Properties

Label 112.10.p.a.47.3
Level $112$
Weight $10$
Character 112.47
Analytic conductor $57.684$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [112,10,Mod(31,112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(112, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 1])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("112.31"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 112.p (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,-162] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(57.6840136504\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 47.3
Character \(\chi\) \(=\) 112.47
Dual form 112.10.p.a.31.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-80.9515 - 140.212i) q^{3} +(-916.446 - 529.111i) q^{5} +(4644.00 + 4334.38i) q^{7} +(-3264.80 + 5654.80i) q^{9} +(6006.36 - 3467.77i) q^{11} -93825.2i q^{13} +171329. i q^{15} +(-119897. + 69222.8i) q^{17} +(415317. - 719350. i) q^{19} +(231794. - 1.00202e6i) q^{21} +(-2.26305e6 - 1.30657e6i) q^{23} +(-416647. - 721653. i) q^{25} -2.12958e6 q^{27} +6.68191e6 q^{29} +(-926240. - 1.60429e6i) q^{31} +(-972447. - 561443. i) q^{33} +(-1.96261e6 - 6.42942e6i) q^{35} +(-8.30683e6 + 1.43878e7i) q^{37} +(-1.31554e7 + 7.59529e6i) q^{39} -9.78601e6i q^{41} +1.04358e7i q^{43} +(5.98403e6 - 3.45488e6i) q^{45} +(1.27125e7 - 2.20187e7i) q^{47} +(2.77988e6 + 4.02577e7i) q^{49} +(1.94117e7 + 1.12074e7i) q^{51} +(8.09970e6 + 1.40291e7i) q^{53} -7.33934e6 q^{55} -1.34482e8 q^{57} +(2.26340e7 + 3.92032e7i) q^{59} +(8.25119e7 + 4.76383e7i) q^{61} +(-3.96718e7 + 1.21100e7i) q^{63} +(-4.96439e7 + 8.59857e7i) q^{65} +(-1.29397e7 + 7.47075e6i) q^{67} +4.23076e8i q^{69} +9.53158e7i q^{71} +(-1.78310e8 + 1.02947e8i) q^{73} +(-6.74564e7 + 1.16838e8i) q^{75} +(4.29242e7 + 9.92951e6i) q^{77} +(-4.33439e8 - 2.50246e8i) q^{79} +(2.36653e8 + 4.09896e8i) q^{81} -5.62286e8 q^{83} +1.46506e8 q^{85} +(-5.40911e8 - 9.36886e8i) q^{87} +(-6.08933e7 - 3.51568e7i) q^{89} +(4.06674e8 - 4.35724e8i) q^{91} +(-1.49961e8 + 2.59740e8i) q^{93} +(-7.61231e8 + 4.39497e8i) q^{95} +4.59671e8i q^{97} +4.52863e7i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 162 q^{3} - 852 q^{5} - 6744 q^{7} - 77884 q^{9} - 57534 q^{11} + 789336 q^{17} + 469098 q^{19} - 2104376 q^{21} + 1553682 q^{23} + 3602544 q^{25} + 6389244 q^{27} - 2462040 q^{29} - 10306686 q^{31}+ \cdots + 1433917218 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/112\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(17\) \(85\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −80.9515 140.212i −0.577005 0.999402i −0.995821 0.0913304i \(-0.970888\pi\)
0.418816 0.908071i \(-0.362445\pi\)
\(4\) 0 0
\(5\) −916.446 529.111i −0.655756 0.378601i 0.134902 0.990859i \(-0.456928\pi\)
−0.790658 + 0.612258i \(0.790261\pi\)
\(6\) 0 0
\(7\) 4644.00 + 4334.38i 0.731057 + 0.682317i
\(8\) 0 0
\(9\) −3264.80 + 5654.80i −0.165869 + 0.287294i
\(10\) 0 0
\(11\) 6006.36 3467.77i 0.123693 0.0714140i −0.436877 0.899521i \(-0.643916\pi\)
0.560570 + 0.828107i \(0.310582\pi\)
\(12\) 0 0
\(13\) 93825.2i 0.911117i −0.890206 0.455559i \(-0.849440\pi\)
0.890206 0.455559i \(-0.150560\pi\)
\(14\) 0 0
\(15\) 171329.i 0.873818i
\(16\) 0 0
\(17\) −119897. + 69222.8i −0.348168 + 0.201015i −0.663878 0.747841i \(-0.731091\pi\)
0.315710 + 0.948856i \(0.397757\pi\)
\(18\) 0 0
\(19\) 415317. 719350.i 0.731119 1.26634i −0.225286 0.974293i \(-0.572332\pi\)
0.956405 0.292043i \(-0.0943350\pi\)
\(20\) 0 0
\(21\) 231794. 1.00202e6i 0.260085 1.12432i
\(22\) 0 0
\(23\) −2.26305e6 1.30657e6i −1.68624 0.973550i −0.957356 0.288911i \(-0.906707\pi\)
−0.728882 0.684639i \(-0.759960\pi\)
\(24\) 0 0
\(25\) −416647. 721653.i −0.213323 0.369486i
\(26\) 0 0
\(27\) −2.12958e6 −0.771181
\(28\) 0 0
\(29\) 6.68191e6 1.75432 0.877162 0.480194i \(-0.159434\pi\)
0.877162 + 0.480194i \(0.159434\pi\)
\(30\) 0 0
\(31\) −926240. 1.60429e6i −0.180134 0.312001i 0.761792 0.647822i \(-0.224320\pi\)
−0.941926 + 0.335820i \(0.890986\pi\)
\(32\) 0 0
\(33\) −972447. 561443.i −0.142743 0.0824124i
\(34\) 0 0
\(35\) −1.96261e6 6.42942e6i −0.221069 0.724212i
\(36\) 0 0
\(37\) −8.30683e6 + 1.43878e7i −0.728664 + 1.26208i 0.228784 + 0.973477i \(0.426525\pi\)
−0.957448 + 0.288606i \(0.906808\pi\)
\(38\) 0 0
\(39\) −1.31554e7 + 7.59529e6i −0.910572 + 0.525719i
\(40\) 0 0
\(41\) 9.78601e6i 0.540852i −0.962741 0.270426i \(-0.912835\pi\)
0.962741 0.270426i \(-0.0871645\pi\)
\(42\) 0 0
\(43\) 1.04358e7i 0.465499i 0.972537 + 0.232750i \(0.0747723\pi\)
−0.972537 + 0.232750i \(0.925228\pi\)
\(44\) 0 0
\(45\) 5.98403e6 3.45488e6i 0.217539 0.125596i
\(46\) 0 0
\(47\) 1.27125e7 2.20187e7i 0.380006 0.658190i −0.611057 0.791587i \(-0.709255\pi\)
0.991063 + 0.133397i \(0.0425886\pi\)
\(48\) 0 0
\(49\) 2.77988e6 + 4.02577e7i 0.0688880 + 0.997624i
\(50\) 0 0
\(51\) 1.94117e7 + 1.12074e7i 0.401790 + 0.231973i
\(52\) 0 0
\(53\) 8.09970e6 + 1.40291e7i 0.141003 + 0.244224i 0.927874 0.372893i \(-0.121634\pi\)
−0.786872 + 0.617117i \(0.788301\pi\)
\(54\) 0 0
\(55\) −7.33934e6 −0.108150
\(56\) 0 0
\(57\) −1.34482e8 −1.68744
\(58\) 0 0
\(59\) 2.26340e7 + 3.92032e7i 0.243179 + 0.421199i 0.961618 0.274391i \(-0.0884763\pi\)
−0.718439 + 0.695590i \(0.755143\pi\)
\(60\) 0 0
\(61\) 8.25119e7 + 4.76383e7i 0.763013 + 0.440526i 0.830377 0.557203i \(-0.188125\pi\)
−0.0673632 + 0.997729i \(0.521459\pi\)
\(62\) 0 0
\(63\) −3.96718e7 + 1.21100e7i −0.317285 + 0.0968527i
\(64\) 0 0
\(65\) −4.96439e7 + 8.59857e7i −0.344950 + 0.597470i
\(66\) 0 0
\(67\) −1.29397e7 + 7.47075e6i −0.0784492 + 0.0452927i −0.538711 0.842490i \(-0.681089\pi\)
