155645i
\(426\) 0 0
\(427\) −1.03858e12 + 3.81715e11i −1.51187 + 0.555667i
\(428\) 0 0
\(429\) −3.81312e11 6.60452e11i −0.543529 0.941419i
\(430\) 0 0
\(431\) 3.26607e11 + 1.88567e11i 0.455909 + 0.263219i 0.710322 0.703876i \(-0.248549\pi\)
−0.254414 + 0.967095i \(0.581882\pi\)
\(432\) 0 0
\(433\) 9.74859e10i 0.133274i −0.997777 0.0666372i \(-0.978773\pi\)
0.997777 0.0666372i \(-0.0212270\pi\)
\(434\) 0 0
\(435\) 3.24851e10i 0.0434993i
\(436\) 0 0
\(437\) 2.85879e11 + 1.65052e11i 0.374986 + 0.216498i
\(438\) 0 0
\(439\) −4.74842e11 8.22451e11i −0.610181 1.05686i −0.991210 0.132301i \(-0.957763\pi\)
0.381028 0.924563i \(-0.375570\pi\)
\(440\) 0 0
\(441\) 7.37141e10 + 4.03204e11i 0.0928062 + 0.507635i
\(442\) 0 0
\(443\) 4.32032e11 2.49434e11i 0.532965 0.307708i −0.209258 0.977861i \(-0.567105\pi\)
0.742223 + 0.670153i \(0.233771\pi\)
\(444\) 0 0
\(445\) 3.52077e10 6.09815e10i 0.0425616 0.0737188i
\(446\) 0 0
\(447\) −9.71772e11 −1.15128
\(448\) 0 0
\(449\) 1.29243e12 1.50071 0.750355 0.661035i \(-0.229882\pi\)
0.750355 + 0.661035i \(0.229882\pi\)
\(450\) 0 0
\(451\) −3.82221e11 + 6.62026e11i −0.435031 + 0.753495i
\(452\) 0 0
\(453\) −8.55554e11 + 4.93955e11i −0.954565 + 0.551119i
\(454\) 0 0
\(455\) −2.40207e10 6.53560e10i −0.0262745 0.0714882i
\(456\) 0 0
\(457\) −3.45494e11 5.98413e11i −0.370525 0.641768i 0.619121 0.785295i \(-0.287489\pi\)
−0.989646 + 0.143527i \(0.954156\pi\)
\(458\) 0 0
\(459\) −2.71098e11 1.56518e11i −0.285081 0.164592i
\(460\) 0 0
\(461\) 1.01991e12i 1.05174i 0.850565 + 0.525870i \(0.176260\pi\)
−0.850565 + 0.525870i \(0.823740\pi\)
\(462\) 0 0
\(463\) 1.55917e12i 1.57681i 0.615159 + 0.788403i \(0.289092\pi\)
−0.615159 + 0.788403i \(0.710908\pi\)
\(464\) 0 0
\(465\) −2.38080e10 1.37455e10i −0.0236148 0.0136340i
\(466\) 0 0
\(467\) 9.37989e11 + 1.62464e12i 0.912581 + 1.58064i 0.810404 + 0.585871i \(0.199247\pi\)
0.102177 + 0.994766i \(0.467419\pi\)
\(468\) 0 0
\(469\) 3.22293e11 + 2.68713e11i 0.307591 + 0.256455i
\(470\) 0 0
\(471\) −3.73215e11 + 2.15476e11i −0.349434 + 0.201746i
\(472\) 0 0
\(473\) −1.95460e11 + 3.38546e11i −0.179549 + 0.310988i
\(474\) 0 0
\(475\) 8.12459e11 0.732285
\(476\) 0 0
\(477\) −1.97787e11 −0.174930
\(478\) 0 0
\(479\) −7.39485e11 + 1.28083e12i −0.641829 + 1.11168i 0.343195 + 0.939264i \(0.388491\pi\)
−0.985024 + 0.172416i \(0.944843\pi\)
\(480\) 0 0
\(481\) −2.12848e12 + 1.22888e12i −1.81308 + 1.04678i
\(482\) 0 0
\(483\) 8.36875e10 4.83504e11i 0.0699678 0.404238i
\(484\) 0 0
\(485\) 4.28679e9 + 7.42495e9i 0.00351799 + 0.00609334i
\(486\) 0 0
\(487\) −5.36952e11 3.10009e11i −0.432569 0.249744i 0.267872 0.963455i \(-0.413680\pi\)
−0.700440 + 0.713711i \(0.747013\pi\)
\(488\) 0 0
\(489\) 1.28238e12i 1.01421i
\(490\) 0 0
\(491\) 5.50450e11i 0.427417i 0.976898 + 0.213708i \(0.0685542\pi\)
−0.976898 + 0.213708i \(0.931446\pi\)
\(492\) 0 0
\(493\) 4.29662e11 + 2.48066e11i 0.327579 + 0.189128i
\(494\) 0 0
\(495\) −1.88247e10 3.26053e10i −0.0140930 0.0244098i
