Properties

Label 112.10.p.b.31.2
Level $112$
Weight $10$
Character 112.31
Analytic conductor $57.684$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [112,10,Mod(31,112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(112, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 1])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("112.31"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 112.p (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(57.6840136504\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 31.2
Character \(\chi\) \(=\) 112.31
Dual form 112.10.p.b.47.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-104.726 + 181.391i) q^{3} +(1126.36 - 650.304i) q^{5} +(-5633.01 - 2936.47i) q^{7} +(-12093.7 - 20946.9i) q^{9} +(-40016.3 - 23103.4i) q^{11} -78895.6i q^{13} +272416. i q^{15} +(305883. + 176602. i) q^{17} +(61180.6 + 105968. i) q^{19} +(1.12257e6 - 714253. i) q^{21} +(-1.09732e6 + 633539. i) q^{23} +(-130773. + 226505. i) q^{25} +943463. q^{27} +6.92650e6 q^{29} +(3.06287e6 - 5.30505e6i) q^{31} +(8.38153e6 - 4.83908e6i) q^{33} +(-8.25438e6 + 355647. i) q^{35} +(-555787. - 962651. i) q^{37} +(1.43110e7 + 8.26244e6i) q^{39} -9.79928e6i q^{41} -2.93595e6i q^{43} +(-2.72437e7 - 1.57292e7i) q^{45} +(2.03658e7 + 3.52745e7i) q^{47} +(2.31079e7 + 3.30823e7i) q^{49} +(-6.40680e7 + 3.69897e7i) q^{51} +(-4.25860e7 + 7.37611e7i) q^{53} -6.00970e7 q^{55} -2.56289e7 q^{57} +(-8.04025e6 + 1.39261e7i) q^{59} +(-1.68625e8 + 9.73559e7i) q^{61} +(6.61397e6 + 1.53507e8i) q^{63} +(-5.13061e7 - 8.88647e7i) q^{65} +(1.61154e8 + 9.30424e7i) q^{67} -2.65393e8i q^{69} +2.86511e8i q^{71} +(8.20997e7 + 4.74003e7i) q^{73} +(-2.73907e7 - 4.74422e7i) q^{75} +(1.57570e8 + 2.47649e8i) q^{77} +(5.77449e7 - 3.33390e7i) q^{79} +(1.39235e8 - 2.41162e8i) q^{81} -4.63680e7 q^{83} +4.59379e8 q^{85} +(-7.25387e8 + 1.25641e9i) q^{87} +(1.60330e8 - 9.25666e7i) q^{89} +(-2.31674e8 + 4.44419e8i) q^{91} +(6.41527e8 + 1.11116e9i) q^{93} +(1.37823e8 + 7.95719e7i) q^{95} -1.37549e9i q^{97} +1.11763e9i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 1704 q^{5} - 80428 q^{9} - 1578672 q^{17} + 1219540 q^{21} + 8001240 q^{25} - 6709416 q^{29} - 29129772 q^{33} - 11130084 q^{37} + 57023292 q^{45} - 12671904 q^{49} - 93652164 q^{53} + 742621544 q^{57}+ \cdots - 1432348316 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/112\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(17\) \(85\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −104.726 + 181.391i −0.746466 + 1.29292i 0.203040 + 0.979170i \(0.434918\pi\)
−0.949507 + 0.313747i \(0.898416\pi\)
\(4\) 0 0
\(5\) 1126.36 650.304i 0.805957 0.465319i −0.0395930 0.999216i \(-0.512606\pi\)
0.845550 + 0.533897i \(0.179273\pi\)
\(6\) 0 0
\(7\) −5633.01 2936.47i −0.886746 0.462258i
\(8\) 0 0
\(9\) −12093.7 20946.9i −0.614424 1.06421i
\(10\) 0 0
\(11\) −40016.3 23103.4i −0.824081 0.475784i 0.0277404 0.999615i \(-0.491169\pi\)
−0.851822 + 0.523831i \(0.824502\pi\)
\(12\) 0 0
\(13\) 78895.6i 0.766139i −0.923720 0.383069i \(-0.874867\pi\)
0.923720 0.383069i \(-0.125133\pi\)
\(14\) 0 0
\(15\) 272416.i 1.38938i
\(16\) 0 0
\(17\) 305883. + 176602.i 0.888250 + 0.512831i 0.873370 0.487058i \(-0.161930\pi\)
0.0148803 + 0.999889i \(0.495263\pi\)
\(18\) 0 0
\(19\) 61180.6 + 105968.i 0.107702 + 0.186545i 0.914839 0.403819i \(-0.132318\pi\)
−0.807137 + 0.590364i \(0.798984\pi\)
\(20\) 0 0
\(21\) 1.12257e6 714253.i 1.25959 0.801429i
\(22\) 0 0
\(23\) −1.09732e6 + 633539.i −0.817634 + 0.472061i −0.849600 0.527428i \(-0.823157\pi\)
0.0319660 + 0.999489i \(0.489823\pi\)
\(24\) 0 0
\(25\) −130773. + 226505.i −0.0669557 + 0.115971i
\(26\) 0 0
\(27\) 943463. 0.341655
\(28\) 0 0
\(29\) 6.92650e6 1.81854 0.909270 0.416206i \(-0.136641\pi\)
0.909270 + 0.416206i \(0.136641\pi\)
\(30\) 0 0
\(31\) 3.06287e6 5.30505e6i 0.595664 1.03172i −0.397789 0.917477i \(-0.630222\pi\)
0.993453 0.114243i \(-0.0364442\pi\)
\(32\) 0 0
\(33\) 8.38153e6 4.83908e6i 1.23030 0.710313i
\(34\) 0 0
\(35\) −8.25438e6 + 355647.i −0.929776 + 0.0400602i
\(36\) 0 0
\(37\) −555787. 962651.i −0.0487529 0.0844425i 0.840619 0.541627i \(-0.182191\pi\)
−0.889372 + 0.457184i \(0.848858\pi\)
\(38\) 0 0
\(39\) 1.43110e7 + 8.26244e6i 0.990555 + 0.571897i
\(40\) 0 0
\(41\) 9.79928e6i 0.541585i −0.962638 0.270793i \(-0.912714\pi\)
0.962638 0.270793i \(-0.0872858\pi\)
\(42\) 0 0
\(43\) 2.93595e6i 0.130961i −0.997854 0.0654803i \(-0.979142\pi\)
0.997854 0.0654803i \(-0.0208580\pi\)
\(44\) 0 0
\(45\) −2.72437e7 1.57292e7i −0.990399 0.571807i
\(46\) 0 0
\(47\) 2.03658e7 + 3.52745e7i 0.608780 + 1.05444i 0.991442 + 0.130550i \(0.0416742\pi\)
−0.382662 + 0.923889i \(0.624992\pi\)
\(48\) 0 0
\(49\) 2.31079e7 + 3.30823e7i 0.572636 + 0.819810i
\(50\) 0 0
\(51\) −6.40680e7 + 3.69897e7i −1.32610 + 0.765623i
\(52\) 0 0
\(53\) −4.25860e7 + 7.37611e7i −0.741353 + 1.28406i 0.210526 + 0.977588i \(0.432482\pi\)
−0.951879 + 0.306474i \(0.900851\pi\)
\(54\) 0 0
\(55\) −6.00970e7 −0.885565
\(56\) 0 0
\(57\) −2.56289e7 −0.321583
\(58\) 0 0
\(59\) −8.04025e6 + 1.39261e7i −0.0863845 + 0.149622i −0.905980 0.423320i \(-0.860865\pi\)
0.819596 + 0.572942i \(0.194198\pi\)
\(60\) 0 0
\(61\) −1.68625e8 + 9.73559e7i −1.55933 + 0.900281i −0.562011 + 0.827130i \(0.689972\pi\)
−0.997321 + 0.0731509i \(0.976695\pi\)
\(62\) 0 0
\(63\) 6.61397e6 + 1.53507e8i 0.0528968 + 1.22771i
\(64\) 0 0
\(65\) −5.13061e7 8.88647e7i −0.356499 0.617475i
\(66\) 0 0
\(67\) 1.61154e8 + 9.30424e7i 0.977024 + 0.564085i 0.901370 0.433049i \(-0.142562\pi\)
0.0756535 + 0.997134i \(0.475896\pi\)