0.460262 + 0.887783i \(0.347755\pi\)
\(68\) 0 0
\(69\) 4.23076e8i 2.24697i
\(70\) 0 0
\(71\) 9.53158e7i 0.445146i 0.974916 + 0.222573i \(0.0714456\pi\)
−0.974916 + 0.222573i \(0.928554\pi\)
\(72\) 0 0
\(73\) −1.78310e8 + 1.02947e8i −0.734890 + 0.424289i −0.820208 0.572065i \(-0.806143\pi\)
0.0853185 + 0.996354i \(0.472809\pi\)
\(74\) 0 0
\(75\) −6.74564e7 + 1.16838e8i −0.246177 + 0.426391i
\(76\) 0 0
\(77\) 4.29242e7 + 9.92951e6i 0.139153 + 0.0321899i
\(78\) 0 0
\(79\) −4.33439e8 2.50246e8i −1.25201 0.722846i −0.280499 0.959854i \(-0.590500\pi\)
−0.971508 + 0.237008i \(0.923833\pi\)
\(80\) 0 0
\(81\) 2.36653e8 + 4.09896e8i 0.610844 + 1.05801i
\(82\) 0 0
\(83\) −5.62286e8 −1.30049 −0.650244 0.759726i \(-0.725333\pi\)
−0.650244 + 0.759726i \(0.725333\pi\)
\(84\) 0 0
\(85\) 1.46506e8 0.304418
\(86\) 0 0
\(87\) −5.40911e8 9.36886e8i −1.01225 1.75327i
\(88\) 0 0
\(89\) −6.08933e7 3.51568e7i −0.102876 0.0593956i 0.447679 0.894194i \(-0.352251\pi\)
−0.550555 + 0.834799i \(0.685584\pi\)
\(90\) 0 0
\(91\) 4.06674e8 4.35724e8i 0.621670 0.666078i
\(92\) 0 0
\(93\) −1.49961e8 + 2.59740e8i −0.207876 + 0.360052i
\(94\) 0 0
\(95\) −7.61231e8 + 4.39497e8i −0.958871 + 0.553604i
\(96\) 0 0
\(97\) 4.59671e8i 0.527198i 0.964632 + 0.263599i \(0.0849096\pi\)
−0.964632 + 0.263599i \(0.915090\pi\)
\(98\) 0 0
\(99\) 4.52863e7i 0.0473815i
\(100\) 0 0
\(101\) 9.67458e6 5.58562e6i 0.00925094 0.00534103i −0.495367 0.868684i \(-0.664967\pi\)
0.504618 + 0.863343i \(0.331633\pi\)
\(102\) 0 0
\(103\) −3.63083e8 + 6.28877e8i −0.317861 + 0.550552i −0.980042 0.198792i \(-0.936298\pi\)
0.662180 + 0.749345i \(0.269631\pi\)
\(104\) 0 0
\(105\) −7.42606e8 + 7.95653e8i −0.596220 + 0.638810i
\(106\) 0 0
\(107\) −1.86994e9 1.07961e9i −1.37912 0.796233i −0.387063 0.922053i \(-0.626510\pi\)
−0.992053 + 0.125821i \(0.959844\pi\)
\(108\) 0 0
\(109\) 8.58250e8 + 1.48653e9i 0.582364 + 1.00868i 0.995198 + 0.0978777i \(0.0312054\pi\)
−0.412835 + 0.910806i \(0.635461\pi\)
\(110\) 0 0
\(111\) 2.68980e9 1.68177
\(112\) 0 0
\(113\) −2.22713e9 −1.28497 −0.642485 0.766298i \(-0.722097\pi\)
−0.642485 + 0.766298i \(0.722097\pi\)
\(114\) 0 0
\(115\) 1.38264e9 + 2.39481e9i 0.737173 + 1.27682i
\(116\) 0 0
\(117\) 5.30562e8 + 3.06320e8i 0.261758 + 0.151126i
\(118\) 0 0
\(119\) −8.56841e8 1.98210e8i −0.391687 0.0906077i
\(120\) 0 0
\(121\) −1.15492e9 + 2.00039e9i −0.489800 + 0.848359i
\(122\) 0 0
\(123\) −1.37212e9 + 7.92192e8i −0.540528 + 0.312074i
\(124\) 0 0
\(125\) 2.94865e9i 1.08026i
\(126\) 0 0
\(127\) 8.66110e8i 0.295431i 0.989030 + 0.147716i \(0.0471920\pi\)
−0.989030 + 0.147716i \(0.952808\pi\)
\(128\) 0 0
\(129\) 1.46323e9 8.44797e8i 0.465221 0.268595i
\(130\) 0 0
\(131\) 9.11507e8 1.57878e9i 0.270420 0.468382i −0.698549 0.715562i \(-0.746171\pi\)
0.968969 + 0.247180i \(0.0795040\pi\)
\(132\) 0 0
\(133\) 5.04667e9 1.54052e9i 1.39853 0.426908i
\(134\) 0 0
\(135\) 1.95164e9 + 1.12678e9i 0.505706 + 0.291970i
\(136\) 0 0
\(137\) −7.49973e8 1.29899e9i −0.181887 0.315038i 0.760636 0.649179i \(-0.224887\pi\)
−0.942523 + 0.334140i \(0.891554\pi\)
\(138\) 0 0
\(139\) −1.12735e9 −0.256149 −0.128075 0.991765i \(-0.540880\pi\)
−0.128075 + 0.991765i \(0.540880\pi\)
\(140\) 0 0
\(141\) −4.11638e9 −0.877061
\(142\) 0 0
\(143\) −3.25364e8 5.63547e8i −0.0650665 0.112699i
\(144\) 0 0
\(145\) −6.12362e9 3.53547e9i −1.15041 0.664188i
\(146\) 0 0
\(147\) 5.41959e9 3.64870e9i 0.957279 0.644481i
\(148\) 0 0
\(149\) 2.72101e9 4.71293e9i 0.452264 0.783344i −0.546263 0.837614i \(-0.683950\pi\)
0.998526 + 0.0542703i \(0.0172833\pi\)
\(150\) 0 0
\(151\) −1.51712e9 + 8.75909e8i −0.237478 + 0.137108i −0.614017 0.789293i \(-0.710447\pi\)
0.376539 + 0.926401i \(0.377114\pi\)
\(152\) 0 0
\(153\) 9.03994e8i 0.133369i
\(154\) 0 0
\(155\) 1.96033e9i 0.272795i
\(156\) 0 0
\(157\) 1.19834e10 6.91859e9i 1.57409 0.908802i 0.578432 0.815731i \(-0.303665\pi\)
0.995659 0.0930715i \(-0.0296685\pi\)
\(158\) 0 0
\(159\) 1.31137e9 2.27135e9i 0.162718 0.281837i
\(160\) 0 0
\(161\) −4.84642e9 1.58766e10i −0.568466 1.86227i
\(162\) 0 0
\(163\) −1.47245e9 8.50120e8i −0.163379 0.0943270i 0.416081 0.909328i \(-0.363403\pi\)
−0.579460 + 0.815001i \(0.696737\pi\)
\(164\) 0 0
\(165\) 5.94131e8 + 1.02906e9i 0.0624028 + 0.108085i
\(166\) 0 0
\(167\) 6.16125e9 0.612978 0.306489 0.951874i \(-0.400846\pi\)
0.306489 + 0.951874i \(0.400846\pi\)
\(168\) 0 0
\(169\) 1.80134e9 0.169866
\(170\) 0 0
\(171\) 2.71185e9 + 4.69706e9i 0.242540 + 0.420092i
\(172\) 0 0
\(173\) 3.11796e9 + 1.80016e9i 0.264645 + 0.152793i 0.626451 0.779460i \(-0.284507\pi\)
−0.361807 + 0.932253i \(0.617840\pi\)
\(174\) 0 0
\(175\) 1.19301e9 5.15726e9i 0.0961554 0.415669i
\(176\) 0 0
\(177\) 3.66451e9 6.34712e9i 0.280631 0.486068i
\(178\) 0 0
\(179\) −7.51704e9 + 4.33996e9i −0.547278 + 0.315971i −0.748023 0.663672i \(-0.768997\pi\)
0.200745 + 0.979643i \(0.435664\pi\)
\(180\) 0 0
\(181\) 1.73505e10i 1.20160i −0.799401 0.600798i \(-0.794849\pi\)
0.799401 0.600798i \(-0.205151\pi\)
\(182\) 0 0
\(183\) 1.54256e10i 1.01674i
\(184\) 0 0
\(185\) 1.52255e10 8.79046e9i 0.955651 0.551746i
\(186\) 0 0
\(187\) −4.80098e8 + 8.31553e8i −0.0287106 + 0.0497282i
\(188\) 0 0
\(189\) −9.88975e9 9.23039e9i −0.563777 0.526189i
\(190\) 0 0
\(191\) −1.08502e10 6.26436e9i −0.589912 0.340586i 0.175151 0.984542i \(-0.443959\pi\)
−0.765063 + 0.643956i \(0.777292\pi\)
\(192\) 0 0
\(193\) 1.36553e10 + 2.36516e10i 0.708422 + 1.22702i 0.965442 + 0.260616i \(0.0839257\pi\)
−0.257021 + 0.966406i \(0.582741\pi\)
\(194\) 0 0
\(195\) 1.60750e10 0.796150
