Properties

Label 112.10.p.a.31.9
Level $112$
Weight $10$
Character 112.31
Analytic conductor $57.684$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [112,10,Mod(31,112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(112, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 1])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("112.31"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 112.p (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,-162] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(57.6840136504\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 31.9
Character \(\chi\) \(=\) 112.31
Dual form 112.10.p.a.47.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(44.5044 - 77.0839i) q^{3} +(1678.45 - 969.052i) q^{5} +(-6146.89 - 1602.93i) q^{7} +(5880.22 + 10184.8i) q^{9} +(-3551.98 - 2050.74i) q^{11} +93186.2i q^{13} -172508. i q^{15} +(539781. + 311643. i) q^{17} +(338564. + 586411. i) q^{19} +(-397124. + 402488. i) q^{21} +(281953. - 162785. i) q^{23} +(901560. - 1.56155e6i) q^{25} +2.79874e6 q^{27} +2.51930e6 q^{29} +(-3.02394e6 + 5.23761e6i) q^{31} +(-316158. + 182534. i) q^{33} +(-1.18705e7 + 3.26622e6i) q^{35} +(-8.27646e6 - 1.43352e7i) q^{37} +(7.18315e6 + 4.14720e6i) q^{39} +1.45617e7i q^{41} -2.07780e7i q^{43} +(1.97393e7 + 1.13965e7i) q^{45} +(908961. + 1.57437e6i) q^{47} +(3.52148e7 + 1.97061e7i) q^{49} +(4.80453e7 - 2.77389e7i) q^{51} +(-8.31708e6 + 1.44056e7i) q^{53} -7.94908e6 q^{55} +6.02704e7 q^{57} +(8.34468e7 - 1.44534e8i) q^{59} +(2.92586e7 - 1.68924e7i) q^{61} +(-1.98194e7 - 7.20306e7i) q^{63} +(9.03022e7 + 1.56408e8i) q^{65} +(-1.66747e8 - 9.62715e7i) q^{67} -2.89787e7i q^{69} +3.04210e8i q^{71} +(3.22473e7 + 1.86180e7i) q^{73} +(-8.02468e7 - 1.38992e8i) q^{75} +(1.85464e7 + 1.82992e7i) q^{77} +(3.13759e8 - 1.81149e8i) q^{79} +(8.81609e6 - 1.52699e7i) q^{81} -6.01201e7 q^{83} +1.20799e9 q^{85} +(1.12120e8 - 1.94197e8i) q^{87} +(7.38024e8 - 4.26098e8i) q^{89} +(1.49371e8 - 5.72805e8i) q^{91} +(2.69157e8 + 4.66194e8i) q^{93} +(1.13652e9 + 6.56173e8i) q^{95} +1.55512e9i q^{97} -4.82351e7i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 162 q^{3} - 852 q^{5} - 6744 q^{7} - 77884 q^{9} - 57534 q^{11} + 789336 q^{17} + 469098 q^{19} - 2104376 q^{21} + 1553682 q^{23} + 3602544 q^{25} + 6389244 q^{27} - 2462040 q^{29} - 10306686 q^{31}+ \cdots + 1433917218 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/112\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(17\) \(85\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 44.5044 77.0839i 0.317218 0.549437i −0.662689 0.748895i \(-0.730585\pi\)