\(496\) 0 0
\(497\) 4.31330e11 2.49201e12i 0.317107 1.83208i
\(498\) 0 0
\(499\) −1.62133e12 + 9.36077e11i −1.17063 + 0.675864i −0.953829 0.300352i \(-0.902896\pi\)
−0.216802 + 0.976216i \(0.569563\pi\)
\(500\) 0 0
\(501\) 5.69182e11 9.85851e11i 0.403628 0.699104i
\(502\) 0 0
\(503\) 8.54975e10 0.0595522 0.0297761 0.999557i \(-0.490521\pi\)
0.0297761 + 0.999557i \(0.490521\pi\)
\(504\) 0 0
\(505\) 1.03634e10 0.00709070
\(506\) 0 0
\(507\) −6.10126e11 + 1.05677e12i −0.410094 + 0.710304i
\(508\) 0 0
\(509\) −2.14505e12 + 1.23845e12i −1.41647 + 0.817801i −0.995987 0.0894989i \(-0.971473\pi\)
−0.420485 + 0.907299i \(0.638140\pi\)
\(510\) 0 0
\(511\) −3.22307e11 2.68724e11i −0.209110 0.174346i
\(512\) 0 0
\(513\) −6.07365e11 1.05199e12i −0.387188 0.670629i
\(514\) 0 0
\(515\) −4.35725e10 2.51566e10i −0.0272948 0.0157587i
\(516\) 0 0
\(517\) 1.77735e12i 1.09412i
\(518\) 0 0
\(519\) 3.19870e11i 0.193518i
\(520\) 0 0
\(521\) 2.08692e12 + 1.20488e12i 1.24090 + 0.716431i 0.969277 0.245973i \(-0.0791076\pi\)
0.271619 + 0.962405i \(0.412441\pi\)
\(522\) 0 0
\(523\) −2.19179e11 3.79628e11i −0.128097 0.221871i 0.794842 0.606816i \(-0.207554\pi\)
−0.922939 + 0.384945i \(0.874220\pi\)
\(524\) 0 0
\(525\) −4.16626e11 1.13356e12i −0.239348 0.651222i
\(526\) 0 0
\(527\) 3.63609e11 2.09930e11i 0.205346 0.118557i
\(528\) 0 0
\(529\) −5.87382e11 + 1.01738e12i −0.326114 + 0.564847i
\(530\) 0 0
\(531\) −1.85282e12 −1.01137
\(532\) 0 0
\(533\) 2.26062e12 1.21326
\(534\) 0 0
\(535\) 5.40397e10 9.35995e10i 0.0285181 0.0493948i
\(536\) 0 0
\(537\) −1.05808e12 + 6.10883e11i −0.549078 + 0.317011i
\(538\) 0 0
\(539\) 1.34331e12 + 1.58059e12i 0.685529 + 0.806622i
\(540\) 0 0
\(541\) −1.46060e12 2.52983e12i −0.733066 1.26971i −0.955567 0.294775i \(-0.904755\pi\)
0.222501 0.974932i \(-0.428578\pi\)
\(542\) 0 0
\(543\) 8.01872e11 + 4.62961e11i 0.395827 + 0.228531i
\(544\) 0 0
\(545\) 9.18073e10i 0.0445752i
\(546\) 0 0
\(547\) 6.64645e10i 0.0317429i 0.999874 + 0.0158715i \(0.00505225\pi\)
−0.999874 + 0.0158715i \(0.994948\pi\)
\(548\) 0 0
\(549\) 1.53223e12 + 8.84635e11i 0.719862 + 0.415612i
\(550\) 0 0
\(551\) 9.62613e11 + 1.66729e12i 0.444907 + 0.770602i
\(552\) 0 0
\(553\) 2.71602e12 9.98236e11i 1.23501 0.453910i
\(554\) 0 0
\(555\) 9.85436e10 5.68942e10i 0.0440869 0.0254536i
\(556\) 0 0
\(557\) −1.13156e12 + 1.95992e12i −0.498115 + 0.862761i −0.999998 0.00217510i \(-0.999308\pi\)
0.501883 + 0.864936i \(0.332641\pi\)
\(558\) 0 0
\(559\) 1.15603e12 0.500746
\(560\) 0 0
\(561\) −5.39239e11 −0.229852
\(562\) 0 0
\(563\) 1.97456e12 3.42004e12i 0.828290 1.43464i −0.0710888 0.997470i \(-0.522647\pi\)
0.899379 0.437170i \(-0.144019\pi\)
\(564\) 0 0
\(565\) −1.49660e10 + 8.64063e9i −0.00617857 + 0.00356720i
\(566\) 0 0
\(567\) −3.43010e11 + 4.11405e11i −0.139374 + 0.167165i
\(568\) 0 0
\(569\) −1.26169e12 2.18531e12i −0.504599 0.873991i −0.999986 0.00531851i \(-0.998307\pi\)
0.495387 0.868672i \(-0.335026\pi\)
\(570\) 0 0