\(68\) 0 0
\(69\) 2.65393e8i 1.40951i
\(70\) 0 0
\(71\) 2.86511e8i 1.33807i 0.743231 + 0.669035i \(0.233292\pi\)
−0.743231 + 0.669035i \(0.766708\pi\)
\(72\) 0 0
\(73\) 8.20997e7 + 4.74003e7i 0.338367 + 0.195357i 0.659550 0.751661i \(-0.270747\pi\)
−0.321182 + 0.947017i \(0.604080\pi\)
\(74\) 0 0
\(75\) −2.73907e7 4.74422e7i −0.0999604 0.173137i
\(76\) 0 0
\(77\) 1.57570e8 + 2.47649e8i 0.510816 + 0.802837i
\(78\) 0 0
\(79\) 5.77449e7 3.33390e7i 0.166798 0.0963011i −0.414277 0.910151i \(-0.635966\pi\)
0.581075 + 0.813850i \(0.302632\pi\)
\(80\) 0 0
\(81\) 1.39235e8 2.41162e8i 0.359390 0.622482i
\(82\) 0 0
\(83\) −4.63680e7 −0.107242 −0.0536212 0.998561i \(-0.517076\pi\)
−0.0536212 + 0.998561i \(0.517076\pi\)
\(84\) 0 0
\(85\) 4.59379e8 0.954522
\(86\) 0 0
\(87\) −7.25387e8 + 1.25641e9i −1.35748 + 2.35122i
\(88\) 0 0
\(89\) 1.60330e8 9.25666e7i 0.270869 0.156387i −0.358413 0.933563i \(-0.616682\pi\)
0.629283 + 0.777177i \(0.283349\pi\)
\(90\) 0 0
\(91\) −2.31674e8 + 4.44419e8i −0.354154 + 0.679370i
\(92\) 0 0
\(93\) 6.41527e8 + 1.11116e9i 0.889286 + 1.54029i
\(94\) 0 0
\(95\) 1.37823e8 + 7.95719e7i 0.173606 + 0.100231i
\(96\) 0 0
\(97\) 1.37549e9i 1.57755i −0.614679 0.788777i \(-0.710715\pi\)
0.614679 0.788777i \(-0.289285\pi\)
\(98\) 0 0
\(99\) 1.11763e9i 1.16933i
\(100\) 0 0
\(101\) 6.33073e7 + 3.65505e7i 0.0605352 + 0.0349500i 0.529962 0.848021i \(-0.322206\pi\)
−0.469427 + 0.882971i \(0.655539\pi\)
\(102\) 0 0
\(103\) 8.38437e8 + 1.45222e9i 0.734012 + 1.27135i 0.955156 + 0.296105i \(0.0956877\pi\)
−0.221144 + 0.975241i \(0.570979\pi\)
\(104\) 0 0
\(105\) 7.99940e8 1.53452e9i 0.642252 1.23203i
\(106\) 0 0
\(107\) −8.34324e8 + 4.81697e8i −0.615330 + 0.355261i −0.775048 0.631902i \(-0.782275\pi\)
0.159719 + 0.987163i \(0.448941\pi\)
\(108\) 0 0
\(109\) −7.03053e8 + 1.21772e9i −0.477055 + 0.826284i −0.999654 0.0262947i \(-0.991629\pi\)
0.522599 + 0.852579i \(0.324962\pi\)
\(110\) 0 0
\(111\) 2.32822e8 0.145570
\(112\) 0 0
\(113\) −3.09479e9 −1.78557 −0.892787 0.450480i \(-0.851253\pi\)
−0.892787 + 0.450480i \(0.851253\pi\)
\(114\) 0 0
\(115\) −8.23986e8 + 1.42719e9i −0.439318 + 0.760922i
\(116\) 0 0
\(117\) −1.65262e9 + 9.54140e8i −0.815336 + 0.470734i
\(118\) 0 0
\(119\) −1.20446e9 1.89301e9i −0.550592 0.865351i
\(120\) 0 0
\(121\) −1.11436e8 1.93013e8i −0.0472598 0.0818564i
\(122\) 0 0
\(123\) 1.77751e9 + 1.02624e9i 0.700225 + 0.404275i
\(124\) 0 0
\(125\) 2.88042e9i 1.05526i
\(126\) 0 0
\(127\) 4.23682e9i 1.44518i −0.691275 0.722592i \(-0.742951\pi\)
0.691275 0.722592i \(-0.257049\pi\)
\(128\) 0 0
\(129\) 5.32556e8 + 3.07472e8i 0.169321 + 0.0977578i
\(130\) 0 0
\(131\) 3.61344e7 + 6.25866e7i 0.0107201 + 0.0185678i 0.871336 0.490687i \(-0.163254\pi\)
−0.860616 + 0.509255i \(0.829921\pi\)
\(132\) 0 0
\(133\) −3.34593e7 7.76573e8i −0.00927223 0.215204i
\(134\) 0 0
\(135\) 1.06268e9 6.13537e8i 0.275359 0.158979i
\(136\) 0 0
\(137\) −1.10483e9 + 1.91362e9i −0.267949 + 0.464101i −0.968332 0.249666i \(-0.919679\pi\)
0.700383 + 0.713767i \(0.253013\pi\)
\(138\) 0 0
\(139\) 5.11827e9 1.16294 0.581469 0.813569i \(-0.302478\pi\)
0.581469 + 0.813569i \(0.302478\pi\)
\(140\) 0 0
\(141\) −8.53133e9 −1.81774
\(142\) 0 0
\(143\) −1.82276e9 + 3.15711e9i −0.364516 + 0.631361i
\(144\) 0 0
\(145\) 7.80173e9 4.50433e9i 1.46567 0.846202i
\(146\) 0 0
\(147\) −8.42085e9 + 7.26988e8i −1.48740 + 0.128410i
\(148\) 0 0
\(149\) 2.31338e9 + 4.00689e9i 0.384511 + 0.665992i 0.991701 0.128564i \(-0.0410369\pi\)
−0.607191 + 0.794556i \(0.707704\pi\)
\(150\) 0 0
\(151\) 6.07438e9 + 3.50705e9i 0.950837 + 0.548966i 0.893341 0.449380i \(-0.148355\pi\)
0.0574960 + 0.998346i \(0.481688\pi\)
\(152\) 0 0
\(153\) 8.54308e9i 1.26038i
\(154\) 0 0
\(155\) 7.96718e9i 1.10870i
\(156\) 0 0
\(157\) 6.68521e9 + 3.85971e9i 0.878146 + 0.506998i 0.870047 0.492970i \(-0.164089\pi\)
0.00809907 + 0.999967i \(0.497422\pi\)
\(158\) 0 0
\(159\) −8.91975e9 1.54495e10i −1.10679 1.91702i
\(160\) 0 0
\(161\) 8.04159e9 3.46478e8i 0.943247 0.0406406i
\(162\) 0 0
\(163\) 1.31778e10 7.60819e9i 1.46217 0.844184i 0.463057 0.886328i \(-0.346752\pi\)
0.999112 + 0.0421446i \(0.0134190\pi\)
\(164\) 0 0
\(165\) 6.29374e9 1.09011e10i 0.661045 1.14496i
\(166\) 0 0
\(167\) −1.18996e10 −1.18388 −0.591942 0.805981i \(-0.701638\pi\)
−0.591942 + 0.805981i \(0.701638\pi\)
\(168\) 0 0
\(169\) 4.37999e9 0.413031
\(170\) 0 0
\(171\) 1.47980e9 2.56309e9i 0.132349 0.229235i
\(172\) 0 0
\(173\) −4.83114e9 + 2.78926e9i −0.410055 + 0.236746i −0.690814 0.723033i \(-0.742747\pi\)
0.280758 + 0.959779i \(0.409414\pi\)
\(174\) 0 0
\(175\) 1.40177e9 8.91896e8i 0.112981 0.0718857i
\(176\) 0 0
\(177\) −1.68405e9 2.91686e9i −0.128966 0.223376i
\(178\) 0 0
\(179\) 1.71294e10 + 9.88964e9i 1.24710 + 0.720015i 0.970531 0.240978i \(-0.0774681\pi\)
0.276572 + 0.960993i \(0.410801\pi\)
\(180\) 0 0
\(181\) 5.32364e9i 0.368685i 0.982862 + 0.184342i \(0.0590155\pi\)
−0.982862 + 0.184342i \(0.940984\pi\)
\(182\) 0 0
\(183\) 4.07829e10i 2.68812i
\(184\) 0 0
\(185\) −1.25203e9 7.22860e8i −0.0785855 0.0453713i
\(186\) 0 0
\(187\) −8.16021e9 1.41339e10i −0.487994 0.845230i
\(188\) 0 0
\(189\) −5.31453e9 2.77045e9i −0.302961 0.157933i
\(190\) 0 0
\(191\) 2.29678e10 1.32605e10i 1.24873 0.720956i 0.277876 0.960617i \(-0.410369\pi\)
0.970857 + 0.239660i \(0.0770361\pi\)
\(192\) 0 0
\(193\) −1.55255e10 + 2.68910e10i −0.805449 + 1.39508i 0.110539 + 0.993872i \(0.464742\pi\)
−0.915988 + 0.401206i \(0.868591\pi\)
\(194\) 0 0
\(195\) 2.14924e10 1.06446
\(196\) 0 0
\(197\) 3.13231e10 1.48172 0.740861 0.671658i \(-0.234418\pi\)