\(196\) 0 0
\(197\) −3.49380e10 −1.65272 −0.826362 0.563140i \(-0.809593\pi\)
−0.826362 + 0.563140i \(0.809593\pi\)
\(198\) 0 0
\(199\) 1.77894e10 + 3.08121e10i 0.804121 + 1.39278i 0.916883 + 0.399157i \(0.130697\pi\)
−0.112761 + 0.993622i \(0.535970\pi\)
\(200\) 0 0
\(201\) 2.09498e9 + 1.20954e9i 0.0905311 + 0.0522682i
\(202\) 0 0
\(203\) 3.10308e10 + 2.89620e10i 1.28251 + 1.19700i
\(204\) 0 0
\(205\) −5.17788e9 + 8.96835e9i −0.204767 + 0.354667i
\(206\) 0 0
\(207\) 1.47768e10 8.53139e9i 0.559389 0.322964i
\(208\) 0 0
\(209\) 5.76089e9i 0.208849i
\(210\) 0 0
\(211\) 4.67225e9i 0.162276i 0.996703 + 0.0811381i \(0.0258555\pi\)
−0.996703 + 0.0811381i \(0.974145\pi\)
\(212\) 0 0
\(213\) 1.33644e10 7.71596e9i 0.444880 0.256851i
\(214\) 0 0
\(215\) 5.52171e9 9.56388e9i 0.176238 0.305254i
\(216\) 0 0
\(217\) 2.65217e9 1.14650e10i 0.0811955 0.350999i
\(218\) 0 0
\(219\) 2.88689e10 + 1.66675e10i 0.848070 + 0.489633i
\(220\) 0 0
\(221\) 6.49484e9 + 1.12494e10i 0.183148 + 0.317222i
\(222\) 0 0
\(223\) −6.06636e10 −1.64269 −0.821347 0.570429i \(-0.806777\pi\)
−0.821347 + 0.570429i \(0.806777\pi\)
\(224\) 0 0
\(225\) 5.44107e9 0.141535
\(226\) 0 0
\(227\) 7.06266e9 + 1.22329e10i 0.176544 + 0.305782i 0.940694 0.339255i \(-0.110175\pi\)
−0.764151 + 0.645038i \(0.776842\pi\)
\(228\) 0 0
\(229\) −6.90916e10 3.98900e10i −1.66022 0.958528i −0.972609 0.232449i \(-0.925326\pi\)
−0.687611 0.726080i \(-0.741340\pi\)
\(230\) 0 0
\(231\) −2.08254e9 6.82230e9i −0.0481215 0.157644i
\(232\) 0 0
\(233\) −2.72352e10 + 4.71728e10i −0.605381 + 1.04855i 0.386610 + 0.922243i \(0.373646\pi\)
−0.991991 + 0.126308i \(0.959687\pi\)
\(234\) 0 0
\(235\) −2.33006e10 + 1.34526e10i −0.498382 + 0.287741i
\(236\) 0 0
\(237\) 8.10313e10i 1.66834i
\(238\) 0 0
\(239\) 7.91902e10i 1.56993i −0.619539 0.784966i \(-0.712680\pi\)
0.619539 0.784966i \(-0.287320\pi\)
\(240\) 0 0
\(241\) 5.15708e10 2.97744e10i 0.984753 0.568547i 0.0810510 0.996710i \(-0.474172\pi\)
0.903702 + 0.428163i \(0.140839\pi\)
\(242\) 0 0
\(243\) 1.73567e10 3.00627e10i 0.319329 0.553095i
\(244\) 0 0
\(245\) 1.87532e10 3.83649e10i 0.332528 0.680279i
\(246\) 0 0
\(247\) −6.74931e10 3.89672e10i −1.15378 0.666135i
\(248\) 0 0
\(249\) 4.55179e10 + 7.88394e10i 0.750388 + 1.29971i
\(250\) 0 0
\(251\) −5.73362e10 −0.911795 −0.455898 0.890032i \(-0.650682\pi\)
−0.455898 + 0.890032i \(0.650682\pi\)
\(252\) 0 0
\(253\) −1.81236e10 −0.278100
\(254\) 0 0
\(255\) −1.18599e10 2.05419e10i −0.175651 0.304236i
\(256\) 0 0
\(257\) 9.47085e10 + 5.46800e10i 1.35422 + 0.781860i 0.988838 0.148996i \(-0.0476043\pi\)
0.365384 + 0.930857i \(0.380938\pi\)
\(258\) 0 0
\(259\) −1.00939e11 + 3.08122e10i −1.39384 + 0.425475i
\(260\) 0 0
\(261\) −2.18151e10 + 3.77849e10i −0.290988 + 0.504006i
\(262\) 0 0
\(263\) −9.79765e10 + 5.65668e10i −1.26276 + 0.729056i −0.973608 0.228227i \(-0.926707\pi\)
−0.289153 + 0.957283i \(0.593374\pi\)
\(264\) 0 0
\(265\) 1.71425e10i 0.213535i
\(266\) 0 0
\(267\) 1.13840e10i 0.137086i
\(268\) 0 0
\(269\) −9.18922e10 + 5.30540e10i −1.07002 + 0.617778i −0.928188 0.372112i \(-0.878634\pi\)
−0.141836 + 0.989890i \(0.545300\pi\)
\(270\) 0 0
\(271\) 4.25260e10 7.36571e10i 0.478952 0.829570i −0.520756 0.853705i \(-0.674350\pi\)
0.999709 + 0.0241354i \(0.00768330\pi\)
\(272\) 0 0
\(273\) −9.40147e10 2.17481e10i −1.02439 0.236968i
\(274\) 0 0
\(275\) −5.00506e9 2.88967e9i −0.0527730 0.0304685i
\(276\) 0 0
\(277\) 5.75883e10 + 9.97459e10i 0.587727 + 1.01797i 0.994529 + 0.104457i \(0.0333104\pi\)
−0.406803 + 0.913516i \(0.633356\pi\)
\(278\) 0 0
\(279\) 1.20959e10 0.119515
\(280\) 0 0
\(281\) −8.91206e10 −0.852707 −0.426354 0.904557i \(-0.640202\pi\)
−0.426354 + 0.904557i \(0.640202\pi\)
\(282\) 0 0
\(283\) 4.63405e10 + 8.02642e10i 0.429459 + 0.743845i 0.996825 0.0796203i \(-0.0253708\pi\)
−0.567366 + 0.823466i \(0.692037\pi\)
\(284\) 0 0
\(285\) 1.23246e11 + 7.11559e10i 1.10655 + 0.638865i
\(286\) 0 0
\(287\) 4.24163e10 4.54462e10i 0.369032 0.395393i
\(288\) 0 0
\(289\) −4.97104e10 + 8.61009e10i −0.419186 + 0.726051i
\(290\) 0 0
\(291\) 6.44514e10 3.72111e10i 0.526883 0.304196i
\(292\) 0 0
\(293\) 6.64592e10i 0.526806i −0.964686 0.263403i \(-0.915155\pi\)
0.964686 0.263403i \(-0.0848449\pi\)
\(294\) 0 0
\(295\) 4.79035e10i 0.368271i
\(296\) 0 0
\(297\) −1.27910e10 + 7.38488e9i −0.0953894 + 0.0550731i
\(298\) 0 0
\(299\) −1.22589e11 + 2.12331e11i −0.887018 + 1.53636i
\(300\) 0 0
\(301\) −4.52329e10 + 4.84640e10i −0.317618 + 0.340306i
\(302\) 0 0
\(303\) −1.56634e9 9.04329e8i −0.0106757 0.00616360i
\(304\) 0 0
\(305\) −5.04118e10 8.73158e10i −0.333567 0.577755i
\(306\) 0 0
\(307\) 1.08333e11 0.696046 0.348023 0.937486i \(-0.386853\pi\)
0.348023 + 0.937486i \(0.386853\pi\)
\(308\) 0 0
\(309\) 1.17568e11 0.733630
\(310\) 0 0
\(311\) −3.18414e10 5.51510e10i −0.193006 0.334296i 0.753239 0.657747i \(-0.228490\pi\)
−0.946245 + 0.323451i \(0.895157\pi\)
\(312\) 0 0
\(313\) −1.71378e11 9.89449e10i −1.00926 0.582698i −0.0982873 0.995158i \(-0.531336\pi\)
−0.910976 + 0.412460i \(0.864670\pi\)
\(314\) 0 0
\(315\) 4.27646e10 + 9.89259e9i 0.244730 + 0.0566125i
\(316\) 0 0
\(317\) 7.16976e10 1.24184e11i 0.398784 0.690714i −0.594792 0.803879i \(-0.702766\pi\)
0.993576 + 0.113165i \(0.0360990\pi\)
\(318\) 0 0
\(319\) 4.01340e10 2.31714e10i 0.216997 0.125283i
\(320\) 0 0
\(321\) 3.49584e11i 1.83772i
\(322\) 0 0
\(323\) 1.14997e11i 0.587864i
\(324\) 0 0
\(325\) −6.77092e10 + 3.90919e10i −0.336645 + 0.194362i
\(326\) 0 0
\(327\) 1.38953e11 2.40674e11i 0.672053 1.16403i
\(328\) 0 0