\(571\) −2.86036e12 1.65143e12i −1.12605 0.650126i −0.183112 0.983092i \(-0.558617\pi\)
−0.942939 + 0.332967i \(0.891950\pi\)
\(572\) 0 0
\(573\) 1.32875e12i 0.514928i
\(574\) 0 0
\(575\) 1.54168e12i 0.588151i
\(576\) 0 0
\(577\) 2.14328e12 + 1.23742e12i 0.804983 + 0.464757i 0.845211 0.534433i \(-0.179475\pi\)
−0.0402275 + 0.999191i \(0.512808\pi\)
\(578\) 0 0
\(579\) −1.15688e12 2.00377e12i −0.427793 0.740959i
\(580\) 0 0
\(581\) 1.48652e12 + 2.57294e11i 0.541224 + 0.0936781i
\(582\) 0 0
\(583\) −8.66836e11 + 5.00468e11i −0.310762 + 0.179419i
\(584\) 0 0
\(585\) −5.56686e10 + 9.64209e10i −0.0196521 + 0.0340384i
\(586\) 0 0
\(587\) 7.58274e11 0.263606 0.131803 0.991276i \(-0.457923\pi\)
0.131803 + 0.991276i \(0.457923\pi\)
\(588\) 0 0
\(589\) 1.62926e12 0.557790
\(590\) 0 0
\(591\) 1.19068e12 2.06232e12i 0.401469 0.695365i
\(592\) 0 0
\(593\) −8.64858e10 + 4.99326e10i −0.0287209 + 0.0165820i −0.514292 0.857615i \(-0.671945\pi\)
0.485571 + 0.874197i \(0.338612\pi\)
\(594\) 0 0
\(595\) −4.85133e10 8.39694e9i −0.0158684 0.00274660i
\(596\) 0 0
\(597\) −1.90276e12 3.29568e12i −0.613056 1.06184i
\(598\) 0 0
\(599\) 1.88135e12 + 1.08620e12i 0.597102 + 0.344737i 0.767901 0.640569i \(-0.221302\pi\)
−0.170799 + 0.985306i \(0.554635\pi\)
\(600\) 0 0
\(601\) 4.36599e12i 1.36505i 0.730863 + 0.682524i \(0.239118\pi\)
−0.730863 + 0.682524i \(0.760882\pi\)
\(602\) 0 0
\(603\) 6.70957e11i 0.206665i
\(604\) 0 0
\(605\) −1.77566e10 1.02518e10i −0.00538841 0.00311100i
\(606\) 0 0
\(607\) −1.04817e12 1.81549e12i −0.313389 0.542806i 0.665705 0.746215i \(-0.268131\pi\)
−0.979094 + 0.203410i \(0.934798\pi\)
\(608\) 0 0
\(609\) 1.83263e12 2.19805e12i 0.539879 0.647529i
\(610\) 0 0
\(611\) 4.55184e12 2.62801e12i 1.32130 0.762854i
\(612\) 0 0
\(613\) 1.37092e12 2.37450e12i 0.392138 0.679204i −0.600593 0.799555i \(-0.705069\pi\)
0.992731 + 0.120351i \(0.0384021\pi\)
\(614\) 0 0
\(615\) −1.04661e11 −0.0295017
\(616\) 0 0
\(617\) −3.83016e12 −1.06398 −0.531990 0.846751i \(-0.678556\pi\)
−0.531990 + 0.846751i \(0.678556\pi\)
\(618\) 0 0
\(619\) 3.22983e12 5.59423e12i 0.884244 1.53156i 0.0376658 0.999290i \(-0.488008\pi\)
0.846578 0.532265i \(-0.178659\pi\)
\(620\) 0 0
\(621\) −1.99620e12 + 1.15251e12i −0.538631 + 0.310979i
\(622\) 0 0
\(623\) 5.82251e12 2.13998e12i 1.54851 0.569134i
\(624\) 0 0
\(625\) −1.89213e12 3.27726e12i −0.496010 0.859115i
\(626\) 0 0
\(627\) −1.81216e12 1.04625e12i −0.468266 0.270354i
\(628\) 0 0
\(629\) 1.73784e12i 0.442672i
\(630\) 0 0
\(631\) 4.58234e12i 1.15068i 0.817913 + 0.575341i \(0.195131\pi\)
−0.817913 + 0.575341i \(0.804869\pi\)
\(632\) 0 0
\(633\) 3.56457e12 + 2.05800e12i 0.882450 + 0.509483i
\(634\) 0 0
\(635\) −6.44084e10 1.11559e11i −0.0157203 0.0272284i
\(636\) 0 0
\(637\) 2.06171e12 5.77732e12i 0.496134 1.39027i
\(638\) 0 0
\(639\) −3.50211e12 + 2.02195e12i −0.830953 + 0.479751i
\(640\) 0 0
\(641\) −1.97507e12 + 3.42093e12i −0.462085 + 0.800355i −0.999065 0.0432402i \(-0.986232\pi\)