0.740861 + 0.671658i \(0.234418\pi\)
\(198\) 0 0
\(199\) −1.95419e10 + 3.38476e10i −0.883340 + 1.52999i −0.0357352 + 0.999361i \(0.511377\pi\)
−0.847605 + 0.530628i \(0.821956\pi\)
\(200\) 0 0
\(201\) −3.37542e10 + 1.94880e10i −1.45863 + 0.842141i
\(202\) 0 0
\(203\) −3.90170e10 2.03395e10i −1.61258 0.840634i
\(204\) 0 0
\(205\) −6.37251e9 1.10375e10i −0.252010 0.436495i
\(206\) 0 0
\(207\) 2.65414e10 + 1.53237e10i 1.00475 + 0.580092i
\(208\) 0 0
\(209\) 5.65393e9i 0.204971i
\(210\) 0 0
\(211\) 2.15299e10i 0.747776i −0.927474 0.373888i \(-0.878024\pi\)
0.927474 0.373888i \(-0.121976\pi\)
\(212\) 0 0
\(213\) −5.19706e10 3.00052e10i −1.73001 0.998824i
\(214\) 0 0
\(215\) −1.90926e9 3.30694e9i −0.0609385 0.105549i
\(216\) 0 0
\(217\) −3.28313e10 + 2.08893e10i −1.00512 + 0.639523i
\(218\) 0 0
\(219\) −1.71960e10 + 9.92811e9i −0.505160 + 0.291654i
\(220\) 0 0
\(221\) 1.39331e10 2.41328e10i 0.392900 0.680523i
\(222\) 0 0
\(223\) 6.78259e9 0.183664 0.0918319 0.995775i \(-0.470728\pi\)
0.0918319 + 0.995775i \(0.470728\pi\)
\(224\) 0 0
\(225\) 6.32612e9 0.164557
\(226\) 0 0
\(227\) −2.87680e10 + 4.98277e10i −0.719108 + 1.24553i 0.242246 + 0.970215i \(0.422116\pi\)
−0.961354 + 0.275316i \(0.911217\pi\)
\(228\) 0 0
\(229\) 1.01654e10 5.86901e9i 0.244267 0.141028i −0.372869 0.927884i \(-0.621626\pi\)
0.617137 + 0.786856i \(0.288293\pi\)
\(230\) 0 0
\(231\) −6.14230e10 + 2.64646e9i −1.41931 + 0.0611521i
\(232\) 0 0
\(233\) 4.22178e9 + 7.31234e9i 0.0938414 + 0.162538i 0.909124 0.416525i \(-0.136752\pi\)
−0.815283 + 0.579063i \(0.803419\pi\)
\(234\) 0 0
\(235\) 4.58783e10 + 2.64879e10i 0.981301 + 0.566554i
\(236\) 0 0
\(237\) 1.39659e10i 0.287542i
\(238\) 0 0
\(239\) 4.69299e9i 0.0930377i −0.998917 0.0465188i \(-0.985187\pi\)
0.998917 0.0465188i \(-0.0148127\pi\)
\(240\) 0 0
\(241\) 7.58488e10 + 4.37913e10i 1.44834 + 0.836202i 0.998383 0.0568454i \(-0.0181042\pi\)
0.449962 + 0.893048i \(0.351438\pi\)
\(242\) 0 0
\(243\) 3.84483e10 + 6.65943e10i 0.707373 + 1.22521i
\(244\) 0 0
\(245\) 4.75413e10 + 2.22354e10i 0.842993 + 0.394273i
\(246\) 0 0
\(247\) 8.36040e9 4.82688e9i 0.142919 0.0825145i
\(248\) 0 0
\(249\) 4.85595e9 8.41074e9i 0.0800528 0.138656i
\(250\) 0 0
\(251\) 8.04549e10 1.27944 0.639721 0.768607i \(-0.279050\pi\)
0.639721 + 0.768607i \(0.279050\pi\)
\(252\) 0 0
\(253\) 5.85477e10 0.898396
\(254\) 0 0
\(255\) −4.81091e10 + 8.33273e10i −0.712518 + 1.23412i
\(256\) 0 0
\(257\) 6.48181e10 3.74228e10i 0.926825 0.535102i 0.0410187 0.999158i \(-0.486940\pi\)
0.885806 + 0.464056i \(0.153606\pi\)
\(258\) 0 0
\(259\) 3.03956e8 + 7.05467e9i 0.00419722 + 0.0974154i
\(260\) 0 0
\(261\) −8.37671e10 1.45089e11i −1.11736 1.93532i
\(262\) 0 0
\(263\) −1.22792e10 7.08940e9i −0.158259 0.0913711i 0.418779 0.908088i \(-0.362458\pi\)
−0.577038 + 0.816717i \(0.695792\pi\)
\(264\) 0 0
\(265\) 1.10775e11i 1.37986i
\(266\) 0 0
\(267\) 3.87766e10i 0.466949i
\(268\) 0 0
\(269\) 2.56061e10 + 1.47837e10i 0.298166 + 0.172146i 0.641619 0.767024i \(-0.278263\pi\)
−0.343453 + 0.939170i \(0.611596\pi\)
\(270\) 0 0
\(271\) −3.77000e10 6.52983e10i −0.424600 0.735428i 0.571783 0.820405i \(-0.306252\pi\)
−0.996383 + 0.0849765i \(0.972918\pi\)
\(272\) 0 0
\(273\) −5.63514e10 8.85661e10i −0.614006 0.965019i
\(274\) 0 0
\(275\) 1.04661e10 6.04261e9i 0.110354 0.0637129i
\(276\) 0 0
\(277\) 5.67411e10 9.82785e10i 0.579080 1.00300i −0.416505 0.909133i \(-0.636745\pi\)
0.995585 0.0938629i \(-0.0299215\pi\)
\(278\) 0 0
\(279\) −1.48166e11 −1.46396
\(280\) 0 0
\(281\) 3.48271e9 0.0333226 0.0166613 0.999861i \(-0.494696\pi\)
0.0166613 + 0.999861i \(0.494696\pi\)
\(282\) 0 0
\(283\) −1.01330e11 + 1.75509e11i −0.939071 + 1.62652i −0.171863 + 0.985121i \(0.554979\pi\)
−0.767208 + 0.641398i \(0.778355\pi\)
\(284\) 0 0
\(285\) −2.88673e10 + 1.66666e10i −0.259182 + 0.149639i
\(286\) 0 0
\(287\) −2.87753e10 + 5.51994e10i −0.250352 + 0.480249i
\(288\) 0 0
\(289\) 3.08235e9 + 5.33878e9i 0.0259921 + 0.0450196i
\(290\) 0 0
\(291\) 2.49502e11 + 1.44050e11i 2.03965 + 1.17759i
\(292\) 0 0
\(293\) 1.48160e11i 1.17443i 0.809431 + 0.587216i \(0.199776\pi\)
−0.809431 + 0.587216i \(0.800224\pi\)
\(294\) 0 0
\(295\) 2.09144e10i 0.160785i
\(296\) 0 0
\(297\) −3.77539e10 2.17972e10i −0.281552 0.162554i
\(298\) 0 0
\(299\) 4.99834e10 + 8.65739e10i 0.361664 + 0.626421i
\(300\) 0 0
\(301\) −8.62133e9 + 1.65382e10i −0.0605376 + 0.116129i
\(302\) 0 0
\(303\) −1.32599e10 + 7.65560e9i −0.0903750 + 0.0521780i
\(304\) 0 0
\(305\) −1.26622e11 + 2.19315e11i −0.837836 + 1.45117i
\(306\) 0 0
\(307\) −1.00403e11 −0.645095 −0.322547 0.946553i \(-0.604539\pi\)
−0.322547 + 0.946553i \(0.604539\pi\)
\(308\) 0 0
\(309\) −3.51226e11 −2.19166
\(310\) 0 0
\(311\) 7.70723e10 1.33493e11i 0.467172 0.809165i −0.532125 0.846666i \(-0.678606\pi\)
0.999297 + 0.0375006i \(0.0119396\pi\)
\(312\) 0 0
\(313\) −6.29271e10 + 3.63310e10i −0.370585 + 0.213957i −0.673714 0.738992i \(-0.735302\pi\)
0.303129 + 0.952950i \(0.401969\pi\)
\(314\) 0 0
\(315\) 1.07276e11 + 1.68603e11i 0.613909 + 0.964867i
\(316\) 0 0
\(317\) 1.26222e11 + 2.18623e11i 0.702050 + 1.21599i 0.967746 + 0.251929i \(0.0810650\pi\)
−0.265696 + 0.964057i \(0.585602\pi\)
\(318\) 0 0
\(319\) −2.77173e11 1.60026e11i −1.49863 0.865232i
\(320\) 0 0
\(321\) 2.01786e11i 1.06076i
\(322\) 0 0
\(323\) 4.32184e10i 0.220931i
\(324\) 0 0
\(325\) 1.78703e10 + 1.03174e10i 0.0888497 + 0.0512974i
\(326\) 0 0
\(327\) −1.47256e11 2.55055e11i −0.712211 1.23359i
\(328\) 0 0
\(329\) −1.11379e10 2.58505e11i −0.0524109 1.21643i
\(330\) 0 0