\(329\) 1.54474e11 4.71540e10i 0.726900 0.221890i
\(330\) 0 0
\(331\) −7.37062e9 4.25543e9i −0.0337503 0.0194858i 0.483030 0.875604i \(-0.339536\pi\)
−0.516780 + 0.856118i \(0.672870\pi\)
\(332\) 0 0
\(333\) −5.42402e10 9.39469e10i −0.241726 0.418681i
\(334\) 0 0
\(335\) 1.58114e10 0.0685913
\(336\) 0 0
\(337\) −9.73131e9 −0.0410995 −0.0205498 0.999789i \(-0.506542\pi\)
−0.0205498 + 0.999789i \(0.506542\pi\)
\(338\) 0 0
\(339\) 1.80290e11 + 3.12271e11i 0.741434 + 1.28420i
\(340\) 0 0
\(341\) −1.11267e10 6.42398e9i −0.0445625 0.0257282i
\(342\) 0 0
\(343\) −1.61583e11 + 1.99006e11i −0.630335 + 0.776324i
\(344\) 0 0
\(345\) 2.23854e11 3.87727e11i 0.850705 1.47346i
\(346\) 0 0
\(347\) 1.03687e11 5.98639e10i 0.383922 0.221658i −0.295601 0.955311i \(-0.595520\pi\)
0.679523 + 0.733654i \(0.262187\pi\)
\(348\) 0 0
\(349\) 1.47764e11i 0.533156i −0.963813 0.266578i \(-0.914107\pi\)
0.963813 0.266578i \(-0.0858930\pi\)
\(350\) 0 0
\(351\) 1.99808e11i 0.702636i
\(352\) 0 0
\(353\) −3.37242e10 + 1.94707e10i −0.115599 + 0.0667413i −0.556685 0.830724i \(-0.687927\pi\)
0.441085 + 0.897465i \(0.354594\pi\)
\(354\) 0 0
\(355\) 5.04326e10 8.73518e10i 0.168533 0.291907i
\(356\) 0 0
\(357\) 4.15711e10 + 1.36185e11i 0.135452 + 0.443734i
\(358\) 0 0
\(359\) −4.85695e11 2.80416e11i −1.54326 0.891000i −0.998630 0.0523219i \(-0.983338\pi\)
−0.544627 0.838678i \(-0.683329\pi\)
\(360\) 0 0
\(361\) −1.83632e11 3.18060e11i −0.569070 0.985659i
\(362\) 0 0
\(363\) 3.73971e11 1.13047
\(364\) 0 0
\(365\) 2.17882e11 0.642544
\(366\) 0 0
\(367\) −3.40438e11 5.89657e11i −0.979583 1.69669i −0.663896 0.747825i \(-0.731098\pi\)
−0.315687 0.948863i \(-0.602235\pi\)
\(368\) 0 0
\(369\) 5.53379e10 + 3.19494e10i 0.155383 + 0.0897105i
\(370\) 0 0
\(371\) −2.31924e10 + 1.00258e11i −0.0635570 + 0.274750i
\(372\) 0 0
\(373\) 2.71398e11 4.70074e11i 0.725966 1.25741i −0.232609 0.972570i \(-0.574726\pi\)
0.958575 0.284840i \(-0.0919404\pi\)
\(374\) 0 0
\(375\) 4.13436e11 2.38697e11i 1.07961 0.623314i
\(376\) 0 0
\(377\) 6.26932e11i 1.59840i
\(378\) 0 0
\(379\) 5.07966e11i 1.26462i 0.774717 + 0.632308i \(0.217892\pi\)
−0.774717 + 0.632308i \(0.782108\pi\)
\(380\) 0 0
\(381\) 1.21439e11 7.01129e10i 0.295254 0.170465i
\(382\) 0 0
\(383\) 2.24294e11 3.88489e11i 0.532627 0.922538i −0.466647 0.884444i \(-0.654538\pi\)
0.999274 0.0380941i \(-0.0121286\pi\)
\(384\) 0 0
\(385\) −3.40839e10 3.18115e10i −0.0790635 0.0737922i
\(386\) 0 0
\(387\) −5.90125e10 3.40709e10i −0.133735 0.0772119i
\(388\) 0 0
\(389\) −3.91569e11 6.78218e11i −0.867033 1.50174i −0.865014 0.501747i \(-0.832691\pi\)
−0.00201837 0.999998i \(-0.500642\pi\)
\(390\) 0 0
\(391\) 3.61778e11 0.782793
\(392\) 0 0
\(393\) −2.95152e11 −0.624135
\(394\) 0 0
\(395\) 2.64816e11 + 4.58675e11i 0.547340 + 0.948021i
\(396\) 0 0
\(397\) 6.54080e11 + 3.77633e11i 1.32152 + 0.762980i 0.983971 0.178328i \(-0.0570687\pi\)
0.337549 + 0.941308i \(0.390402\pi\)
\(398\) 0 0
\(399\) −6.24535e11 5.82897e11i −1.23361 1.15137i
\(400\) 0 0
\(401\) 9.77646e10 1.69333e11i 0.188813 0.327034i −0.756042 0.654523i \(-0.772869\pi\)
0.944855 + 0.327490i \(0.106203\pi\)
\(402\) 0 0
\(403\) −1.50523e11 + 8.69046e10i −0.284270 + 0.164123i
\(404\) 0 0
\(405\) 5.00863e11i 0.925064i
\(406\) 0 0
\(407\) 1.15225e11i 0.208147i
\(408\) 0 0
\(409\) −5.40799e11 + 3.12231e11i −0.955611 + 0.551722i −0.894820 0.446428i \(-0.852696\pi\)
−0.0607918 + 0.998150i \(0.519363\pi\)
\(410\) 0 0
\(411\) −1.21423e11 + 2.10311e11i −0.209900 + 0.363557i
\(412\) 0 0
\(413\) −6.48094e10 + 2.80164e11i −0.109613 + 0.473846i
\(414\) 0 0
\(415\) 5.15305e11 + 2.97512e11i 0.852802 + 0.492365i
\(416\) 0 0
\(417\) 9.12610e10 + 1.58069e11i 0.147799 + 0.255996i
\(418\) 0 0
\(419\) 8.55564e11 1.35609 0.678047 0.735019i \(-0.262827\pi\)
0.678047 + 0.735019i \(0.262827\pi\)
\(420\) 0 0
\(421\) 6.80832e11 1.05626 0.528129 0.849164i \(-0.322894\pi\)
0.528129 + 0.849164i \(0.322894\pi\)
\(422\) 0 0
\(423\) 8.30075e10 + 1.43773e11i 0.126062 + 0.218347i
\(424\) 0 0
\(425\) 9.99096e10 + 5.76829e10i 0.148545 + 0.0857623i
\(426\) 0 0
\(427\) 1.76703e11 + 5.78870e11i 0.257228 + 0.842666i
\(428\) 0 0
\(429\) −5.26775e10 + 9.12400e10i −0.0750874 + 0.130055i
\(430\) 0 0
\(431\) 1.54207e11 8.90314e10i 0.215257 0.124278i −0.388495 0.921451i \(-0.627005\pi\)
0.603752 + 0.797172i \(0.293672\pi\)
\(432\) 0 0
\(433\) 1.14363e12i 1.56348i 0.623607 + 0.781738i \(0.285667\pi\)
−0.623607 + 0.781738i \(0.714333\pi\)
\(434\) 0 0
\(435\) 1.14481e12i 1.53296i
\(436\) 0 0
\(437\) −1.87976e12 + 1.08528e12i −2.46568 + 1.42356i
\(438\) 0 0
\(439\) 2.19362e11 3.79946e11i 0.281884 0.488238i −0.689964 0.723843i \(-0.742374\pi\)
0.971849 + 0.235605i \(0.0757072\pi\)
\(440\) 0 0
\(441\) −2.36725e11 1.15714e11i −0.298037 0.145684i
\(442\) 0 0
\(443\) −3.33909e11 1.92782e11i −0.411919 0.237821i 0.279695 0.960089i \(-0.409767\pi\)
−0.691614 + 0.722268i \(0.743100\pi\)
\(444\) 0 0
\(445\) 3.72036e10 + 6.44386e10i 0.0449744 + 0.0778979i
\(446\) 0 0
\(447\) −8.81079e11 −1.04383
\(448\) 0 0
\(449\) 1.27314e11 0.147832 0.0739160 0.997264i \(-0.476450\pi\)
0.0739160 + 0.997264i \(0.476450\pi\)
\(450\) 0 0
\(451\) −3.39356e10 5.87783e10i −0.0386244 0.0668994i
\(452\) 0 0
\(453\) 2.45626e11 + 1.41812e11i 0.274052 + 0.158224i
\(454\) 0 0
\(455\) −6.03241e11 + 1.84142e11i −0.659842 + 0.201420i
\(456\) 0 0
\(457\) 4.63705e11 8.03161e11i 0.497301 0.861350i −0.502694 0.864464i \(-0.667658\pi\)
0.999995 + 0.00311394i \(0.000991201\pi\)
\(458\) 0 0
\(459\) 2.55331e11 1.47415e11i 0.268501 0.155019i
\(460\) 0 0