0.979906 + 0.199458i \(0.0639181\pi\)
\(4\) 0 0
\(5\) 1678.45 969.052i 1.20100 0.693397i 0.240222 0.970718i \(-0.422780\pi\)
0.960777 + 0.277321i \(0.0894466\pi\)
\(6\) 0 0
\(7\) −6146.89 1602.93i −0.967641 0.252333i
\(8\) 0 0
\(9\) 5880.22 + 10184.8i 0.298746 + 0.517443i
\(10\) 0 0
\(11\) −3551.98 2050.74i −0.0731482 0.0422321i 0.462980 0.886369i \(-0.346780\pi\)
−0.536128 + 0.844137i \(0.680114\pi\)
\(12\) 0 0
\(13\) 93186.2i 0.904912i 0.891787 + 0.452456i \(0.149452\pi\)
−0.891787 + 0.452456i \(0.850548\pi\)
\(14\) 0 0
\(15\) 172508.i 0.879831i
\(16\) 0 0
\(17\) 539781. + 311643.i 1.56746 + 0.904975i 0.996464 + 0.0840250i \(0.0267776\pi\)
0.571000 + 0.820950i \(0.306556\pi\)
\(18\) 0 0
\(19\) 338564. + 586411.i 0.596005 + 1.03231i 0.993404 + 0.114665i \(0.0365796\pi\)
−0.397399 + 0.917646i \(0.630087\pi\)
\(20\) 0 0
\(21\) −397124. + 402488.i −0.445594 + 0.451613i
\(22\) 0 0
\(23\) 281953. 162785.i 0.210088 0.121294i −0.391264 0.920278i \(-0.627962\pi\)
0.601352 + 0.798984i \(0.294629\pi\)
\(24\) 0 0
\(25\) 901560. 1.56155e6i 0.461599 0.799513i
\(26\) 0 0
\(27\) 2.79874e6 1.01351
\(28\) 0 0
\(29\) 2.51930e6 0.661436 0.330718 0.943730i \(-0.392709\pi\)
0.330718 + 0.943730i \(0.392709\pi\)
\(30\) 0 0
\(31\) −3.02394e6 + 5.23761e6i −0.588092 + 1.01860i 0.406390 + 0.913699i \(0.366787\pi\)
−0.994482 + 0.104905i \(0.966546\pi\)
\(32\) 0 0
\(33\) −316158. + 182534.i −0.0464078 + 0.0267935i
\(34\) 0 0
\(35\) −1.18705e7 + 3.26622e6i −1.33710 + 0.367908i
\(36\) 0 0
\(37\) −8.27646e6 1.43352e7i −0.726000 1.25747i −0.958561 0.284887i \(-0.908044\pi\)
0.232561 0.972582i \(-0.425289\pi\)
\(38\) 0 0
\(39\) 7.18315e6 + 4.14720e6i 0.497192 + 0.287054i
\(40\) 0 0
\(41\) 1.45617e7i 0.804794i 0.915465 + 0.402397i \(0.131823\pi\)
−0.915465 + 0.402397i \(0.868177\pi\)
\(42\) 0 0
\(43\) 2.07780e7i 0.926820i −0.886144 0.463410i \(-0.846626\pi\)
0.886144 0.463410i \(-0.153374\pi\)
\(44\) 0 0
\(45\) 1.97393e7 + 1.13965e7i 0.717587 + 0.414299i
\(46\) 0 0
\(47\) 908961. + 1.57437e6i 0.0271709 + 0.0470615i 0.879291 0.476285i \(-0.158017\pi\)
−0.852120 + 0.523346i \(0.824683\pi\)
\(48\) 0 0
\(49\) 3.52148e7 + 1.97061e7i 0.872656 + 0.488335i
\(50\) 0 0
\(51\) 4.80453e7 2.77389e7i 0.994454 0.574148i
\(52\) 0 0
\(53\) −8.31708e6 + 1.44056e7i −0.144787 + 0.250778i −0.929293 0.369342i \(-0.879583\pi\)
0.784506 + 0.620121i \(0.212916\pi\)
\(54\) 0 0
\(55\) −7.94908e6 −0.117134
\(56\) 0 0