\(331\) −3.41634e10 + 1.97243e10i −0.156436 + 0.0903181i −0.576174 0.817327i \(-0.695455\pi\)
0.419739 + 0.907645i \(0.362122\pi\)
\(332\) 0 0
\(333\) −1.34430e10 + 2.32840e10i −0.0599099 + 0.103767i
\(334\) 0 0
\(335\) 2.42023e11 1.04992
\(336\) 0 0
\(337\) 3.81413e11 1.61087 0.805437 0.592682i \(-0.201931\pi\)
0.805437 + 0.592682i \(0.201931\pi\)
\(338\) 0 0
\(339\) 3.24106e11 5.61367e11i 1.33287 2.30860i
\(340\) 0 0
\(341\) −2.45130e11 + 1.41526e11i −0.981751 + 0.566814i
\(342\) 0 0
\(343\) −3.30219e10 2.54208e11i −0.128819 0.991668i
\(344\) 0 0
\(345\) −1.72586e11 2.98928e11i −0.655873 1.13601i
\(346\) 0 0
\(347\) −1.31049e11 7.56611e10i −0.485233 0.280149i 0.237362 0.971421i \(-0.423717\pi\)
−0.722595 + 0.691272i \(0.757051\pi\)
\(348\) 0 0
\(349\) 3.88593e10i 0.140211i 0.997540 + 0.0701053i \(0.0223335\pi\)
−0.997540 + 0.0701053i \(0.977666\pi\)
\(350\) 0 0
\(351\) 7.44351e10i 0.261755i
\(352\) 0 0
\(353\) 1.59811e11 + 9.22669e10i 0.547798 + 0.316271i 0.748233 0.663436i \(-0.230902\pi\)
−0.200436 + 0.979707i \(0.564236\pi\)
\(354\) 0 0
\(355\) 1.86319e11 + 3.22714e11i 0.622630 + 1.07843i
\(356\) 0 0
\(357\) 4.69515e11 2.02294e10i 1.52983 0.0659138i
\(358\) 0 0
\(359\) −7.43325e10 + 4.29159e10i −0.236186 + 0.136362i −0.613422 0.789755i \(-0.710208\pi\)
0.377237 + 0.926117i \(0.376874\pi\)
\(360\) 0 0
\(361\) 1.53858e11 2.66489e11i 0.476801 0.825843i
\(362\) 0 0
\(363\) 4.66812e10 0.141111
\(364\) 0 0
\(365\) 1.23298e11 0.363613
\(366\) 0 0
\(367\) 2.10555e11 3.64693e11i 0.605855 1.04937i −0.386060 0.922474i \(-0.626164\pi\)
0.991916 0.126899i \(-0.0405024\pi\)
\(368\) 0 0
\(369\) −2.05265e11 + 1.18510e11i −0.576363 + 0.332763i
\(370\) 0 0
\(371\) 4.56484e11 2.90444e11i 1.25096 0.795940i
\(372\) 0 0
\(373\) −3.57354e10 6.18955e10i −0.0955892 0.165565i 0.814265 0.580493i \(-0.197140\pi\)
−0.909854 + 0.414928i \(0.863807\pi\)
\(374\) 0 0
\(375\) −5.22483e11 3.01656e11i −1.36437 0.787718i
\(376\) 0 0
\(377\) 5.46470e11i 1.39325i
\(378\) 0 0
\(379\) 1.77866e10i 0.0442809i 0.999755 + 0.0221404i \(0.00704810\pi\)
−0.999755 + 0.0221404i \(0.992952\pi\)
\(380\) 0 0
\(381\) 7.68522e11 + 4.43706e11i 1.86850 + 1.07878i
\(382\) 0 0
\(383\) 6.17954e9 + 1.07033e10i 0.0146744 + 0.0254169i 0.873269 0.487238i \(-0.161995\pi\)
−0.858595 + 0.512655i \(0.828662\pi\)
\(384\) 0 0
\(385\) 3.38527e11 + 1.76473e11i 0.785271 + 0.409359i
\(386\) 0 0
\(387\) −6.14992e10 + 3.55066e10i −0.139370 + 0.0804654i
\(388\) 0 0
\(389\) −1.18565e11 + 2.05361e11i −0.262533 + 0.454721i −0.966914 0.255101i \(-0.917891\pi\)
0.704381 + 0.709822i \(0.251225\pi\)
\(390\) 0 0
\(391\) −4.47536e11 −0.968351
\(392\) 0 0
\(393\) −1.51369e10 −0.0320088
\(394\) 0 0
\(395\) 4.33610e10 7.51034e10i 0.0896215 0.155229i
\(396\) 0 0
\(397\) −4.05153e11 + 2.33915e11i −0.818581 + 0.472608i −0.849927 0.526901i \(-0.823354\pi\)
0.0313461 + 0.999509i \(0.490021\pi\)
\(398\) 0 0
\(399\) 1.44368e11 + 7.52584e10i 0.285162 + 0.148654i
\(400\) 0 0
\(401\) −7.28646e10 1.26205e11i −0.140724 0.243740i 0.787046 0.616895i \(-0.211610\pi\)
−0.927769 + 0.373154i \(0.878276\pi\)
\(402\) 0 0
\(403\) −4.18545e11 2.41647e11i −0.790441 0.456361i
\(404\) 0 0
\(405\) 3.62180e11i 0.668925i
\(406\) 0 0
\(407\) 5.13623e10i 0.0927833i
\(408\) 0 0
\(409\) −5.26483e11 3.03965e11i −0.930313 0.537117i −0.0434027 0.999058i \(-0.513820\pi\)
−0.886911 + 0.461941i \(0.847153\pi\)
\(410\) 0 0
\(411\) −2.31409e11 4.00813e11i −0.400030 0.692872i
\(412\) 0 0
\(413\) 8.61844e10 5.48360e10i 0.145765 0.0927450i
\(414\) 0 0
\(415\) −5.22270e10 + 3.01532e10i −0.0864327 + 0.0499020i
\(416\) 0 0
\(417\) −5.36017e11 + 9.28410e11i −0.868094 + 1.50358i
\(418\) 0 0
\(419\) 6.24074e11 0.989175 0.494588 0.869128i \(-0.335319\pi\)
0.494588 + 0.869128i \(0.335319\pi\)
\(420\) 0 0
\(421\) −7.61834e11 −1.18193 −0.590964 0.806698i \(-0.701252\pi\)
−0.590964 + 0.806698i \(0.701252\pi\)
\(422\) 0 0
\(423\) 4.92595e11 8.53200e11i 0.748098 1.29574i
\(424\) 0 0
\(425\) −8.00024e10 + 4.61894e10i −0.118947 + 0.0686740i
\(426\) 0 0
\(427\) 1.23575e12 5.32433e10i 1.79889 0.0775067i
\(428\) 0 0
\(429\) −3.81782e11 6.61265e11i −0.544199 0.942579i
\(430\) 0 0
\(431\) −1.10975e12 6.40714e11i −1.54909 0.894368i −0.998211 0.0597835i \(-0.980959\pi\)
−0.550880 0.834585i \(-0.685708\pi\)
\(432\) 0 0
\(433\) 1.20788e12i 1.65131i 0.564176 + 0.825655i \(0.309194\pi\)
−0.564176 + 0.825655i \(0.690806\pi\)
\(434\) 0 0
\(435\) 1.88689e12i 2.52665i
\(436\) 0 0
\(437\) −1.34270e11 7.75206e10i −0.176121 0.101684i
\(438\) 0 0
\(439\) 4.58240e11 + 7.93695e11i 0.588847 + 1.01991i 0.994384 + 0.105834i \(0.0337513\pi\)
−0.405537 + 0.914079i \(0.632915\pi\)
\(440\) 0 0
\(441\) 4.13512e11 8.84127e11i 0.520612 1.11312i
\(442\) 0 0
\(443\) 5.81248e11 3.35584e11i 0.717042 0.413985i −0.0966208 0.995321i \(-0.530803\pi\)
0.813663 + 0.581337i \(0.197470\pi\)
\(444\) 0 0
\(445\) 1.20393e11 2.08526e11i 0.145539 0.252082i
\(446\) 0 0
\(447\) −9.69086e11 −1.14810
\(448\) 0 0
\(449\) 2.98106e11 0.346149 0.173074 0.984909i \(-0.444630\pi\)
0.173074 + 0.984909i \(0.444630\pi\)
\(450\) 0 0
\(451\) −2.26397e11 + 3.92131e11i −0.257678 + 0.446311i
\(452\) 0 0
\(453\) −1.27230e12 + 7.34560e11i −1.41954 + 0.819569i
\(454\) 0 0
\(455\) 2.80590e10 + 6.51234e11i 0.0306916 + 0.712338i
\(456\) 0 0
\(457\) −4.11645e11 7.12990e11i −0.441469 0.764647i 0.556330 0.830962i \(-0.312209\pi\)
−0.997799 + 0.0663150i \(0.978876\pi\)
\(458\) 0 0
\(459\) 2.88589e11 + 1.66617e11i 0.303475 + 0.175211i
\(460\) 0 0
\(461\) 5.38478e11i 0.555282i 0.960685 + 0.277641i \(0.0895525\pi\)