0.536979 + 0.843595i \(0.319565\pi\)
\(642\) 0 0
\(643\) −5.41792e12 −1.24992 −0.624961 0.780656i \(-0.714885\pi\)
−0.624961 + 0.780656i \(0.714885\pi\)
\(644\) 0 0
\(645\) −5.35215e10 −0.0121761
\(646\) 0 0
\(647\) 2.41856e12 4.18907e12i 0.542610 0.939828i −0.456143 0.889906i \(-0.650769\pi\)
0.998753 0.0499218i \(-0.0158972\pi\)
\(648\) 0 0
\(649\) −8.12032e12 + 4.68827e12i −1.79668 + 1.03732i
\(650\) 0 0
\(651\) −8.35477e11 2.27318e12i −0.182314 0.496043i
\(652\) 0 0
\(653\) −3.08329e12 5.34042e12i −0.663598 1.14939i −0.979663 0.200648i \(-0.935695\pi\)
0.316065 0.948737i \(-0.397638\pi\)
\(654\) 0 0
\(655\) 7.26461e10 + 4.19422e10i 0.0154215 + 0.00890360i
\(656\) 0 0
\(657\) 6.70986e11i 0.140498i
\(658\) 0 0
\(659\) 5.47527e12i 1.13089i −0.824785 0.565446i \(-0.808704\pi\)
0.824785 0.565446i \(-0.191296\pi\)
\(660\) 0 0
\(661\) 4.49391e12 + 2.59456e12i 0.915625 + 0.528636i 0.882237 0.470806i \(-0.156037\pi\)
0.0333884 + 0.999442i \(0.489370\pi\)
\(662\) 0 0
\(663\) 7.97323e11 + 1.38100e12i 0.160259 + 0.277577i
\(664\) 0 0
\(665\) −1.46741e11 1.22346e11i −0.0290974 0.0242601i
\(666\) 0 0
\(667\) 3.16377e12 1.82660e12i 0.618926 0.357337i
\(668\) 0 0
\(669\) −1.71782e12 + 2.97536e12i −0.331559 + 0.574278i
\(670\) 0 0
\(671\) 8.95370e12 1.70510
\(672\) 0 0
\(673\) 6.77917e12 1.27382 0.636911 0.770937i \(-0.280212\pi\)
0.636911 + 0.770937i \(0.280212\pi\)
\(674\) 0 0
\(675\) −2.83657e12 + 4.91308e12i −0.525928 + 0.910934i
\(676\) 0 0
\(677\) −8.88766e12 + 5.13129e12i −1.62607 + 0.938810i −0.640816 + 0.767695i \(0.721404\pi\)
−0.985251 + 0.171115i \(0.945263\pi\)
\(678\) 0 0
\(679\) −1.28816e11 + 7.44233e11i −0.0232571 + 0.134368i
\(680\) 0 0
\(681\) −5.95418e11 1.03129e12i −0.106086 0.183747i
\(682\) 0 0
\(683\) −3.57354e12 2.06318e12i −0.628356 0.362781i 0.151759 0.988417i \(-0.451506\pi\)
−0.780115 + 0.625636i \(0.784839\pi\)
\(684\) 0 0
\(685\) 3.83532e11i 0.0665570i
\(686\) 0 0
\(687\) 2.51999e11i 0.0431611i
\(688\) 0 0
\(689\) 2.56342e12 + 1.47999e12i 0.433345 + 0.250192i
\(690\) 0 0
\(691\) −4.85220e11 8.40426e11i −0.0809632 0.140232i 0.822701 0.568475i \(-0.192466\pi\)
−0.903664 + 0.428242i \(0.859133\pi\)
\(692\) 0 0
\(693\) 5.65672e11 3.26816e12i 0.0931676 0.538275i
\(694\) 0 0
\(695\) −1.61867e10 + 9.34541e9i −0.00263164 + 0.00151938i
\(696\) 0 0
\(697\) 7.99223e11 1.38429e12i 0.128269 0.222168i
\(698\) 0 0
\(699\) −1.18949e12 −0.188457
\(700\) 0 0
\(701\) 7.79861e12 1.21979 0.609897 0.792481i \(-0.291211\pi\)
0.609897 + 0.792481i \(0.291211\pi\)
\(702\) 0 0
\(703\) −3.37183e12 + 5.84018e12i −0.520675 + 0.901835i
\(704\) 0 0
\(705\) −2.10739e11 + 1.21670e11i −0.0321288 + 0.0185496i
\(706\) 0 0
\(707\) 7.01218e11 + 5.84643e11i 0.105552 + 0.0880042i
\(708\) 0 0
\(709\) −8.36199e11 1.44834e12i −0.124280 0.215260i 0.797171 0.603753i \(-0.206329\pi\)
−0.921451 + 0.388494i \(0.872995\pi\)
\(710\) 0 0
\(711\) −4.00699e12 2.31343e12i −0.588037 0.339503i
\(712\) 0 0
\(713\) 3.09159e12i 0.448001i
\(714\) 0 0