\(461\) 1.36015e12i 1.40260i 0.712867 + 0.701300i \(0.247397\pi\)
−0.712867 + 0.701300i \(0.752603\pi\)
\(462\) 0 0
\(463\) 2.57213e11i 0.260123i −0.991506 0.130061i \(-0.958483\pi\)
0.991506 0.130061i \(-0.0415175\pi\)
\(464\) 0 0
\(465\) 2.74863e11 1.58692e11i 0.272632 0.157404i
\(466\) 0 0
\(467\) 9.27100e11 1.60578e12i 0.901988 1.56229i 0.0770775 0.997025i \(-0.475441\pi\)
0.824910 0.565264i \(-0.191226\pi\)
\(468\) 0 0
\(469\) −9.24732e10 2.13915e10i −0.0882547 0.0204157i
\(470\) 0 0
\(471\) −1.94014e12 1.12014e12i −1.81652 1.04877i
\(472\) 0 0
\(473\) 3.61891e10 + 6.26813e10i 0.0332432 + 0.0575789i
\(474\) 0 0
\(475\) −6.92161e11 −0.623858
\(476\) 0 0
\(477\) −1.05776e11 −0.0935519
\(478\) 0 0
\(479\) 5.28772e11 + 9.15859e11i 0.458942 + 0.794912i 0.998905 0.0467771i \(-0.0148951\pi\)
−0.539963 + 0.841689i \(0.681562\pi\)
\(480\) 0 0
\(481\) 1.34994e12 + 7.79389e11i 1.14991 + 0.663898i
\(482\) 0 0
\(483\) −1.83377e12 + 1.96477e12i −1.53315 + 1.64266i
\(484\) 0 0
\(485\) 2.43217e11 4.21264e11i 0.199598 0.345713i
\(486\) 0 0
\(487\) 4.08557e11 2.35880e11i 0.329133 0.190025i −0.326323 0.945258i \(-0.605810\pi\)
0.655456 + 0.755233i \(0.272476\pi\)
\(488\) 0 0
\(489\) 2.75274e11i 0.217709i
\(490\) 0 0
\(491\) 1.93898e12i 1.50559i −0.658255 0.752795i \(-0.728705\pi\)
0.658255 0.752795i \(-0.271295\pi\)
\(492\) 0 0
\(493\) −8.01144e11 + 4.62541e11i −0.610801 + 0.352646i
\(494\) 0 0
\(495\) 2.39615e10 4.15025e10i 0.0179387 0.0310707i
\(496\) 0 0
\(497\) −4.13135e11 + 4.42647e11i −0.303731 + 0.325427i
\(498\) 0 0
\(499\) −1.68826e12 9.74717e11i −1.21895 0.703762i −0.254258 0.967136i \(-0.581831\pi\)
−0.964694 + 0.263374i \(0.915165\pi\)
\(500\) 0 0
\(501\) −4.98762e11 8.63882e11i −0.353691 0.612611i
\(502\) 0 0
\(503\) 8.84756e11 0.616265 0.308133 0.951343i \(-0.400296\pi\)
0.308133 + 0.951343i \(0.400296\pi\)
\(504\) 0 0
\(505\) −1.18216e10 −0.00808848
\(506\) 0 0
\(507\) −1.45821e11 2.52570e11i −0.0980133 0.169764i
\(508\) 0 0
\(509\) −6.27221e11 3.62126e11i −0.414181 0.239128i 0.278404 0.960464i \(-0.410195\pi\)
−0.692585 + 0.721337i \(0.743528\pi\)
\(510\) 0 0
\(511\) −1.27428e12 2.94776e11i −0.826746 0.191248i
\(512\) 0 0
\(513\) −8.84448e11 + 1.53191e12i −0.563825 + 0.976574i
\(514\) 0 0
\(515\) 6.65491e11 3.84222e11i 0.416879 0.240685i
\(516\) 0 0
\(517\) 1.76336e11i 0.108551i
\(518\) 0 0
\(519\) 5.82901e11i 0.352648i
\(520\) 0 0
\(521\) 4.23157e11 2.44310e11i 0.251612 0.145268i −0.368890 0.929473i \(-0.620262\pi\)
0.620502 + 0.784205i \(0.286929\pi\)
\(522\) 0 0
\(523\) −9.35351e11 + 1.62007e12i −0.546659 + 0.946842i 0.451841 + 0.892098i \(0.350767\pi\)
−0.998500 + 0.0547434i \(0.982566\pi\)
\(524\) 0 0
\(525\) −8.19687e11 + 2.50213e11i −0.470903 + 0.143745i
\(526\) 0 0
\(527\) 2.22107e11 + 1.28234e11i 0.125434 + 0.0724194i
\(528\) 0 0
\(529\) 2.51369e12 + 4.35383e12i 1.39560 + 2.41725i
\(530\) 0 0
\(531\) −2.95581e11 −0.161344
\(532\) 0 0
\(533\) −9.18174e11 −0.492779
\(534\) 0 0
\(535\) 1.14247e12 + 1.97881e12i 0.602909 + 1.04427i
\(536\) 0 0
\(537\) 1.21703e12 + 7.02653e11i 0.631564 + 0.364634i
\(538\) 0 0
\(539\) 1.56302e11 + 2.32162e11i 0.0797653 + 0.118479i
\(540\) 0 0
\(541\) −1.98694e11 + 3.44148e11i −0.0997234 + 0.172726i −0.911570 0.411145i \(-0.865129\pi\)
0.811847 + 0.583871i \(0.198462\pi\)
\(542\) 0 0
\(543\) −2.43275e12 + 1.40455e12i −1.20088 + 0.693327i
\(544\) 0 0
\(545\) 1.81644e12i 0.881933i
\(546\) 0 0
\(547\) 1.73293e12i 0.827631i 0.910361 + 0.413816i \(0.135804\pi\)
−0.910361 + 0.413816i \(0.864196\pi\)
\(548\) 0 0
\(549\) −5.38769e11 + 3.11059e11i −0.253121 + 0.146139i
\(550\) 0 0
\(551\) 2.77511e12 4.80663e12i 1.28262 2.22156i
\(552\) 0 0
\(553\) −9.28230e11 3.04084e12i −0.422078 1.38271i
\(554\) 0 0
\(555\) −2.46506e12 1.42320e12i −1.10283 0.636720i
\(556\) 0 0
\(557\) 3.12630e11 + 5.41491e11i 0.137620 + 0.238365i 0.926595 0.376060i \(-0.122721\pi\)
−0.788975 + 0.614425i \(0.789388\pi\)
\(558\) 0 0
\(559\) 9.79144e11 0.424124
\(560\) 0 0
\(561\) 1.55459e11 0.0662646
\(562\) 0 0
\(563\) 1.34886e12 + 2.33629e12i 0.565820 + 0.980029i 0.996973 + 0.0777503i \(0.0247737\pi\)
−0.431153 + 0.902279i \(0.641893\pi\)
\(564\) 0 0
\(565\) 2.04105e12 + 1.17840e12i 0.842627 + 0.486491i
\(566\) 0 0
\(567\) −6.77626e11 + 2.92930e12i −0.275338 + 1.19026i
\(568\) 0 0
\(569\) 5.38286e11 9.32339e11i 0.215282 0.372880i −0.738078 0.674716i \(-0.764266\pi\)
0.953360 + 0.301836i \(0.0975996\pi\)
\(570\) 0 0
\(571\) 3.87705e12 2.23842e12i 1.52630 0.881208i 0.526784 0.849999i \(-0.323398\pi\)
0.999513 0.0312091i \(-0.00993579\pi\)
\(572\) 0 0
\(573\) 2.02844e12i 0.786079i
\(574\) 0 0
\(575\) 2.17752e12i 0.830723i
\(576\) 0 0
\(577\) −6.02473e11 + 3.47838e11i −0.226280 + 0.130643i −0.608855 0.793282i \(-0.708371\pi\)
0.382575 + 0.923925i \(0.375037\pi\)
\(578\) 0 0
\(579\) 2.21083e12 3.82926e12i 0.817525 1.41600i
\(580\) 0 0
\(581\) −2.61126e12 2.43716e12i −0.950730 0.887344i
\(582\) 0 0
\(583\) 9.72993e10 + 5.61758e10i 0.0348820 + 0.0201391i
\(584\) 0 0
\(585\) −3.24155e11 5.61452e11i −0.114433 0.198204i
\(586\) 0 0
\(587\) 9.96340e11 0.346367 0.173183 0.984890i \(-0.444595\pi\)
0.173183 + 0.984890i \(0.444595\pi\)
\(588\) 0 0
\(589\) −1.53873e12 −0.526798
\(590\) 0 0
\(591\) 2.82829e12 + 4.89873e12i 0.953629 + 1.65173i
\(592\) 0 0
\(593\) −2.93493e12 1.69448e12i −0.974656 0.562718i −0.0740032 0.997258i \(-0.523578\pi\)
−0.900652 + 0.434540i \(0.856911\pi\)
\(594\) 0 0
\(595\) 6.80374e11 + 6.35013e11i 0.222547 + 0.207709i
\(596\) 0 0
\(597\) 2.88015e12 4.98857e12i 0.927964 1.60728i
\(598\) 0 0