−0.960685 + 0.277641i \(0.910447\pi\)
\(462\) 0 0
\(463\) 1.65299e11i 0.167169i −0.996501 0.0835844i \(-0.973363\pi\)
0.996501 0.0835844i \(-0.0266368\pi\)
\(464\) 0 0
\(465\) 1.44518e12 + 8.34374e11i 1.43345 + 0.827604i
\(466\) 0 0
\(467\) −2.41102e11 4.17601e11i −0.234571 0.406289i 0.724577 0.689194i \(-0.242035\pi\)
−0.959148 + 0.282905i \(0.908702\pi\)
\(468\) 0 0
\(469\) −6.34567e11 9.97333e11i −0.605619 0.951837i
\(470\) 0 0
\(471\) −1.40023e12 + 8.08426e11i −1.31101 + 0.756913i
\(472\) 0 0
\(473\) −6.78306e10 + 1.17486e11i −0.0623090 + 0.107922i
\(474\) 0 0
\(475\) −3.20031e10 −0.0288450
\(476\) 0 0
\(477\) 2.06009e12 1.82202
\(478\) 0 0
\(479\) 2.00198e11 3.46752e11i 0.173760 0.300961i −0.765972 0.642874i \(-0.777742\pi\)
0.939731 + 0.341914i \(0.111075\pi\)
\(480\) 0 0
\(481\) −7.59489e10 + 4.38491e10i −0.0646947 + 0.0373515i
\(482\) 0 0
\(483\) −7.79318e11 + 1.49496e12i −0.651557 + 1.24988i
\(484\) 0 0
\(485\) −8.94485e11 1.54929e12i −0.734066 1.27144i
\(486\) 0 0
\(487\) 8.99483e11 + 5.19317e11i 0.724624 + 0.418362i 0.816452 0.577413i \(-0.195938\pi\)
−0.0918281 + 0.995775i \(0.529271\pi\)
\(488\) 0 0
\(489\) 3.18711e12i 2.52062i
\(490\) 0 0
\(491\) 1.55476e12i 1.20725i 0.797268 + 0.603625i \(0.206278\pi\)
−0.797268 + 0.603625i \(0.793722\pi\)
\(492\) 0 0
\(493\) 2.11870e12 + 1.22323e12i 1.61532 + 0.932605i
\(494\) 0 0
\(495\) 7.26796e11 + 1.25885e12i 0.544113 + 0.942431i
\(496\) 0 0
\(497\) 8.41331e11 1.61392e12i 0.618533 1.18653i
\(498\) 0 0
\(499\) −2.37534e12 + 1.37140e12i −1.71504 + 0.990176i −0.787605 + 0.616180i \(0.788679\pi\)
−0.927430 + 0.373996i \(0.877987\pi\)
\(500\) 0 0
\(501\) 1.24620e12 2.15849e12i 0.883729 1.53066i
\(502\) 0 0
\(503\) −3.77979e11 −0.263276 −0.131638 0.991298i \(-0.542024\pi\)
−0.131638 + 0.991298i \(0.542024\pi\)
\(504\) 0 0
\(505\) 9.50757e10 0.0650517
\(506\) 0 0
\(507\) −4.58700e11 + 7.94492e11i −0.308314 + 0.534015i
\(508\) 0 0
\(509\) 1.04354e12 6.02486e11i 0.689092 0.397848i −0.114180 0.993460i \(-0.536424\pi\)
0.803272 + 0.595612i \(0.203091\pi\)
\(510\) 0 0
\(511\) −3.23279e11 5.08089e11i −0.209741 0.329645i
\(512\) 0 0
\(513\) 5.77216e10 + 9.99768e10i 0.0367968 + 0.0637340i
\(514\) 0 0
\(515\) 1.88876e12 + 1.09048e12i 1.18316 + 0.683100i
\(516\) 0 0
\(517\) 1.88208e12i 1.15859i
\(518\) 0 0
\(519\) 1.16844e12i 0.706891i
\(520\) 0 0
\(521\) −1.50028e12 8.66186e11i −0.892077 0.515041i −0.0174556 0.999848i \(-0.505557\pi\)
−0.874621 + 0.484807i \(0.838890\pi\)
\(522\) 0 0
\(523\) 5.85295e11 + 1.01376e12i 0.342071 + 0.592485i 0.984817 0.173594i \(-0.0555382\pi\)
−0.642746 + 0.766080i \(0.722205\pi\)
\(524\) 0 0
\(525\) 1.49798e10 + 3.47674e11i 0.00860577 + 0.199736i
\(526\) 0 0
\(527\) 1.87376e12 1.08182e12i 1.05820 0.610950i
\(528\) 0 0
\(529\) −9.78324e10 + 1.69451e11i −0.0543166 + 0.0940790i
\(530\) 0 0
\(531\) 3.88946e11 0.212307
\(532\) 0 0
\(533\) −7.73120e11 −0.414930
\(534\) 0 0
\(535\) −6.26499e11 + 1.08513e12i −0.330619 + 0.572650i
\(536\) 0 0
\(537\) −3.58779e12 + 2.07141e12i −1.86184 + 1.07493i
\(538\) 0 0
\(539\) −1.60379e11 1.85770e12i −0.0818462 0.948041i
\(540\) 0 0
\(541\) −1.73390e12 3.00320e12i −0.870233 1.50729i −0.861755 0.507324i \(-0.830635\pi\)
−0.00847833 0.999964i \(-0.502699\pi\)
\(542\) 0 0
\(543\) −9.65663e11 5.57526e11i −0.476679 0.275211i
\(544\) 0 0
\(545\) 1.82879e12i 0.887932i
\(546\) 0 0
\(547\) 1.60618e12i 0.767096i −0.923521 0.383548i \(-0.874702\pi\)
0.923521 0.383548i \(-0.125298\pi\)
\(548\) 0 0
\(549\) 4.07861e12 + 2.35479e12i 1.91618 + 1.10631i
\(550\) 0 0
\(551\) 4.23768e11 + 7.33987e11i 0.195860 + 0.339239i
\(552\) 0 0
\(553\) −4.23176e11 + 1.82329e10i −0.192424 + 0.00829073i
\(554\) 0 0
\(555\) 2.62241e11 1.51405e11i 0.117323 0.0677364i
\(556\) 0 0
\(557\) −9.79821e11 + 1.69710e12i −0.431319 + 0.747066i −0.996987 0.0775667i \(-0.975285\pi\)
0.565668 + 0.824633i \(0.308618\pi\)
\(558\) 0 0
\(559\) −2.31634e11 −0.100334
\(560\) 0 0
\(561\) 3.41836e12 1.45708
\(562\) 0 0
\(563\) 5.33850e11 9.24656e11i 0.223940 0.387876i −0.732061 0.681239i \(-0.761441\pi\)
0.956001 + 0.293364i \(0.0947747\pi\)
\(564\) 0 0
\(565\) −3.48584e12 + 2.01255e12i −1.43910 + 0.830862i
\(566\) 0 0
\(567\) −1.49248e12 + 9.49609e11i −0.606435 + 0.385852i
\(568\) 0 0
\(569\) −1.99429e12 3.45421e12i −0.797595 1.38148i −0.921178 0.389142i \(-0.872772\pi\)
0.123582 0.992334i \(-0.460562\pi\)
\(570\) 0 0
\(571\) 3.93494e10 + 2.27184e10i 0.0154909 + 0.00894366i 0.507725 0.861519i \(-0.330486\pi\)
−0.492235 + 0.870463i \(0.663820\pi\)
\(572\) 0 0
\(573\) 5.55489e12i 2.15268i
\(574\) 0 0
\(575\) 3.31399e11i 0.126429i
\(576\) 0 0
\(577\) −1.15892e12 6.69103e11i −0.435274 0.251305i 0.266317 0.963885i \(-0.414193\pi\)
−0.701591 + 0.712580i \(0.747527\pi\)
\(578\) 0 0
\(579\) −3.25186e12 5.63238e12i −1.20248 2.08276i
\(580\) 0 0
\(581\) 2.61191e11 + 1.36158e11i 0.0950967 + 0.0495736i
\(582\) 0 0
\(583\) 3.40827e12 1.96777e12i 1.22187 0.705448i
\(584\) 0 0
\(585\) −1.24096e12 + 2.14941e12i −0.438084 + 0.758783i
\(586\) 0 0
\(587\) 3.26586e12 1.13534 0.567670 0.823256i \(-0.307845\pi\)
0.567670 + 0.823256i \(0.307845\pi\)
\(588\) 0 0
\(589\) 7.49553e11 0.256616
\(590\) 0 0
\(591\) −3.28035e12 + 5.68174e12i −1.10606 + 1.91575i
\(592\) 0 0
\(593\) −3.99754e12 + 2.30798e12i −1.32754 + 0.766454i −0.984918 0.173020i \(-0.944647\pi\)
−0.342619 + 0.939474i \(0.611314\pi\)
\(594\) 0 0
\(595\) −2.58768e12 1.34895e12i −0.846418 0.441235i
\(596\) 0 0
\(597\) −4.09310e12 7.08946e12i −1.31877 2.28417i
\(598\) 0 0