\(715\) 5.63441e11i 0.0806253i
\(716\) 0 0
\(717\) 2.06433e12 + 1.19184e12i 0.291704 + 0.168415i
\(718\) 0 0
\(719\) 5.38709e12 + 9.33071e12i 0.751751 + 1.30207i 0.946973 + 0.321312i \(0.104124\pi\)
−0.195222 + 0.980759i \(0.562543\pi\)
\(720\) 0 0
\(721\) −1.52906e12 4.16030e12i −0.210725 0.573345i
\(722\) 0 0
\(723\) −2.15599e12 + 1.24476e12i −0.293443 + 0.169420i
\(724\) 0 0
\(725\) 4.49568e12 7.78674e12i 0.604330 1.04673i
\(726\) 0 0
\(727\) 5.40436e11 0.0717529 0.0358764 0.999356i \(-0.488578\pi\)
0.0358764 + 0.999356i \(0.488578\pi\)
\(728\) 0 0
\(729\) 6.45133e12 0.846009
\(730\) 0 0
\(731\) 4.08706e11 7.07900e11i 0.0529399 0.0916946i
\(732\) 0 0
\(733\) −1.29761e12 + 7.49173e11i −0.166026 + 0.0958549i −0.580710 0.814110i \(-0.697225\pi\)
0.414685 + 0.909965i \(0.363892\pi\)
\(734\) 0 0
\(735\) −9.54519e10 + 2.67476e11i −0.0120640 + 0.0338058i
\(736\) 0 0
\(737\) −1.69775e12 2.94059e12i −0.211968 0.367139i
\(738\) 0 0
\(739\) −9.39840e12 5.42617e12i −1.15919 0.669258i −0.208079 0.978112i \(-0.566721\pi\)
−0.951109 + 0.308855i \(0.900054\pi\)
\(740\) 0 0
\(741\) 6.18798e12i 0.753993i
\(742\) 0 0
\(743\) 1.57187e13i 1.89220i 0.323872 + 0.946101i \(0.395015\pi\)
−0.323872 + 0.946101i \(0.604985\pi\)
\(744\) 0 0
\(745\) 6.21776e11 + 3.58982e11i 0.0739487 + 0.0426943i
\(746\) 0 0
\(747\) −1.20612e12 2.08906e12i −0.141725 0.245476i
\(748\) 0 0
\(749\) 8.93686e12 3.28462e12i 1.03757 0.381344i
\(750\) 0 0
\(751\) −1.11534e13 + 6.43940e12i −1.27946 + 0.738696i −0.976749 0.214387i \(-0.931225\pi\)
−0.302710 + 0.953083i \(0.597891\pi\)
\(752\) 0 0
\(753\) −1.51575e12 + 2.62536e12i −0.171811 + 0.297586i
\(754\) 0 0
\(755\) 7.29887e11 0.0817512
\(756\) 0 0
\(757\) −1.05114e13 −1.16340 −0.581702 0.813402i \(-0.697613\pi\)
−0.581702 + 0.813402i \(0.697613\pi\)
\(758\) 0 0
\(759\) −1.98531e12 + 3.43866e12i −0.217141 + 0.376098i
\(760\) 0 0
\(761\) −9.98791e12 + 5.76652e12i −1.07955 + 0.623280i −0.930776 0.365591i \(-0.880867\pi\)
−0.148777 + 0.988871i \(0.547534\pi\)
\(762\) 0 0
\(763\) −5.17926e12 + 6.21198e12i −0.553232 + 0.663544i
\(764\) 0 0
\(765\) 3.93624e10 + 6.81776e10i 0.00415532 + 0.00719723i
\(766\) 0 0
\(767\) 2.40135e13 + 1.38642e13i 2.50540 + 1.44649i
\(768\) 0 0
\(769\) 6.73610e12i 0.694609i 0.937752 + 0.347304i \(0.112903\pi\)
−0.937752 + 0.347304i \(0.887097\pi\)
\(770\) 0 0
\(771\) 8.92223e11i 0.0909345i
\(772\) 0 0
\(773\) 1.27287e13 + 7.34892e12i 1.28226 + 0.740313i 0.977261 0.212039i \(-0.0680104\pi\)
0.304999 + 0.952353i \(0.401344\pi\)
\(774\) 0 0
\(775\) −3.80454e12 6.58966e12i −0.378830 0.656154i
\(776\) 0 0
\(777\) 9.87743e12 + 1.70964e12i 0.972186 + 0.168271i
\(778\) 0 0
\(779\) 5.37172e12 3.10137e12i 0.522631 0.301741i
\(780\) 0 0
\(781\) −1.02324e13 + 1.77231e13i −0.984121 + 1.70455i
\(782\) 0 0
\(783\) −1.34432e13 −1.27813
\(784\) 0 0
\(785\) 3.18395e11 0.0299263
\(786\) 0 0
\(787\) −7.36414e12 + 1.27551e13i −0.684283 + 1.18521i 0.289379 + 0.957215i \(0.406551\pi\)