\(57\) 6.02704e7 0.756254
\(58\) 0 0
\(59\) 8.34468e7 1.44534e8i 0.896553 1.55287i 0.0646816 0.997906i \(-0.479397\pi\)
0.831871 0.554969i \(-0.187270\pi\)
\(60\) 0 0
\(61\) 2.92586e7 1.68924e7i 0.270563 0.156210i −0.358580 0.933499i \(-0.616739\pi\)
0.629144 + 0.777289i \(0.283406\pi\)
\(62\) 0 0
\(63\) −1.98194e7 7.20306e7i −0.158511 0.576082i
\(64\) 0 0
\(65\) 9.03022e7 + 1.56408e8i 0.627463 + 1.08680i
\(66\) 0 0
\(67\) −1.66747e8 9.62715e7i −1.01093 0.583662i −0.0994675 0.995041i \(-0.531714\pi\)
−0.911464 + 0.411379i \(0.865047\pi\)
\(68\) 0 0
\(69\) 2.89787e7i 0.153907i
\(70\) 0 0
\(71\) 3.04210e8i 1.42073i 0.703834 + 0.710364i \(0.251470\pi\)
−0.703834 + 0.710364i \(0.748530\pi\)
\(72\) 0 0
\(73\) 3.22473e7 + 1.86180e7i 0.132905 + 0.0767325i 0.564978 0.825106i \(-0.308885\pi\)
−0.432074 + 0.901838i \(0.642218\pi\)
\(74\) 0 0
\(75\) −8.02468e7 1.38992e8i −0.292855 0.507239i
\(76\) 0 0
\(77\) 1.85464e7 + 1.82992e7i 0.0601246 + 0.0593232i
\(78\) 0 0
\(79\) 3.13759e8 1.81149e8i 0.906303 0.523255i 0.0270635 0.999634i \(-0.491384\pi\)
0.879240 + 0.476379i \(0.158051\pi\)
\(80\) 0 0
\(81\) 8.81609e6 1.52699e7i 0.0227559 0.0394143i
\(82\) 0 0
\(83\) −6.01201e7 −0.139049 −0.0695245 0.997580i \(-0.522148\pi\)
−0.0695245 + 0.997580i \(0.522148\pi\)
\(84\) 0 0
\(85\) 1.20799e9 2.51003
\(86\) 0 0
\(87\) 1.12120e8 1.94197e8i 0.209819 0.363418i
\(88\) 0 0
\(89\) 7.38024e8 4.26098e8i 1.24685 0.719871i 0.276373 0.961051i \(-0.410868\pi\)
0.970481 + 0.241179i \(0.0775342\pi\)
\(90\) 0 0
\(91\) 1.49371e8 5.72805e8i 0.228339 0.875630i
\(92\) 0 0
\(93\) 2.69157e8 + 4.66194e8i 0.373106 + 0.646239i
\(94\) 0 0
\(95\) 1.13652e9 + 6.56173e8i 1.43160 + 0.826537i
\(96\) 0 0
\(97\) 1.55512e9i 1.78358i 0.452452 + 0.891789i \(0.350549\pi\)
−0.452452 + 0.891789i \(0.649451\pi\)
\(98\) 0 0
\(99\) 4.82351e7i 0.0504667i
\(100\) 0 0
\(101\) 1.07368e9 + 6.19891e8i 1.02667 + 0.592747i 0.916028 0.401114i \(-0.131377\pi\)
0.110639 + 0.993861i \(0.464710\pi\)
\(102\) 0 0
\(103\) −5.46543e8 9.46640e8i −0.478472 0.828738i 0.521223 0.853421i \(-0.325476\pi\)
−0.999695 + 0.0246821i \(0.992143\pi\)
\(104\) 0 0
\(105\) −2.76519e8 + 1.06039e9i −0.222010 + 0.851360i
\(106\) 0 0
\(107\) 1.02523e9 5.91916e8i 0.756125 0.436549i −0.0717779 0.997421i \(-0.522867\pi\)
0.827903 + 0.560872i \(0.189534\pi\)
\(108\) 0 0
\(109\) 8.31971e8 1.44102e9i 0.564533 0.977799i −0.432560 0.901605i \(-0.642390\pi\)
0.997093 0.0761941i \(-0.0242769\pi\)
\(110\) 0 0
\(111\) −1.47336e9 −0.921200
\(112\) 0 0