\(599\) 3.08168e12 + 1.77921e12i 0.978062 + 0.564684i 0.901684 0.432395i \(-0.142331\pi\)
0.0763774 + 0.997079i \(0.475665\pi\)
\(600\) 0 0
\(601\) 4.89515e12i 1.53049i −0.643738 0.765246i \(-0.722617\pi\)
0.643738 0.765246i \(-0.277383\pi\)
\(602\) 0 0
\(603\) 4.50091e12i 1.38635i
\(604\) 0 0
\(605\) −2.51034e11 1.44935e11i −0.0761787 0.0439818i
\(606\) 0 0
\(607\) −6.56410e11 1.13694e12i −0.196258 0.339928i 0.751055 0.660240i \(-0.229546\pi\)
−0.947312 + 0.320312i \(0.896212\pi\)
\(608\) 0 0
\(609\) 7.77551e12 4.94727e12i 2.29061 1.45743i
\(610\) 0 0
\(611\) 2.78301e12 1.60677e12i 0.807846 0.466410i
\(612\) 0 0
\(613\) −1.95369e12 + 3.38390e12i −0.558836 + 0.967932i 0.438758 + 0.898605i \(0.355419\pi\)
−0.997594 + 0.0693271i \(0.977915\pi\)
\(614\) 0 0
\(615\) 2.66948e12 0.752469
\(616\) 0 0
\(617\) 3.61913e12 1.00536 0.502680 0.864473i \(-0.332347\pi\)
0.502680 + 0.864473i \(0.332347\pi\)
\(618\) 0 0
\(619\) −2.21807e12 + 3.84182e12i −0.607251 + 1.05179i 0.384440 + 0.923150i \(0.374394\pi\)
−0.991691 + 0.128640i \(0.958939\pi\)
\(620\) 0 0
\(621\) −1.03528e12 + 5.97721e11i −0.279349 + 0.161282i
\(622\) 0 0
\(623\) −1.17496e12 + 5.06241e10i −0.312483 + 0.0134636i
\(624\) 0 0
\(625\) 1.61773e12 + 2.80199e12i 0.424078 + 0.734525i
\(626\) 0 0
\(627\) 1.02557e12 + 5.92115e11i 0.265010 + 0.153004i
\(628\) 0 0
\(629\) 3.92611e11i 0.100008i
\(630\) 0 0
\(631\) 5.28844e12i 1.32799i −0.747736 0.663997i \(-0.768859\pi\)
0.747736 0.663997i \(-0.231141\pi\)
\(632\) 0 0
\(633\) 3.90534e12 + 2.25475e12i 0.966813 + 0.558190i
\(634\) 0 0
\(635\) −2.75522e12 4.77218e12i −0.672472 1.16476i
\(636\) 0 0
\(637\) 2.61005e12 1.82311e12i 0.628088 0.438718i
\(638\) 0 0
\(639\) 6.00152e12 3.46498e12i 1.42399 0.822142i
\(640\) 0 0
\(641\) 1.72914e12 2.99497e12i 0.404548 0.700698i −0.589721 0.807607i \(-0.700762\pi\)
0.994269 + 0.106909i \(0.0340955\pi\)
\(642\) 0 0
\(643\) −7.09662e12 −1.63720 −0.818601 0.574362i \(-0.805250\pi\)
−0.818601 + 0.574362i \(0.805250\pi\)
\(644\) 0 0
\(645\) 7.99799e11 0.181954
\(646\) 0 0
\(647\) 2.56813e12 4.44814e12i 0.576167 0.997950i −0.419747 0.907641i \(-0.637881\pi\)
0.995914 0.0903091i \(-0.0287855\pi\)
\(648\) 0 0
\(649\) 6.43483e11 3.71515e11i 0.142376 0.0822006i
\(650\) 0 0
\(651\) −3.50847e11 8.14297e12i −0.0765602 1.77692i
\(652\) 0 0
\(653\) 1.91637e12 + 3.31924e12i 0.412448 + 0.714380i 0.995157 0.0983004i \(-0.0313406\pi\)
−0.582709 + 0.812681i \(0.698007\pi\)
\(654\) 0 0
\(655\) 8.14005e10 + 4.69966e10i 0.0172799 + 0.00997656i
\(656\) 0 0
\(657\) 2.29298e12i 0.480127i
\(658\) 0 0
\(659\) 8.38730e12i 1.73236i −0.499734 0.866179i \(-0.666569\pi\)
0.499734 0.866179i \(-0.333431\pi\)
\(660\) 0 0
\(661\) 7.22103e12 + 4.16906e12i 1.47127 + 0.849439i 0.999479 0.0322713i \(-0.0102740\pi\)
0.471792 + 0.881710i \(0.343607\pi\)
\(662\) 0 0
\(663\) 2.91832e12 + 5.05468e12i 0.586573 + 1.01598i
\(664\) 0 0
\(665\) −5.42695e11 8.52941e11i −0.107611 0.169130i
\(666\) 0 0
\(667\) −7.60060e12 + 4.38821e12i −1.48690 + 0.858462i
\(668\) 0 0
\(669\) −7.10316e11 + 1.23030e12i −0.137099 + 0.237462i
\(670\) 0 0
\(671\) 8.99702e12 1.71336
\(672\) 0 0
\(673\) −2.47455e12 −0.464973 −0.232487 0.972600i \(-0.574686\pi\)
−0.232487 + 0.972600i \(0.574686\pi\)
\(674\) 0 0
\(675\) −1.23379e11 + 2.13699e11i −0.0228758 + 0.0396220i
\(676\) 0 0
\(677\) −4.89750e12 + 2.82757e12i −0.896036 + 0.517327i −0.875912 0.482471i \(-0.839739\pi\)
−0.0201240 + 0.999797i \(0.506406\pi\)
\(678\) 0 0
\(679\) −4.03908e12 + 7.74814e12i −0.729237 + 1.39889i
\(680\) 0 0
\(681\) −6.02554e12 1.04365e13i −1.07358 1.85949i
\(682\) 0 0
\(683\) 9.39444e12 + 5.42388e12i 1.65188 + 0.953712i 0.976299 + 0.216424i \(0.0694393\pi\)
0.675578 + 0.737288i \(0.263894\pi\)
\(684\) 0 0
\(685\) 2.87390e12i 0.498728i
\(686\) 0 0
\(687\) 2.45856e12i 0.421090i
\(688\) 0 0
\(689\) 5.81942e12 + 3.35985e12i 0.983770 + 0.567980i
\(690\) 0 0
\(691\) −2.35649e12 4.08155e12i −0.393200 0.681043i 0.599669 0.800248i \(-0.295299\pi\)
−0.992870 + 0.119205i \(0.961965\pi\)
\(692\) 0 0
\(693\) 3.28187e12 6.29559e12i 0.540533 1.03690i
\(694\) 0 0
\(695\) 5.76501e12 3.32843e12i 0.937278 0.541137i
\(696\) 0 0
\(697\) 1.73057e12 2.99743e12i 0.277742 0.481063i
\(698\) 0 0
\(699\) −1.76853e12 −0.280198
\(700\) 0 0
\(701\) −5.00006e12 −0.782068 −0.391034 0.920376i \(-0.627883\pi\)
−0.391034 + 0.920376i \(0.627883\pi\)
\(702\) 0 0
\(703\) 6.80067e10 1.17791e11i 0.0105015 0.0181892i
\(704\) 0 0
\(705\) −9.60934e12 + 5.54795e12i −1.46502 + 0.845828i
\(706\) 0 0
\(707\) −2.49281e11 3.91789e11i −0.0375234 0.0589746i
\(708\) 0 0
\(709\) 1.24345e12 + 2.15372e12i 0.184808 + 0.320096i 0.943512 0.331339i \(-0.107500\pi\)
−0.758704 + 0.651435i \(0.774167\pi\)
\(710\) 0 0
\(711\) −1.39670e12 8.06385e11i −0.204970 0.118339i
\(712\) 0 0
\(713\) 7.76180e12i 1.12476i
\(714\) 0 0
\(715\) 4.74139e12i 0.678466i
\(716\) 0 0
\(717\) 8.51267e11 + 4.91479e11i 0.120290 + 0.0694495i
\(718\) 0 0
\(719\) 4.45965e12 + 7.72435e12i 0.622331 + 1.07791i 0.989051 + 0.147577i \(0.0471474\pi\)
−0.366720 + 0.930331i \(0.619519\pi\)
\(720\) 0 0
\(721\) −4.58536e11 1.06424e13i −0.0631924 1.46666i
\(722\) 0 0
\(723\) −1.58867e13 + 9.17221e12i −2.16228 + 1.24839i
\(724\) 0 0
\(725\) −9.05799e11 + 1.56889e12i −0.121762 + 0.210898i
\(726\) 0 0
\(727\) −1.36348e13 −1.81028 −0.905139 0.425115i \(-0.860234\pi\)
−0.905139 + 0.425115i \(0.860234\pi\)
\(728\) 0 0
\(729\) −1.06250e13 −1.39334
\(730\) 0 0
\(731\) 5.18494e11 8.98058e11i 0.0671608 0.116326i
\(732\) 0 0
\(733\) −1.23396e13 + 7.12425e12i −1.57882 + 0.911530i −0.583792 + 0.811904i \(0.698432\pi\)