−0.973662 + 0.227998i \(0.926782\pi\)
\(788\) 0 0
\(789\) −1.18919e12 + 6.86576e11i −0.109245 + 0.0630728i
\(790\) 0 0
\(791\) −1.50011e12 2.59647e11i −0.136247 0.0235824i
\(792\) 0 0
\(793\) −1.32390e13 2.29306e13i −1.18885 2.05914i
\(794\) 0 0
\(795\) −1.18680e11 6.85200e10i −0.0105372 0.00608367i
\(796\) 0 0
\(797\) 1.71463e12i 0.150525i −0.997164 0.0752625i \(-0.976021\pi\)
0.997164 0.0752625i \(-0.0239795\pi\)
\(798\) 0 0
\(799\) 3.71644e12i 0.322602i
\(800\) 0 0
\(801\) −8.59004e12 4.95946e12i −0.737308 0.425685i
\(802\) 0 0
\(803\) 1.69782e12 + 2.94071e12i 0.144103 + 0.249593i
\(804\) 0 0
\(805\) −2.32157e11 + 2.78448e11i −0.0194850 + 0.0233702i
\(806\) 0 0
\(807\) −6.71454e12 + 3.87664e12i −0.557296 + 0.321755i
\(808\) 0 0
\(809\) 5.95793e12 1.03194e13i 0.489020 0.847008i −0.510900 0.859640i \(-0.670688\pi\)
0.999920 + 0.0126325i \(0.00402114\pi\)
\(810\) 0 0
\(811\) −7.25756e12 −0.589110 −0.294555 0.955634i \(-0.595171\pi\)
−0.294555 + 0.955634i \(0.595171\pi\)
\(812\) 0 0
\(813\) −1.08383e12 −0.0870068
\(814\) 0 0
\(815\) −4.73723e11 + 8.20513e11i −0.0376111 + 0.0651443i
\(816\) 0 0
\(817\) 2.74699e12 1.58597e12i 0.215704 0.124537i
\(818\) 0 0
\(819\) −9.20625e12 + 3.38363e12i −0.714999 + 0.262788i
\(820\) 0 0
\(821\) −9.54978e12 1.65407e13i −0.733583 1.27060i −0.955342 0.295501i \(-0.904513\pi\)
0.221760 0.975101i \(-0.428820\pi\)
\(822\) 0 0
\(823\) 4.68988e12 + 2.70770e12i 0.356338 + 0.205732i 0.667473 0.744634i \(-0.267376\pi\)
−0.311135 + 0.950366i \(0.600709\pi\)
\(824\) 0 0
\(825\) 9.77258e12i 0.734457i
\(826\) 0 0
\(827\) 6.28870e12i 0.467505i −0.972296 0.233752i \(-0.924899\pi\)
0.972296 0.233752i \(-0.0751005\pi\)
\(828\) 0 0
\(829\) 9.34566e11 + 5.39572e11i 0.0687250 + 0.0396784i 0.533969 0.845504i \(-0.320700\pi\)
−0.465244 + 0.885183i \(0.654033\pi\)
\(830\) 0 0
\(831\) 1.96936e12 + 3.41103e12i 0.143258 + 0.248131i
\(832\) 0 0
\(833\) −2.80886e12 3.30501e12i −0.202128 0.237832i
\(834\) 0 0
\(835\) −7.28366e11 + 4.20523e11i −0.0518514 + 0.0299364i
\(836\) 0 0
\(837\) −5.68828e12 + 9.85239e12i −0.400605 + 0.693869i
\(838\) 0 0
\(839\) 1.32667e13 0.924345 0.462173 0.886790i \(-0.347070\pi\)
0.462173 + 0.886790i \(0.347070\pi\)
\(840\) 0 0
\(841\) 6.79901e12 0.468667
\(842\) 0 0
\(843\) 4.27051e12 7.39675e12i 0.291243 0.504448i
\(844\) 0 0
\(845\) 7.80762e11 4.50773e11i 0.0526821 0.0304160i
\(846\) 0 0
\(847\) −6.23121e11 1.69540e12i −0.0416003 0.113187i
\(848\) 0 0
\(849\) 6.91883e12 + 1.19838e13i 0.457034 + 0.791606i
\(850\) 0 0
\(851\) 1.10820e13 + 6.39821e12i 0.724329 + 0.418191i
\(852\) 0 0
\(853\) 1.26415e13i 0.817577i −0.912629 0.408789i \(-0.865951\pi\)
0.912629 0.408789i \(-0.134049\pi\)
\(854\) 0 0
\(855\) 3.05489e11i 0.0195501i
\(856\) 0 0
\(857\) 1.62106e13 + 9.35920e12i 1.02656 + 0.592687i 0.915998 0.401182i \(-0.131401\pi\)
0.110565 + 0.993869i \(0.464734\pi\)
\(858\) 0 0
\(859\) 3.41840e12 + 5.92084e12i 0.214217 + 0.371034i 0.953030 0.302876i \(-0.0979468\pi\)