\(113\) 1.49759e9 0.864054 0.432027 0.901861i \(-0.357799\pi\)
0.432027 + 0.901861i \(0.357799\pi\)
\(114\) 0 0
\(115\) 3.15495e8 5.46453e8i 0.168210 0.291348i
\(116\) 0 0
\(117\) −9.49085e8 + 5.47955e8i −0.468240 + 0.270339i
\(118\) 0 0
\(119\) −2.81843e9 2.78086e9i −1.28839 1.27121i
\(120\) 0 0
\(121\) −1.17056e9 2.02747e9i −0.496433 0.859847i
\(122\) 0 0
\(123\) 1.12247e9 + 6.48060e8i 0.442184 + 0.255295i
\(124\) 0 0
\(125\) 2.90724e8i 0.106509i
\(126\) 0 0
\(127\) 4.17913e8i 0.142551i 0.997457 + 0.0712753i \(0.0227069\pi\)
−0.997457 + 0.0712753i \(0.977293\pi\)
\(128\) 0 0
\(129\) −1.60165e9 9.24712e8i −0.509229 0.294004i
\(130\) 0 0
\(131\) 2.64239e9 + 4.57675e9i 0.783927 + 1.35780i 0.929638 + 0.368474i \(0.120120\pi\)
−0.145711 + 0.989327i \(0.546547\pi\)
\(132\) 0 0
\(133\) −1.14114e9 4.14730e9i −0.316233 1.14930i
\(134\) 0 0
\(135\) 4.69754e9 2.71213e9i 1.21722 0.702762i
\(136\) 0 0
\(137\) −2.88346e9 + 4.99431e9i −0.699314 + 1.21125i 0.269391 + 0.963031i \(0.413178\pi\)
−0.968705 + 0.248216i \(0.920156\pi\)
\(138\) 0 0
\(139\) −8.10344e9 −1.84121 −0.920604 0.390497i \(-0.872303\pi\)
−0.920604 + 0.390497i \(0.872303\pi\)
\(140\) 0 0
\(141\) 1.61811e8 0.0344764
\(142\) 0 0
\(143\) 1.91100e8 3.30995e8i 0.0382163 0.0661927i
\(144\) 0 0
\(145\) 4.22850e9 2.44133e9i 0.794384 0.458638i
\(146\) 0 0
\(147\) 3.08624e9 1.83749e9i 0.545131 0.324561i
\(148\) 0 0
\(149\) 5.43731e8 + 9.41770e8i 0.0903745 + 0.156533i 0.907669 0.419687i \(-0.137860\pi\)
−0.817294 + 0.576221i \(0.804527\pi\)
\(150\) 0 0
\(151\) −1.14310e9 6.59970e8i −0.178932 0.103307i 0.407859 0.913045i \(-0.366276\pi\)
−0.586791 + 0.809738i \(0.699609\pi\)
\(152\) 0 0
\(153\) 7.33010e9i 1.08143i
\(154\) 0 0
\(155\) 1.17214e10i 1.63112i
\(156\) 0 0
\(157\) −1.02002e10 5.88909e9i −1.33986 0.773571i −0.353077 0.935594i \(-0.614865\pi\)
−0.986787 + 0.162023i \(0.948198\pi\)
\(158\) 0 0
\(159\) 7.40293e8 + 1.28223e9i 0.0918580 + 0.159103i
\(160\) 0 0
\(161\) −1.99406e9 + 5.48673e8i −0.233896 + 0.0643572i
\(162\) 0 0
\(163\) −3.69689e9 + 2.13440e9i −0.410196 + 0.236827i −0.690874 0.722975i \(-0.742774\pi\)
0.280678 + 0.959802i \(0.409441\pi\)
\(164\) 0 0
\(165\) −3.53769e8 + 6.12746e8i −0.0371571 + 0.0643580i
\(166\) 0 0
\(167\) −1.03702e9 −0.103172 −0.0515861 0.998669i \(-0.516428\pi\)
−0.0515861 + 0.998669i \(0.516428\pi\)
\(168\) 0 0
\(169\) 1.92084e9 0.181134
\(170\) 0 0
\(171\) −3.98166e9 + 6.89644e9i −0.356108 + 0.616798i
\(172\) 0 0
\(173\) −3.30550e9 + 1.90843e9i −0.280562 + 0.161983i −0.633678 0.773597i \(-0.718456\pi\)