−0.995025 + 0.0996266i \(0.968235\pi\)
\(734\) 0 0
\(735\) −9.01213e12 + 6.29496e12i −1.13903 + 0.795609i
\(736\) 0 0
\(737\) −4.29920e12 7.44643e12i −0.536765 0.929704i
\(738\) 0 0
\(739\) 2.40417e12 + 1.38805e12i 0.296527 + 0.171200i 0.640882 0.767640i \(-0.278569\pi\)
−0.344354 + 0.938840i \(0.611902\pi\)
\(740\) 0 0
\(741\) 2.02201e12i 0.246377i
\(742\) 0 0
\(743\) 3.05533e12i 0.367797i 0.982945 + 0.183899i \(0.0588718\pi\)
−0.982945 + 0.183899i \(0.941128\pi\)
\(744\) 0 0
\(745\) 5.21139e12 + 3.00880e12i 0.619798 + 0.357840i
\(746\) 0 0
\(747\) 5.60761e11 + 9.71266e11i 0.0658923 + 0.114129i
\(748\) 0 0
\(749\) 6.11424e12 2.63437e11i 0.709863 0.0305850i
\(750\) 0 0
\(751\) 7.61480e12 4.39641e12i 0.873532 0.504334i 0.00501163 0.999987i \(-0.498405\pi\)
0.868520 + 0.495654i \(0.165071\pi\)
\(752\) 0 0
\(753\) −8.42575e12 + 1.45938e13i −0.955061 + 1.65421i
\(754\) 0 0
\(755\) 9.12258e12 1.02178
\(756\) 0 0
\(757\) −2.68080e11 −0.0296711 −0.0148355 0.999890i \(-0.504722\pi\)
−0.0148355 + 0.999890i \(0.504722\pi\)
\(758\) 0 0
\(759\) −6.13149e12 + 1.06201e13i −0.670622 + 1.16155i
\(760\) 0 0
\(761\) 8.68094e12 5.01194e12i 0.938287 0.541720i 0.0488643 0.998805i \(-0.484440\pi\)
0.889423 + 0.457085i \(0.151106\pi\)
\(762\) 0 0
\(763\) 7.53611e12 4.79495e12i 0.804983 0.512181i
\(764\) 0 0
\(765\) −5.55559e12 9.62257e12i −0.586481 1.01582i
\(766\) 0 0
\(767\) 1.09871e12 + 6.34340e11i 0.114631 + 0.0661825i
\(768\) 0 0
\(769\) 7.07038e12i 0.729078i 0.931188 + 0.364539i \(0.118773\pi\)
−0.931188 + 0.364539i \(0.881227\pi\)
\(770\) 0 0
\(771\) 1.56766e13i 1.59774i
\(772\) 0 0
\(773\) 7.35243e12 + 4.24493e12i 0.740667 + 0.427624i 0.822312 0.569037i \(-0.192684\pi\)
−0.0816448 + 0.996661i \(0.526017\pi\)
\(774\) 0 0
\(775\) 8.01081e11 + 1.38751e12i 0.0797662 + 0.138159i
\(776\) 0 0
\(777\) −1.31149e12 6.83675e11i −0.129083 0.0672907i
\(778\) 0 0
\(779\) 1.03841e12 5.99526e11i 0.101030 0.0583297i
\(780\) 0 0
\(781\) 6.61939e12 1.14651e13i 0.636632 1.10268i
\(782\) 0 0
\(783\) 6.53490e12 0.621314
\(784\) 0 0
\(785\) 1.00399e13 0.943663
\(786\) 0 0
\(787\) −3.05806e12 + 5.29672e12i −0.284158 + 0.492176i −0.972405 0.233301i \(-0.925047\pi\)
0.688247 + 0.725477i \(0.258381\pi\)
\(788\) 0 0
\(789\) 2.57191e12 1.48489e12i 0.236271 0.136411i
\(790\) 0 0
\(791\) 1.74330e13 + 9.08774e12i 1.58335 + 0.825395i
\(792\) 0 0
\(793\) 7.68095e12 + 1.33038e13i 0.689740 + 1.19466i
\(794\) 0 0
\(795\) −2.00937e13 1.16011e13i −1.78405 1.03002i
\(796\) 0 0
\(797\) 9.13834e12i 0.802241i −0.916025 0.401120i \(-0.868621\pi\)
0.916025 0.401120i \(-0.131379\pi\)
\(798\) 0 0
\(799\) 1.43865e13i 1.24881i
\(800\) 0 0
\(801\) −3.87797e12 2.23895e12i −0.332857 0.192175i
\(802\) 0 0
\(803\) −2.19022e12 3.79357e12i −0.185895 0.321979i
\(804\) 0 0
\(805\) 8.83240e12 5.61973e12i 0.741306 0.471666i
\(806\) 0 0
\(807\) −5.36327e12 + 3.09649e12i −0.445142 + 0.257003i
\(808\) 0 0
\(809\) −2.00177e12 + 3.46717e12i −0.164303 + 0.284581i −0.936408 0.350914i \(-0.885871\pi\)
0.772105 + 0.635496i \(0.219204\pi\)
\(810\) 0 0
\(811\) −5.87382e12 −0.476790 −0.238395 0.971168i \(-0.576621\pi\)
−0.238395 + 0.971168i \(0.576621\pi\)
\(812\) 0 0
\(813\) 1.57927e13 1.26780
\(814\) 0 0
\(815\) 9.89526e12 1.71391e13i 0.785630 1.36075i
\(816\) 0 0
\(817\) 3.11117e11 1.79623e11i 0.0244300 0.0141047i
\(818\) 0 0
\(819\) 1.21110e13 5.21813e11i 0.940596 0.0405263i
\(820\) 0 0
\(821\) −6.64814e12 1.15149e13i −0.510688 0.884538i −0.999923 0.0123862i \(-0.996057\pi\)
0.489235 0.872152i \(-0.337276\pi\)
\(822\) 0 0
\(823\) −1.31671e13 7.60201e12i −1.00044 0.577603i −0.0920599 0.995753i \(-0.529345\pi\)
−0.908378 + 0.418151i \(0.862678\pi\)
\(824\) 0 0
\(825\) 2.53128e12i 0.190238i
\(826\) 0 0
\(827\) 5.92688e11i 0.0440607i 0.999757 + 0.0220303i \(0.00701304\pi\)
−0.999757 + 0.0220303i \(0.992987\pi\)
\(828\) 0 0
\(829\) −1.85597e13 1.07155e13i −1.36482 0.787980i −0.374560 0.927203i \(-0.622206\pi\)
−0.990261 + 0.139223i \(0.955540\pi\)
\(830\) 0 0
\(831\) 1.18846e13 + 2.05847e13i 0.864528 + 1.49741i
\(832\) 0 0
\(833\) 1.22593e12 + 1.42002e13i 0.0882192 + 1.02186i
\(834\) 0 0
\(835\) −1.34032e13 + 7.73837e12i −0.954159 + 0.550884i
\(836\) 0 0
\(837\) 2.88971e12 5.00512e12i 0.203512 0.352492i
\(838\) 0 0
\(839\) −1.79319e13 −1.24939 −0.624693 0.780870i \(-0.714776\pi\)
−0.624693 + 0.780870i \(0.714776\pi\)
\(840\) 0 0
\(841\) 3.34693e13 2.30709
\(842\) 0 0
\(843\) −3.64732e11 + 6.31734e11i −0.0248742 + 0.0430834i
\(844\) 0 0
\(845\) 4.93344e12 2.84832e12i 0.332885 0.192191i
\(846\) 0 0
\(847\) 6.09437e10 + 1.41447e12i 0.00406868 + 0.0944320i
\(848\) 0 0
\(849\) −2.12238e13 3.67607e13i −1.40197 2.42828i
\(850\) 0 0
\(851\) 1.21975e12 + 7.04225e11i 0.0797240 + 0.0460287i
\(852\) 0 0
\(853\) 1.67452e13i 1.08298i 0.840707 + 0.541490i \(0.182140\pi\)
−0.840707 + 0.541490i \(0.817860\pi\)
\(854\) 0 0
\(855\) 3.84928e12i 0.246338i
\(856\) 0 0
\(857\) 2.44348e13 + 1.41075e13i 1.54738 + 0.893378i 0.998341 + 0.0575784i \(0.0183379\pi\)
0.549035 + 0.835799i \(0.314995\pi\)
\(858\) 0 0
\(859\) −5.23811e12 9.07268e12i −0.328251 0.568547i 0.653914 0.756569i \(-0.273126\pi\)
−0.982165 + 0.188022i \(0.939792\pi\)
\(860\) 0 0
\(861\) −6.99917e12 1.10004e13i −0.434042 0.682174i
\(862\) 0 0
\(863\) 1.27285e13 7.34879e12i 0.781139 0.450991i −0.0556951 0.998448i \(-0.517737\pi\)
0.836834 + 0.547457i \(0.184404\pi\)
\(864\) 0 0
\(865\) −3.62774e12 + 6.28342e12i −0.220325 + 0.381614i
\(866\) 0 0
\(867\) −1.29121e12 −0.0776089
\(868\) 0 0
\(869\) −3.08099e12 −0.183274
\(870\) 0 0