−0.738813 + 0.673910i \(0.764613\pi\)
\(860\) 0 0
\(861\) −7.08171e12 5.90440e12i −0.439161 0.366152i
\(862\) 0 0
\(863\) 2.33827e13 1.35000e13i 1.43498 0.828485i 0.437483 0.899227i \(-0.355870\pi\)
0.997495 + 0.0707418i \(0.0225366\pi\)
\(864\) 0 0
\(865\) 1.18163e11 2.04665e11i 0.00717646 0.0124300i
\(866\) 0 0
\(867\) −1.04465e13 −0.627894
\(868\) 0 0
\(869\) −2.34151e13 −1.39286
\(870\) 0 0
\(871\) −5.02061e12 + 8.69595e12i −0.295580 + 0.511959i
\(872\) 0 0
\(873\) 1.04590e12 6.03851e11i 0.0609433 0.0351857i
\(874\) 0 0
\(875\) −3.04760e11 + 1.76075e12i −0.0175761 + 0.101546i
\(876\) 0 0
\(877\) 1.38831e13 + 2.40463e13i 0.792481 + 1.37262i 0.924426 + 0.381361i \(0.124544\pi\)
−0.131945 + 0.991257i \(0.542122\pi\)
\(878\) 0 0
\(879\) −7.06897e12 4.08127e12i −0.399399 0.230593i
\(880\) 0 0
\(881\) 1.84371e13i 1.03110i 0.856859 + 0.515550i \(0.172412\pi\)
−0.856859 + 0.515550i \(0.827588\pi\)
\(882\) 0 0
\(883\) 2.63903e13i 1.46090i −0.682966 0.730450i \(-0.739310\pi\)
0.682966 0.730450i \(-0.260690\pi\)
\(884\) 0 0
\(885\) −1.11177e12 6.41879e11i −0.0609213 0.0351729i
\(886\) 0 0
\(887\) −1.70404e13 2.95148e13i −0.924321 1.60097i −0.792649 0.609678i \(-0.791299\pi\)
−0.131672 0.991293i \(-0.542035\pi\)
\(888\) 0 0
\(889\) 1.93544e12 1.11820e13i 0.103925 0.600428i
\(890\) 0 0
\(891\) 3.75364e12 2.16716e12i 0.199528 0.115197i
\(892\) 0 0
\(893\) 7.21078e12 1.24894e13i 0.379447 0.657221i
\(894\) 0 0
\(895\) 9.02665e11 0.0470244
\(896\) 0 0
\(897\) 1.17420e13 0.605586
\(898\) 0 0
\(899\) 9.01535e12 1.56151e13i 0.460325 0.797306i
\(900\) 0 0
\(901\) 1.81255e12 1.04648e12i 0.0916282 0.0529016i
\(902\) 0 0
\(903\) −3.62144e12 3.01939e12i −0.181254 0.151121i
\(904\) 0 0
\(905\) −3.42045e11 5.92439e11i −0.0169498 0.0293579i
\(906\) 0 0
\(907\) 3.76434e12 + 2.17334e12i 0.184695 + 0.106634i 0.589497 0.807771i \(-0.299326\pi\)
−0.404802 + 0.914405i \(0.632659\pi\)
\(908\) 0 0
\(909\) 1.45981e12i 0.0709186i
\(910\) 0 0
\(911\) 2.13135e13i 1.02523i −0.858617 0.512617i \(-0.828676\pi\)
0.858617 0.512617i \(-0.171324\pi\)
\(912\) 0 0
\(913\) −1.05721e13 6.10378e12i −0.503548 0.290724i
\(914\) 0 0
\(915\) 6.12934e11 + 1.06163e12i 0.0289080 + 0.0500702i
\(916\) 0 0
\(917\) 2.54932e12 + 6.93624e12i 0.119059 + 0.323938i
\(918\) 0 0
\(919\) −7.30324e12 + 4.21653e12i −0.337750 + 0.195000i −0.659277 0.751900i \(-0.729137\pi\)
0.321526 + 0.946901i \(0.395804\pi\)
\(920\) 0 0
\(921\) 7.19580e12 1.24635e13i 0.329542 0.570783i
\(922\) 0 0
\(923\) 6.05189e13 2.74463
\(924\) 0 0
\(925\) 3.14948e13 1.41449
\(926\) 0 0
\(927\) −3.54363e12 + 6.13776e12i −0.157612 + 0.272993i
\(928\) 0 0
\(929\) −7.18120e12 + 4.14607e12i −0.316320 + 0.182627i −0.649751 0.760147i \(-0.725127\pi\)
0.333431 + 0.942774i \(0.391794\pi\)
\(930\) 0 0
\(931\) −3.02690e12 1.65566e13i −0.132046 0.722269i
\(932\) 0 0
\(933\) 1.55253e12 + 2.68906e12i 0.0670767 + 0.116180i
\(934\) 0 0
\(935\) 3.45025e11 + 1.99200e11i 0.0147638 + 0.00852388i
\(936\) 0 0