0.353116 + 0.935580i \(0.385122\pi\)
\(174\) 0 0
\(175\) −8.04484e9 + 8.15352e9i −0.648405 + 0.657164i
\(176\) 0 0
\(177\) −7.42750e9 1.28648e10i −0.568805 0.985199i
\(178\) 0 0
\(179\) 1.19270e10 + 6.88608e9i 0.868349 + 0.501341i 0.866799 0.498657i \(-0.166173\pi\)
0.00154950 + 0.999999i \(0.499507\pi\)
\(180\) 0 0
\(181\) 1.47399e10i 1.02080i −0.859937 0.510399i \(-0.829498\pi\)
0.859937 0.510399i \(-0.170502\pi\)
\(182\) 0 0
\(183\) 3.00715e9i 0.198210i
\(184\) 0 0
\(185\) −2.77832e10 1.60406e10i −1.74385 1.00681i
\(186\) 0 0
\(187\) −1.27819e9 2.21390e9i −0.0764380 0.132395i
\(188\) 0 0
\(189\) −1.72036e10 4.48619e9i −0.980709 0.255741i
\(190\) 0 0
\(191\) −9.59224e9 + 5.53808e9i −0.521518 + 0.301099i −0.737556 0.675286i \(-0.764020\pi\)
0.216037 + 0.976385i \(0.430687\pi\)
\(192\) 0 0
\(193\) 1.04466e9 1.80940e9i 0.0541958 0.0938699i −0.837655 0.546200i \(-0.816074\pi\)
0.891851 + 0.452330i \(0.149407\pi\)
\(194\) 0 0
\(195\) 1.60754e10 0.796170
\(196\) 0 0
\(197\) −1.07436e10 −0.508222 −0.254111 0.967175i \(-0.581783\pi\)
−0.254111 + 0.967175i \(0.581783\pi\)
\(198\) 0 0
\(199\) −1.30054e10 + 2.25260e10i −0.587874 + 1.01823i 0.406636 + 0.913590i \(0.366702\pi\)
−0.994510 + 0.104637i \(0.966632\pi\)
\(200\) 0 0
\(201\) −1.48420e10 + 8.56901e9i −0.641371 + 0.370296i
\(202\) 0 0
\(203\) −1.54858e10 4.03826e9i −0.640033 0.166902i
\(204\) 0 0
\(205\) 1.41110e10 + 2.44410e10i 0.558042 + 0.966557i
\(206\) 0 0
\(207\) 3.31588e9 + 1.91443e9i 0.125526 + 0.0724723i
\(208\) 0 0
\(209\) 2.77723e9i 0.100682i
\(210\) 0 0
\(211\) 4.24346e10i 1.47383i −0.675983 0.736917i \(-0.736281\pi\)
0.675983 0.736917i \(-0.263719\pi\)
\(212\) 0 0
\(213\) 2.34497e10 + 1.35387e10i 0.780601 + 0.450680i
\(214\) 0 0
\(215\) −2.01349e10 3.48747e10i −0.642654 1.11311i
\(216\) 0 0
\(217\) 2.69833e10 2.73478e10i 0.826089 0.837248i
\(218\) 0 0
\(219\) 2.87029e9 1.65716e9i 0.0843193 0.0486818i
\(220\) 0 0
\(221\) −2.90408e10 + 5.03001e10i −0.818923 + 1.41842i
\(222\) 0 0
\(223\) 4.63089e10 1.25399 0.626993 0.779025i \(-0.284285\pi\)
0.626993 + 0.779025i \(0.284285\pi\)
\(224\) 0 0
\(225\) 2.12055e10 0.551603
\(226\) 0 0
\(227\) −1.95744e9 + 3.39039e9i −0.0489297 + 0.0847487i −0.889453 0.457027i \(-0.848914\pi\)
0.840523 + 0.541775i \(0.182248\pi\)
\(228\) 0 0
\(229\) 4.42299e9 2.55361e9i 0.106281 0.0613614i −0.445917 0.895074i \(-0.647122\pi\)
0.552198 + 0.833713i \(0.313789\pi\)
\(230\) 0 0
\(231\) 2.23597e9 6.15235e8i 0.0516669 0.0142163i
\(232\) 0 0
\(233\) 1.58263e10 + 2.74120e10i 0.351786 + 0.609311i 0.986562 0.163385i \(-0.0522412\pi\)