\(871\) 7.34064e12 1.27144e13i 0.432167 0.748536i
\(872\) 0 0
\(873\) −2.88123e13 + 1.66348e13i −1.67885 + 0.969287i
\(874\) 0 0
\(875\) 8.45825e12 1.62254e13i 0.487803 0.935749i
\(876\) 0 0
\(877\) 3.01054e12 + 5.21440e12i 0.171848 + 0.297650i 0.939066 0.343737i \(-0.111693\pi\)
−0.767218 + 0.641387i \(0.778359\pi\)
\(878\) 0 0
\(879\) −2.68750e13 1.55163e13i −1.51844 0.876673i
\(880\) 0 0
\(881\) 2.00824e12i 0.112311i −0.998422 0.0561557i \(-0.982116\pi\)
0.998422 0.0561557i \(-0.0178843\pi\)
\(882\) 0 0
\(883\) 2.79790e13i 1.54885i 0.632666 + 0.774425i \(0.281961\pi\)
−0.632666 + 0.774425i \(0.718039\pi\)
\(884\) 0 0
\(885\) −3.79370e12 2.19029e12i −0.207882 0.120021i
\(886\) 0 0
\(887\) 1.38133e13 + 2.39254e13i 0.749276 + 1.29778i 0.948170 + 0.317763i \(0.102932\pi\)
−0.198894 + 0.980021i \(0.563735\pi\)
\(888\) 0 0
\(889\) −1.24413e13 + 2.38660e13i −0.668047 + 1.28151i
\(890\) 0 0
\(891\) −1.11434e13 + 6.43362e12i −0.592333 + 0.341984i
\(892\) 0 0
\(893\) −2.49198e12 + 4.31624e12i −0.131133 + 0.227130i
\(894\) 0 0
\(895\) 2.57251e13 1.34015
\(896\) 0 0
\(897\) −2.09383e13 −1.07988
\(898\) 0 0
\(899\) 2.12150e13 3.67454e13i 1.08324 1.87622i
\(900\) 0 0
\(901\) −2.60527e13 + 1.50415e13i −1.31701 + 0.760379i
\(902\) 0 0
\(903\) −2.09701e12 3.29582e12i −0.104956 0.164956i
\(904\) 0 0
\(905\) 3.46198e12 + 5.99633e12i 0.171556 + 0.297144i
\(906\) 0 0
\(907\) 7.65416e12 + 4.41913e12i 0.375547 + 0.216822i 0.675879 0.737012i \(-0.263764\pi\)
−0.300332 + 0.953835i \(0.597097\pi\)
\(908\) 0 0
\(909\) 1.76813e12i 0.0858965i
\(910\) 0 0
\(911\) 2.52442e13i 1.21431i −0.794584 0.607154i \(-0.792311\pi\)
0.794584 0.607154i \(-0.207689\pi\)
\(912\) 0 0
\(913\) 1.85548e12 + 1.07126e12i 0.0883765 + 0.0510242i
\(914\) 0 0
\(915\) −2.65213e13 4.59362e13i −1.25083 2.16651i
\(916\) 0 0
\(917\) −1.97616e10 4.58658e11i −0.000922914 0.0214204i
\(918\) 0 0
\(919\) −8.87350e12 + 5.12311e12i −0.410369 + 0.236927i −0.690948 0.722904i \(-0.742807\pi\)
0.280579 + 0.959831i \(0.409474\pi\)
\(920\) 0 0
\(921\) 1.05148e13 1.82122e13i 0.481542 0.834055i
\(922\) 0 0
\(923\) 2.26045e13 1.02515
\(924\) 0 0
\(925\) 2.90727e11 0.0130571
\(926\) 0 0
\(927\) 2.02796e13 3.51254e13i 0.901989 1.56229i
\(928\) 0 0
\(929\) −9.77079e11 + 5.64117e11i −0.0430387 + 0.0248484i −0.521365 0.853334i \(-0.674577\pi\)
0.478326 + 0.878182i \(0.341244\pi\)
\(930\) 0 0
\(931\) −2.09191e12 + 4.47269e12i −0.0912575 + 0.195117i
\(932\) 0 0
\(933\) 1.61430e13 + 2.79605e13i 0.697456 + 1.20803i
\(934\) 0 0
\(935\) −1.83827e13 1.06132e13i −0.786604 0.454146i
\(936\) 0 0
\(937\) 2.11381e13i 0.895854i −0.894070 0.447927i \(-0.852162\pi\)
0.894070 0.447927i \(-0.147838\pi\)
\(938\) 0 0
\(939\) 1.52192e13i 0.638848i
\(940\) 0 0
\(941\) −3.12346e13 1.80333e13i −1.29862 0.749759i −0.318455 0.947938i \(-0.603164\pi\)
−0.980166 + 0.198179i \(0.936497\pi\)
\(942\) 0 0
\(943\) 6.20823e12 + 1.07530e13i 0.255661 + 0.442819i
\(944\) 0 0
\(945\) −7.78770e12 + 3.35540e11i −0.317663 + 0.0136868i
\(946\) 0 0
\(947\) 1.53616e13 8.86903e12i 0.620672 0.358345i −0.156459 0.987684i \(-0.550008\pi\)
0.777131 + 0.629339i \(0.216674\pi\)
\(948\) 0 0
\(949\) 3.73967e12 6.47730e12i 0.149670 0.259237i
\(950\) 0 0
\(951\) −5.28750e13 −2.09623
\(952\) 0 0
\(953\) −1.83252e13 −0.719665 −0.359832 0.933017i \(-0.617166\pi\)
−0.359832 + 0.933017i \(0.617166\pi\)
\(954\) 0 0
\(955\) 1.72467e13 2.98721e13i 0.670950 1.16212i
\(956\) 0 0
\(957\) 5.80547e13 3.35179e13i 2.23735 1.29173i
\(958\) 0 0
\(959\) 1.18428e13 7.53513e12i 0.452137 0.287678i
\(960\) 0 0
\(961\) −5.54255e12 9.59998e12i −0.209630 0.363091i
\(962\) 0 0
\(963\) 2.01802e13 + 1.16510e13i 0.756147 + 0.436562i
\(964\) 0 0
\(965\) 4.03852e13i 1.49916i
\(966\) 0 0
\(967\) 1.32710e13i 0.488073i −0.969766 0.244037i \(-0.921528\pi\)
0.969766 0.244037i \(-0.0784717\pi\)
\(968\) 0 0
\(969\) −7.83944e12 4.52610e12i −0.285646 0.164918i
\(970\) 0 0
\(971\) −3.15601e12 5.46637e12i −0.113934 0.197339i 0.803419 0.595414i \(-0.203012\pi\)
−0.917353 + 0.398075i \(0.869678\pi\)
\(972\) 0 0
\(973\) −2.88312e13 1.50296e13i −1.03123 0.537577i
\(974\) 0 0
\(975\) −3.74298e12 + 2.16101e12i −0.132647 + 0.0765836i
\(976\) 0 0
\(977\) 8.05901e12 1.39586e13i 0.282980 0.490136i −0.689137 0.724631i \(-0.742010\pi\)
0.972117 + 0.234495i \(0.0753436\pi\)
\(978\) 0 0
\(979\) −8.55443e12 −0.297625
\(980\) 0 0
\(981\) 3.40101e13 1.17246
\(982\) 0 0
\(983\) −3.42506e12 + 5.93238e12i −0.116998 + 0.202646i −0.918577 0.395243i \(-0.870660\pi\)
0.801579 + 0.597889i \(0.203994\pi\)
\(984\) 0 0
\(985\) 3.52811e13 2.03695e13i 1.19420 0.689474i
\(986\) 0 0
\(987\) 4.80570e13 + 2.50520e13i 1.61187 + 0.840262i
\(988\) 0 0
\(989\) 1.86004e12 + 3.22169e12i 0.0618215 + 0.107078i
\(990\) 0 0
\(991\) −2.92356e13 1.68792e13i −0.962900 0.555930i −0.0658355 0.997830i \(-0.520971\pi\)
−0.897064 + 0.441900i \(0.854305\pi\)
\(992\) 0 0
\(993\) 8.26260e12i 0.269678i
\(994\) 0 0
\(995\) 5.08327e13i 1.64414i
\(996\) 0 0
\(997\) 3.41953e13 + 1.97427e13i 1.09607 + 0.632816i 0.935186 0.354158i \(-0.115232\pi\)
0.160883 + 0.986973i \(0.448566\pi\)
\(998\) 0 0
\(999\) −5.24364e11 9.08225e11i −0.0166567 0.0288502i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 112.10.p.b.31.2 24
4.3 odd 2 inner 112.10.p.b.31.11 yes 24
7.5 odd 6 inner 112.10.p.b.47.11 yes 24
28.19 even 6 inner 112.10.p.b.47.2 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.10.p.b.31.2 24 1.1 even 1 trivial
112.10.p.b.31.11 yes 24 4.3 odd 2 inner
112.10.p.b.47.2 yes 24 28.19 even 6 inner
112.10.p.b.47.11 yes 24 7.5 odd 6 inner