\(599\) −2.56167e12 + 1.47898e12i −0.813023 + 0.469399i −0.848005 0.529989i \(-0.822196\pi\)
0.0349815 + 0.999388i \(0.488863\pi\)
\(600\) 0 0
\(601\) 1.96519e12i 0.614426i 0.951641 + 0.307213i \(0.0993963\pi\)
−0.951641 + 0.307213i \(0.900604\pi\)
\(602\) 0 0
\(603\) 9.75620e10i 0.0300506i
\(604\) 0 0
\(605\) 2.11685e12 1.22216e12i 0.642378 0.370877i
\(606\) 0 0
\(607\) 2.27593e12 3.94202e12i 0.680470 1.17861i −0.294367 0.955692i \(-0.595109\pi\)
0.974837 0.222917i \(-0.0715579\pi\)
\(608\) 0 0
\(609\) 1.54883e12 6.69541e12i 0.456274 1.97242i
\(610\) 0 0
\(611\) −2.06591e12 1.19275e12i −0.599688 0.346230i
\(612\) 0 0
\(613\) −7.98134e11 1.38241e12i −0.228299 0.395425i 0.729005 0.684508i \(-0.239983\pi\)
−0.957304 + 0.289083i \(0.906650\pi\)
\(614\) 0 0
\(615\) 1.67663e12 0.472606
\(616\) 0 0
\(617\) −5.06588e12 −1.40725 −0.703626 0.710571i \(-0.748437\pi\)
−0.703626 + 0.710571i \(0.748437\pi\)
\(618\) 0 0
\(619\) 1.49967e12 + 2.59750e12i 0.410570 + 0.711129i 0.994952 0.100350i \(-0.0319963\pi\)
−0.584382 + 0.811479i \(0.698663\pi\)
\(620\) 0 0
\(621\) 4.81934e12 + 2.78245e12i 1.30039 + 0.750783i
\(622\) 0 0
\(623\) −1.30406e11 4.27203e11i −0.0346817 0.113616i
\(624\) 0 0
\(625\) 7.46397e11 1.29280e12i 0.195664 0.338899i
\(626\) 0 0
\(627\) −8.07747e11 + 4.66353e11i −0.208724 + 0.120507i
\(628\) 0 0
\(629\) 2.30009e12i 0.585890i
\(630\) 0 0
\(631\) 7.34129e10i 0.0184349i −0.999958 0.00921744i \(-0.997066\pi\)
0.999958 0.00921744i \(-0.00293404\pi\)
\(632\) 0 0
\(633\) 6.55106e11 3.78226e11i 0.162179 0.0936341i
\(634\) 0 0
\(635\) 4.58268e11 7.93743e11i 0.111850 0.193731i
\(636\) 0 0
\(637\) 3.77719e12 2.60823e11i 0.908953 0.0627650i
\(638\) 0 0
\(639\) −5.38992e11 3.11187e11i −0.127888 0.0738359i
\(640\) 0 0
\(641\) −5.83190e11 1.01011e12i −0.136442 0.236325i 0.789705 0.613486i \(-0.210233\pi\)
−0.926147 + 0.377162i \(0.876900\pi\)
\(642\) 0 0
\(643\) 3.28207e12 0.757179 0.378590 0.925565i \(-0.376409\pi\)
0.378590 + 0.925565i \(0.376409\pi\)
\(644\) 0 0
\(645\) −1.78796e12 −0.406761
\(646\) 0 0
\(647\) −6.30415e10 1.09191e11i −0.0141435 0.0244973i 0.858867 0.512199i \(-0.171169\pi\)
−0.873011 + 0.487701i \(0.837836\pi\)
\(648\) 0 0
\(649\) 2.71895e11 + 1.56979e11i 0.0601590 + 0.0347328i
\(650\) 0 0
\(651\) −1.82223e12 + 5.56245e11i −0.397639 + 0.121381i
\(652\) 0 0
\(653\) 2.98767e12 5.17480e12i 0.643019 1.11374i −0.341736 0.939796i \(-0.611015\pi\)
0.984755 0.173946i \(-0.0556517\pi\)
\(654\) 0 0
\(655\) −1.67069e12 + 9.64576e11i −0.354659 + 0.204763i
\(656\) 0 0
\(657\) 1.34441e12i 0.281505i
\(658\) 0 0
\(659\) 7.31369e12i 1.51061i −0.655374 0.755305i \(-0.727489\pi\)
0.655374 0.755305i \(-0.272511\pi\)
\(660\) 0 0
\(661\) 6.92901e12 4.00046e12i 1.41177 0.815087i 0.416216 0.909266i \(-0.363356\pi\)
0.995555 + 0.0941789i \(0.0300226\pi\)
\(662\) 0 0
\(663\) 1.05153e12 1.82131e12i 0.211355 0.366078i
\(664\) 0 0
\(665\) −5.44010e12 1.25844e12i −1.07872 0.249537i
\(666\) 0 0
\(667\) −1.51215e13 8.73041e12i −2.95821 1.70792i
\(668\) 0 0
\(669\) 4.91081e12 + 8.50578e12i 0.947842 + 1.64171i
\(670\) 0 0
\(671\) 6.60794e11 0.125839
\(672\) 0 0
\(673\) −4.31192e12 −0.810219 −0.405109 0.914268i \(-0.632767\pi\)
−0.405109 + 0.914268i \(0.632767\pi\)
\(674\) 0 0
\(675\) 8.87280e11 + 1.53681e12i 0.164511 + 0.284941i
\(676\) 0 0
\(677\) −2.67983e12 1.54720e12i −0.490296 0.283073i 0.234401 0.972140i \(-0.424687\pi\)
−0.724697 + 0.689067i \(0.758020\pi\)
\(678\) 0 0
\(679\) −1.99239e12 + 2.13471e12i −0.359716 + 0.385412i
\(680\) 0 0
\(681\) 1.14347e12 1.98054e12i 0.203733 0.352876i
\(682\) 0 0
\(683\) 3.41583e12 1.97213e12i 0.600625 0.346771i −0.168662 0.985674i \(-0.553945\pi\)
0.769288 + 0.638903i \(0.220611\pi\)
\(684\) 0 0
\(685\) 1.58727e12i 0.275451i
\(686\) 0 0
\(687\) 1.29166e13i 2.21230i
\(688\) 0 0
\(689\) 1.31628e12 7.59955e11i 0.222517 0.128470i
\(690\) 0 0
\(691\) 5.27311e11 9.13329e11i 0.0879864 0.152397i −0.818673 0.574259i \(-0.805290\pi\)
0.906660 + 0.421862i \(0.138623\pi\)
\(692\) 0 0
\(693\) −1.96288e11 + 2.10310e11i −0.0323292 + 0.0346385i
\(694\) 0 0
\(695\) 1.03316e12 + 5.96495e11i 0.167971 + 0.0969784i
\(696\) 0 0
\(697\) 6.77415e11 + 1.17332e12i 0.108719 + 0.188308i
\(698\) 0 0
\(699\) 8.81893e12 1.39723
\(700\) 0 0
\(701\) −1.51493e12 −0.236952 −0.118476 0.992957i \(-0.537801\pi\)
−0.118476 + 0.992957i \(0.537801\pi\)
\(702\) 0 0
\(703\) 6.89993e12 + 1.19510e13i 1.06548 + 1.84547i
\(704\) 0 0
\(705\) 3.77245e12 + 2.17802e12i 0.575138 + 0.332056i
\(706\) 0 0
\(707\) 6.91390e10 + 1.59937e10i 0.0104072 + 0.00240747i
\(708\) 0 0
\(709\) −3.38441e12 + 5.86198e12i −0.503008 + 0.871236i 0.496985 + 0.867759i \(0.334440\pi\)
−0.999994 + 0.00347738i \(0.998893\pi\)
\(710\) 0 0
\(711\) 2.83019e12 1.63401e12i 0.415338 0.239796i
\(712\) 0 0
\(713\) 4.84080e12i 0.701478i
\(714\) 0 0
\(715\) 6.88615e11i 0.0985369i
\(716\) 0 0
\(717\) −1.11034e13 + 6.41057e12i −1.56899 + 0.905858i
\(718\) 0 0
\(719\) 4.13383e12 7.16001e12i 0.576864 0.999157i −0.418973 0.907999i \(-0.637610\pi\)
0.995836 0.0911582i \(-0.0290569\pi\)
\(720\) 0 0
\(721\) −4.41195e12 + 1.34677e12i −0.608026 + 0.185603i
\(722\) 0 0
\(723\) −8.34947e12 4.82057e12i −1.13641 0.656109i
\(724\) 0 0
\(725\) −2.78400e12 4.82202e12i −0.374238 0.648199i
\(726\) 0 0
\(727\) 6.66096e12 0.884366 0.442183 0.896925i \(-0.354204\pi\)
0.442183 + 0.896925i \(0.354204\pi\)
\(728\) 0 0
\(729\) 3.69590e12 0.484670
\(730\) 0 0
\(731\) −7.22397e11 1.25123e12i −0.0935724 0.162072i
\(732\) 0 0
\(733\) −3.47424e12 2.00585e12i −0.444521 0.256644i 0.260993 0.965341i \(-0.415950\pi\)