−0.634777 + 0.772696i \(0.718908\pi\)
\(234\) 0 0
\(235\) 3.05128e9 + 1.76166e9i 0.0652645 + 0.0376805i
\(236\) 0 0
\(237\) 3.22476e10i 0.663942i
\(238\) 0 0
\(239\) 1.41427e10i 0.280378i −0.990125 0.140189i \(-0.955229\pi\)
0.990125 0.140189i \(-0.0447710\pi\)
\(240\) 0 0
\(241\) −4.02266e9 2.32248e9i −0.0768133 0.0443482i 0.461101 0.887347i \(-0.347454\pi\)
−0.537915 + 0.842999i \(0.680788\pi\)
\(242\) 0 0
\(243\) 2.67591e10 + 4.63481e10i 0.492315 + 0.852715i
\(244\) 0 0
\(245\) 7.82024e10 1.04940e9i 1.38667 0.0186078i
\(246\) 0 0
\(247\) −5.46454e10 + 3.15495e10i −0.934151 + 0.539332i
\(248\) 0 0
\(249\) −2.67561e9 + 4.63429e9i −0.0441088 + 0.0763987i
\(250\) 0 0
\(251\) 5.82163e10 0.925791 0.462896 0.886413i \(-0.346811\pi\)
0.462896 + 0.886413i \(0.346811\pi\)
\(252\) 0 0
\(253\) −1.33532e9 −0.0204900
\(254\) 0 0
\(255\) 5.37609e10 9.31167e10i 0.796225 1.37910i
\(256\) 0 0
\(257\) 7.77875e10 4.49106e10i 1.11227 0.642170i 0.172854 0.984947i \(-0.444701\pi\)
0.939417 + 0.342777i \(0.111368\pi\)
\(258\) 0 0
\(259\) 2.78960e10 + 1.01384e11i 0.385206 + 1.39997i
\(260\) 0 0
\(261\) 1.48140e10 + 2.56586e10i 0.197601 + 0.342256i
\(262\) 0 0
\(263\) −1.01612e11 5.86656e10i −1.30961 0.756106i −0.327583 0.944822i \(-0.606234\pi\)
−0.982032 + 0.188716i \(0.939567\pi\)
\(264\) 0 0
\(265\) 3.22387e10i 0.401579i
\(266\) 0 0
\(267\) 7.58530e10i 0.913423i
\(268\) 0 0
\(269\) 9.43971e9 + 5.45002e9i 0.109919 + 0.0634618i 0.553952 0.832549i \(-0.313119\pi\)
−0.444033 + 0.896011i \(0.646453\pi\)
\(270\) 0 0
\(271\) 2.16086e9 + 3.74272e9i 0.0243369 + 0.0421527i 0.877937 0.478776i \(-0.158919\pi\)
−0.853600 + 0.520928i \(0.825586\pi\)
\(272\) 0 0
\(273\) −3.75064e10 3.70064e10i −0.408670 0.403223i
\(274\) 0 0
\(275\) −6.40465e9 + 3.69773e9i −0.0675302 + 0.0389886i
\(276\) 0 0
\(277\) −1.36050e10 + 2.35645e10i −0.138848 + 0.240492i −0.927061 0.374911i \(-0.877673\pi\)
0.788213 + 0.615403i \(0.211007\pi\)
\(278\) 0 0
\(279\) −7.11256e10 −0.702760
\(280\) 0 0
\(281\) 1.30723e11 1.25076 0.625379 0.780321i \(-0.284944\pi\)
0.625379 + 0.780321i \(0.284944\pi\)
\(282\) 0 0
\(283\) −4.79663e10 + 8.30801e10i −0.444526 + 0.769942i −0.998019 0.0629119i \(-0.979961\pi\)
0.553493 + 0.832854i \(0.313295\pi\)
\(284\) 0 0
\(285\) 1.01161e11 5.84052e10i 0.908260 0.524384i
\(286\) 0 0
\(287\) 2.33414e10 8.95091e10i 0.203076 0.778751i
\(288\) 0 0
\(289\) 1.34948e11 + 2.33737e11i 1.13796 + 1.97101i
\(290\) 0 0
\(291\) 1.19875e11 + 6.92098e10i 0.979964 + 0.565782i