\(937\) 2.25567e13i 0.955978i −0.878366 0.477989i \(-0.841366\pi\)
0.878366 0.477989i \(-0.158634\pi\)
\(938\) 0 0
\(939\) 1.87482e13i 0.786979i
\(940\) 0 0
\(941\) −1.94352e12 1.12209e12i −0.0808047 0.0466526i 0.459053 0.888409i \(-0.348189\pi\)
−0.539858 + 0.841756i \(0.681522\pi\)
\(942\) 0 0
\(943\) −5.88499e12 1.01931e13i −0.242350 0.419763i
\(944\) 0 0
\(945\) 1.25217e12 4.60218e11i 0.0510764 0.0187724i
\(946\) 0 0
\(947\) 1.29414e13 7.47171e12i 0.522885 0.301888i −0.215229 0.976564i \(-0.569050\pi\)
0.738114 + 0.674676i \(0.235717\pi\)
\(948\) 0 0
\(949\) 5.02082e12 8.69632e12i 0.200945 0.348047i
\(950\) 0 0
\(951\) 8.73118e12 0.346147
\(952\) 0 0
\(953\) −1.94651e13 −0.764433 −0.382216 0.924073i \(-0.624839\pi\)
−0.382216 + 0.924073i \(0.624839\pi\)
\(954\) 0 0
\(955\) 4.90852e11 8.50180e11i 0.0190957 0.0330747i
\(956\) 0 0
\(957\) −2.00549e13 + 1.15787e13i −0.772888 + 0.446227i
\(958\) 0 0
\(959\) 2.16368e13 2.59510e13i 0.826054 0.990765i
\(960\) 0 0
\(961\) 5.59041e12 + 9.68287e12i 0.211441 + 0.366226i
\(962\) 0 0
\(963\) −1.31847e13 7.61219e12i −0.494029 0.285227i
\(964\) 0 0
\(965\) 1.70945e12i 0.0634575i
\(966\) 0 0
\(967\) 2.68758e13i 0.988421i −0.869342 0.494210i \(-0.835457\pi\)
0.869342 0.494210i \(-0.164543\pi\)
\(968\) 0 0
\(969\) 3.78923e12 + 2.18771e12i 0.138068 + 0.0797137i
\(970\) 0 0
\(971\) 1.53534e13 + 2.65929e13i 0.554266 + 0.960017i 0.997960 + 0.0638387i \(0.0203343\pi\)
−0.443694 + 0.896178i \(0.646332\pi\)
\(972\) 0 0
\(973\) −1.62246e12 2.80825e11i −0.0580319 0.0100445i
\(974\) 0 0
\(975\) 2.50278e13 1.44498e13i 0.886956 0.512084i
\(976\) 0 0
\(977\) −1.20379e13 + 2.08503e13i −0.422695 + 0.732129i −0.996202 0.0870716i \(-0.972249\pi\)
0.573507 + 0.819201i \(0.305582\pi\)
\(978\) 0 0
\(979\) −5.01965e13 −1.74643
\(980\) 0 0
\(981\) 1.29323e13 0.445824
\(982\) 0 0
\(983\) −7.76577e12 + 1.34507e13i −0.265273 + 0.459467i −0.967635 0.252353i \(-0.918796\pi\)
0.702362 + 0.711820i \(0.252129\pi\)
\(984\) 0 0
\(985\) −1.52368e12 + 8.79700e11i −0.0515741 + 0.0297763i
\(986\) 0 0
\(987\) −2.11233e13 3.65613e12i −0.708490 0.122629i
\(988\) 0 0
\(989\) −3.00946e12 5.21254e12i −0.100024 0.173247i
\(990\) 0 0
\(991\) −4.71861e11 2.72429e11i −0.0155411 0.00897268i 0.492209 0.870477i \(-0.336189\pi\)
−0.507750 + 0.861504i \(0.669523\pi\)
\(992\) 0 0
\(993\) 2.89543e13i 0.945022i
\(994\) 0 0
\(995\) 2.81160e12i 0.0909388i
\(996\) 0 0
\(997\) −1.84745e13 1.06663e13i −0.592168 0.341888i 0.173786 0.984783i \(-0.444400\pi\)
−0.765954 + 0.642895i \(0.777733\pi\)
\(998\) 0 0
\(999\) −2.35444e13 4.07801e13i −0.747898 1.29540i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 112.10.p.b.31.9 yes 24
4.3 odd 2 inner 112.10.p.b.31.4 24
7.5 odd 6 inner 112.10.p.b.47.4 yes 24
28.19 even 6 inner 112.10.p.b.47.9 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.10.p.b.31.4 24 4.3 odd 2 inner
112.10.p.b.31.9 yes 24 1.1 even 1 trivial
112.10.p.b.47.4 yes 24 7.5 odd 6 inner
112.10.p.b.47.9 yes 24 28.19 even 6 inner