−0.705513 + 0.708697i \(0.749283\pi\)
\(734\) 0 0
\(735\) −6.89733e12 + 4.76275e11i −0.871742 + 0.0601955i
\(736\) 0 0
\(737\) −5.18137e10 + 8.97440e10i −0.00646906 + 0.0112047i
\(738\) 0 0
\(739\) −6.43111e12 + 3.71300e12i −0.793205 + 0.457957i −0.841090 0.540896i \(-0.818085\pi\)
0.0478844 + 0.998853i \(0.484752\pi\)
\(740\) 0 0
\(741\) 1.26178e13i 1.53745i
\(742\) 0 0
\(743\) 1.37727e13i 1.65795i 0.559288 + 0.828973i \(0.311074\pi\)
−0.559288 + 0.828973i \(0.688926\pi\)
\(744\) 0 0
\(745\) −4.98732e12 + 2.87943e12i −0.593149 + 0.342455i
\(746\) 0 0
\(747\) 1.83575e12 3.17962e12i 0.215711 0.373622i
\(748\) 0 0
\(749\) −4.00456e12 1.31187e13i −0.464929 1.52308i
\(750\) 0 0
\(751\) −4.74753e12 2.74099e12i −0.544613 0.314433i 0.202333 0.979317i \(-0.435148\pi\)
−0.746947 + 0.664884i \(0.768481\pi\)
\(752\) 0 0
\(753\) 4.64146e12 + 8.03924e12i 0.526110 + 0.911250i
\(754\) 0 0
\(755\) 1.85381e12 0.207637
\(756\) 0 0
\(757\) 1.21160e13 1.34100 0.670498 0.741911i \(-0.266080\pi\)
0.670498 + 0.741911i \(0.266080\pi\)
\(758\) 0 0
\(759\) 1.46713e12 + 2.54115e12i 0.160465 + 0.277934i
\(760\) 0 0
\(761\) 6.86780e12 + 3.96513e12i 0.742313 + 0.428574i 0.822910 0.568172i \(-0.192349\pi\)
−0.0805970 + 0.996747i \(0.525683\pi\)
\(762\) 0 0
\(763\) −2.45748e12 + 1.06234e13i −0.262501 + 1.13476i
\(764\) 0 0
\(765\) −4.78313e11 + 8.28462e11i −0.0504935 + 0.0874573i
\(766\) 0 0
\(767\) 3.67825e12 2.12364e12i 0.383762 0.221565i
\(768\) 0 0
\(769\) 1.21650e13i 1.25443i 0.778848 + 0.627213i \(0.215805\pi\)
−0.778848 + 0.627213i \(0.784195\pi\)
\(770\) 0 0
\(771\) 1.77057e13i 1.80455i
\(772\) 0 0
\(773\) −1.47792e13 + 8.53280e12i −1.48883 + 0.859575i −0.999919 0.0127600i \(-0.995938\pi\)
−0.488909 + 0.872335i \(0.662605\pi\)
\(774\) 0 0
\(775\) −7.71829e11 + 1.33685e12i −0.0768535 + 0.133114i
\(776\) 0 0
\(777\) 1.24914e13 + 1.16586e13i 1.22947 + 1.14750i
\(778\) 0 0
\(779\) −7.03956e12 4.06429e12i −0.684900 0.395427i
\(780\) 0 0
\(781\) 3.30534e11 + 5.72501e11i 0.0317897 + 0.0550613i
\(782\) 0 0
\(783\) −1.42296e13 −1.35290
\(784\) 0 0
\(785\) −1.46428e13 −1.37629
\(786\) 0 0
\(787\) −9.03253e12 1.56448e13i −0.839311 1.45373i −0.890471 0.455039i \(-0.849625\pi\)
0.0511599 0.998690i \(-0.483708\pi\)
\(788\) 0 0
\(789\) 1.58627e13 + 9.15833e12i 1.45724 + 0.841337i
\(790\) 0 0
\(791\) −1.03428e13 9.65324e12i −0.939386 0.876757i
\(792\) 0 0
\(793\) 4.46967e12 7.74169e12i 0.401371 0.695195i
\(794\) 0 0
\(795\) −2.40359e12 + 1.38771e12i −0.213407 + 0.123211i
\(796\) 0 0
\(797\) 1.21166e13i 1.06370i −0.846839 0.531850i \(-0.821497\pi\)
0.846839 0.531850i \(-0.178503\pi\)
\(798\) 0 0
\(799\) 3.51998e12i 0.305548i
\(800\) 0 0
\(801\) 3.97609e11 2.29560e11i 0.0341279 0.0197038i
\(802\) 0 0
\(803\) −7.13995e11 + 1.23668e12i −0.0606003 + 0.104963i
\(804\) 0 0
\(805\) −3.95902e12 + 1.71144e13i −0.332281 + 1.43641i
\(806\) 0 0
\(807\) 1.48776e13 + 8.58960e12i 1.23482 + 0.712922i
\(808\) 0 0
\(809\) −8.79845e12 1.52394e13i −0.722167 1.25083i −0.960129 0.279556i \(-0.909813\pi\)
0.237962 0.971274i \(-0.423520\pi\)
\(810\) 0 0
\(811\) −1.80406e13 −1.46439 −0.732195 0.681096i \(-0.761504\pi\)
−0.732195 + 0.681096i \(0.761504\pi\)
\(812\) 0 0
\(813\) −1.37702e13 −1.10543
\(814\) 0 0
\(815\) 8.99615e11 + 1.55818e12i 0.0714246 + 0.123711i
\(816\) 0 0
\(817\) 7.50701e12 + 4.33418e12i 0.589478 + 0.340335i
\(818\) 0 0
\(819\) 1.13622e12 + 3.72221e12i 0.0882441 + 0.289084i
\(820\) 0 0
\(821\) −8.22389e11 + 1.42442e12i −0.0631732 + 0.109419i −0.895882 0.444292i \(-0.853455\pi\)
0.832709 + 0.553711i \(0.186789\pi\)
\(822\) 0 0
\(823\) −1.14442e13 + 6.60733e12i −0.869536 + 0.502027i −0.867194 0.497970i \(-0.834079\pi\)
−0.00234191 + 0.999997i \(0.500745\pi\)
\(824\) 0 0
\(825\) 9.35693e11i 0.0703219i
\(826\) 0 0
\(827\) 1.40536e12i 0.104475i 0.998635 + 0.0522375i \(0.0166353\pi\)
−0.998635 + 0.0522375i \(0.983365\pi\)
\(828\) 0 0
\(829\) 4.30907e12 2.48784e12i 0.316875 0.182948i −0.333124 0.942883i \(-0.608103\pi\)
0.649999 + 0.759935i \(0.274769\pi\)
\(830\) 0 0
\(831\) 9.32373e12 1.61492e13i 0.678242 1.17475i
\(832\) 0 0
\(833\) −3.12005e12 4.63437e12i −0.224522 0.333494i
\(834\) 0 0
\(835\) −5.64645e12 3.25998e12i −0.401963 0.232074i
\(836\) 0 0
\(837\) 1.97250e12 + 3.41647e12i 0.138916 + 0.240609i
\(838\) 0 0
\(839\) 5.65499e12 0.394006 0.197003 0.980403i \(-0.436879\pi\)
0.197003 + 0.980403i \(0.436879\pi\)
\(840\) 0 0
\(841\) 3.01408e13 2.07765
\(842\) 0 0
\(843\) 7.21445e12 + 1.24958e13i 0.492016 + 0.852197i
\(844\) 0 0
\(845\) −1.65083e12 9.53108e11i −0.111390 0.0643112i
\(846\) 0 0
\(847\) −1.40339e13 + 4.28391e12i −0.936921 + 0.286000i
\(848\) 0 0
\(849\) 7.50267e12 1.29950e13i 0.495600 0.858405i
\(850\) 0 0
\(851\) 3.75975e13 2.17069e13i 2.45740 1.41878i
\(852\) 0 0
\(853\) 1.43204e13i 0.926156i −0.886318 0.463078i \(-0.846745\pi\)
0.886318 0.463078i \(-0.153255\pi\)
\(854\) 0 0
\(855\) 5.73948e12i 0.367303i
\(856\) 0 0
\(857\) −2.23150e13 + 1.28836e13i −1.41314 + 0.815874i −0.995682 0.0928245i \(-0.970410\pi\)
−0.417453 + 0.908699i \(0.637077\pi\)
\(858\) 0 0
\(859\) −4.71934e12 + 8.17414e12i −0.295741 + 0.512239i −0.975157 0.221515i \(-0.928900\pi\)
0.679416 + 0.733754i \(0.262233\pi\)
\(860\) 0 0
\(861\) −9.80578e12 2.26834e12i −0.608090 0.140667i
\(862\) 0 0
\(863\) −1.21515e11 7.01565e10i −0.00745728 0.00430546i 0.496267 0.868170i \(-0.334704\pi\)
−0.503724 + 0.863865i \(0.668037\pi\)
\(864\) 0 0
\(865\) −1.90496e12 3.29949e12i −0.115695 0.200389i
\(866\) 0 0
\(867\) 1.60965e13 0.967489
\(868\) 0 0
\(869\) −3.47119e12 −0.206485
\(870\) 0 0
\(871\) 7.00945e11 + 1.21407e12i 0.0412669 + 0.0714764i
\(872\) 0 0
\(873\) −2.59935e12 1.50073e12i −0.151461 0.0874459i
\(874\) 0 0
\(875\) −1.27806e13 + 1.36935e13i −0.737078 + 0.789730i
\(876\) 0 0
\(877\) 6.84426e12 1.18546e13i 0.390686 0.676689i −0.601854 0.798606i \(-0.705571\pi\)
0.992540 + 0.121918i \(0.0389044\pi\)
\(878\) 0 0
\(879\) −9.31839e12 + 5.37997e12i −0.526491 + 0.303970i
\(880\) 0 0
\(881\) 1.95110e13i 1.09116i −0.838060 0.545579i \(-0.816310\pi\)
0.838060 0.545579i \(-0.183690\pi\)
\(882\) 0 0
\(883\) 2.17674e13i 1.20499i 0.798123 + 0.602494i \(0.205826\pi\)
−0.798123 + 0.602494i \(0.794174\pi\)
\(884\) 0 0
\(885\) −6.71665e12 + 3.87786e12i −0.368051 + 0.212494i
\(886\) 0 0
\(887\) 1.08701e13 1.88275e13i 0.589625 1.02126i −0.404656 0.914469i \(-0.632609\pi\)
0.994281 0.106792i \(-0.0340578\pi\)
\(888\) 0 0
\(889\) −3.75405e12 + 4.02221e12i −0.201578 + 0.215977i
\(890\) 0 0
\(891\) 2.84285e12 + 1.64132e12i 0.151114 + 0.0872456i
\(892\) 0 0
\(893\) −1.05594e13 1.82895e13i −0.555659 0.962430i
\(894\) 0 0
\(895\) 9.18528e12 0.478508
\(896\) 0 0
\(897\) 3.96952e13 2.04725
\(898\) 0 0
\(899\) −6.18906e12 1.07198e13i −0.316014 0.547352i
\(900\) 0 0
\(901\) −1.94226e12 1.12137e12i −0.0981854 0.0566874i
\(902\) 0 0
\(903\) 1.04569e13 + 2.41896e12i 0.523370 + 0.121069i
\(904\) 0 0
\(905\) −9.18034e12 + 1.59008e13i −0.454925 + 0.787954i
\(906\) 0 0
\(907\) 2.75517e13 1.59070e13i 1.35181 0.780469i 0.363308 0.931669i \(-0.381647\pi\)
0.988503 + 0.151200i \(0.0483139\pi\)
\(908\) 0 0
\(909\) 7.29437e10i 0.00354365i
\(910\) 0 0
\(911\) 1.13495e12i 0.0545941i −0.999627 0.0272971i \(-0.991310\pi\)
0.999627 0.0272971i \(-0.00869000\pi\)
\(912\) 0 0
\(913\) −3.37729e12 + 1.94988e12i −0.160861 + 0.0928730i
\(914\) 0 0
\(915\) −8.16182e12 + 1.41367e13i −0.384939 + 0.666735i
\(916\) 0 0
\(917\) 1.10761e13 3.38102e12i 0.517277 0.157901i
\(918\) 0 0
\(919\) 2.08232e13 + 1.20223e13i 0.963004 + 0.555991i 0.897096 0.441835i \(-0.145672\pi\)
0.0659079 + 0.997826i \(0.479006\pi\)
\(920\) 0 0
\(921\) −8.76972e12 1.51896e13i −0.401622 0.695630i
\(922\) 0 0
\(923\) 8.94302e12 0.405580
\(924\) 0 0
\(925\) 1.38440e13 0.621763
\(926\) 0 0
\(927\) −2.37078e12 4.10632e12i −0.105447 0.182639i
\(928\) 0 0
\(929\) −2.53437e13 1.46322e13i −1.11635 0.644522i −0.175880 0.984412i \(-0.556277\pi\)
−0.940465 + 0.339889i \(0.889610\pi\)
\(930\) 0 0
\(931\) 3.01139e13 + 1.47200e13i 1.31369 + 0.642147i
\(932\) 0 0
\(933\) −5.15522e12 + 8.92911e12i −0.222731 + 0.385781i
\(934\) 0 0
\(935\) 8.79967e11 5.08049e11i 0.0376543 0.0217397i
\(936\) 0 0
\(937\) 9.07724e11i 0.0384703i 0.999815 + 0.0192351i \(0.00612312\pi\)
−0.999815 + 0.0192351i \(0.993877\pi\)
\(938\) 0 0
\(939\) 3.20390e13i 1.34488i
\(940\) 0 0
\(941\) 2.11094e13 1.21875e13i 0.877653 0.506713i 0.00776889 0.999970i \(-0.497527\pi\)
0.869884 + 0.493257i \(0.164194\pi\)
\(942\) 0 0
\(943\) −1.27861e13 + 2.21462e13i −0.526546 + 0.912005i
\(944\) 0 0
\(945\) 4.17953e12 + 1.36919e13i 0.170484 + 0.558498i
\(946\) 0 0
\(947\) 3.86617e12 + 2.23213e12i 0.156209 + 0.0901872i 0.576067 0.817403i \(-0.304587\pi\)
−0.419858 + 0.907590i \(0.637920\pi\)
\(948\) 0 0
\(949\) 9.65904e12 + 1.67299e13i 0.386577 + 0.669571i
\(950\) 0 0
\(951\) −2.32161e13 −0.920401
\(952\) 0 0
\(953\) −8.56121e12 −0.336215 −0.168107 0.985769i \(-0.553766\pi\)
−0.168107 + 0.985769i \(0.553766\pi\)
\(954\) 0 0
\(955\) 6.62908e12 + 1.14819e13i 0.257892 + 0.446682i
\(956\) 0 0
\(957\) −6.49781e12 3.75151e12i −0.250417 0.144578i
\(958\) 0 0
\(959\) 2.14745e12 9.28318e12i 0.0819858 0.354416i
\(960\) 0 0
\(961\) 1.15040e13 1.99255e13i 0.435103 0.753621i
\(962\) 0 0
\(963\) 1.22100e13 7.04942e12i 0.457505 0.264141i
\(964\) 0 0
\(965\) 2.89005e13i 1.07284i
\(966\) 0 0
\(967\) 4.62732e13i 1.70181i −0.525322 0.850903i \(-0.676055\pi\)
0.525322 0.850903i \(-0.323945\pi\)
\(968\) 0 0
\(969\) 1.61240e13 9.30922e12i 0.587512 0.339200i
\(970\) 0 0
\(971\) −8.58114e12 + 1.48630e13i −0.309784 + 0.536561i −0.978315 0.207123i \(-0.933590\pi\)
0.668531 + 0.743684i \(0.266923\pi\)
\(972\) 0 0
\(973\) −5.23543e12 4.88638e12i −0.187260 0.174775i
\(974\) 0 0
\(975\) 1.09623e13 + 6.32910e12i 0.388492 + 0.224296i
\(976\) 0 0
\(977\) −2.75592e13 4.77340e13i −0.967702 1.67611i −0.702173 0.712006i \(-0.747787\pi\)
−0.265529 0.964103i \(-0.585546\pi\)
\(978\) 0 0
\(979\) −4.87663e11 −0.0169667
\(980\) 0 0
\(981\) −1.12081e13 −0.386384
\(982\) 0 0
\(983\) −1.40548e13 2.43436e13i −0.480102 0.831562i 0.519637 0.854387i \(-0.326067\pi\)
−0.999739 + 0.0228254i \(0.992734\pi\)
\(984\) 0 0
\(985\) 3.20188e13 + 1.84861e13i 1.08378 + 0.625722i
\(986\) 0 0
\(987\) −1.91165e13 1.78420e13i −0.641182 0.598434i
\(988\) 0 0
\(989\) 1.36352e13 2.36168e13i 0.453187 0.784943i
\(990\) 0 0
\(991\) −1.33850e13 + 7.72782e12i −0.440845 + 0.254522i −0.703956 0.710244i \(-0.748585\pi\)
0.263111 + 0.964766i \(0.415251\pi\)
\(992\) 0 0
\(993\) 1.37793e12i 0.0449735i
\(994\) 0 0
\(995\) 3.76502e13i 1.21776i
\(996\) 0 0
\(997\) 2.00838e12 1.15954e12i 0.0643752 0.0371670i −0.467467 0.884011i \(-0.654833\pi\)
0.531842 + 0.846844i \(0.321500\pi\)
\(998\) 0 0
\(999\) 1.76900e13 3.06400e13i 0.561932 0.973294i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 112.10.p.a.47.3 yes 24
4.3 odd 2 112.10.p.c.47.10 yes 24
7.3 odd 6 112.10.p.c.31.10 yes 24
28.3 even 6 inner 112.10.p.a.31.3 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.10.p.a.31.3 24 28.3 even 6 inner
112.10.p.a.47.3 yes 24 1.1 even 1 trivial
112.10.p.c.31.10 yes 24 7.3 odd 6
112.10.p.c.47.10 yes 24 4.3 odd 2