\(292\) 0 0
\(293\) 7.13085e10i 0.565245i 0.959231 + 0.282623i \(0.0912044\pi\)
−0.959231 + 0.282623i \(0.908796\pi\)
\(294\) 0 0
\(295\) 3.23457e11i 2.48667i
\(296\) 0 0
\(297\) −9.94108e9 5.73948e9i −0.0741361 0.0428025i
\(298\) 0 0
\(299\) 1.51693e10 + 2.62741e10i 0.109761 + 0.190111i
\(300\) 0 0
\(301\) −3.33057e10 + 1.27720e11i −0.233867 + 0.896828i
\(302\) 0 0
\(303\) 9.55672e10 5.51758e10i 0.651354 0.376059i
\(304\) 0 0
\(305\) 3.27393e10 5.67061e10i 0.216631 0.375215i
\(306\) 0 0
\(307\) 2.35875e11 1.51551 0.757756 0.652538i \(-0.226296\pi\)
0.757756 + 0.652538i \(0.226296\pi\)
\(308\) 0 0
\(309\) −9.72943e10 −0.607119
\(310\) 0 0
\(311\) −1.06230e9 + 1.83996e9i −0.00643909 + 0.0111528i −0.869227 0.494413i \(-0.835383\pi\)
0.862788 + 0.505566i \(0.168716\pi\)
\(312\) 0 0
\(313\) −1.22659e11 + 7.08172e10i −0.722353 + 0.417051i −0.815618 0.578590i \(-0.803603\pi\)
0.0932648 + 0.995641i \(0.470270\pi\)
\(314\) 0 0
\(315\) −1.03067e11 1.01693e11i −0.589825 0.581963i
\(316\) 0 0
\(317\) −1.53831e11 2.66443e11i −0.855612 1.48196i −0.876076 0.482173i \(-0.839848\pi\)
0.0204637 0.999791i \(-0.493486\pi\)
\(318\) 0 0
\(319\) −8.94849e9 5.16641e9i −0.0483829 0.0279339i
\(320\) 0 0
\(321\) 1.05371e11i 0.553924i
\(322\) 0 0
\(323\) 4.22044e11i 2.15748i
\(324\) 0 0
\(325\) 1.45515e11 + 8.40130e10i 0.723489 + 0.417706i
\(326\) 0 0
\(327\) −7.40528e10 1.28263e11i −0.358159 0.620350i
\(328\) 0 0
\(329\) −3.06368e9 1.11345e10i −0.0144166 0.0523947i
\(330\) 0 0
\(331\) −1.34210e11 + 7.74864e10i −0.614555 + 0.354813i −0.774746 0.632273i \(-0.782122\pi\)
0.160191 + 0.987086i \(0.448789\pi\)
\(332\) 0 0
\(333\) 9.73347e10 1.68589e11i 0.433779 0.751327i
\(334\) 0 0
\(335\) −3.73168e11 −1.61884
\(336\) 0 0
\(337\) −3.23927e11 −1.36808 −0.684041 0.729444i \(-0.739779\pi\)
−0.684041 + 0.729444i \(0.739779\pi\)
\(338\) 0 0
\(339\) 6.66495e10 1.15440e11i 0.274093 0.474743i
\(340\) 0 0
\(341\) 2.14819e10 1.24026e10i 0.0860357 0.0496727i
\(342\) 0 0
\(343\) −1.84874e11 1.77578e11i −0.721195 0.692732i
\(344\) 0 0
\(345\) −2.80818e10 4.86392e10i −0.106718 0.184842i
\(346\) 0 0
\(347\) 2.15404e11 + 1.24364e11i 0.797575 + 0.460480i 0.842622 0.538505i \(-0.181011\pi\)
−0.0450477 + 0.998985i \(0.514344\pi\)
\(348\) 0 0
\(349\) 1.33550e11i 0.481871i −0.970541 0.240935i \(-0.922546\pi\)
0.970541 0.240935i \(-0.0774542\pi\)
\(350\) 0 0
\(351\) 2.60804e11i 0.917133i
\(352\) 0 0
\(353\) −4.44948e11 2.56891e11i −1.52519 0.880566i −0.999554 0.0298541i \(-0.990496\pi\)
−0.525632 0.850712i \(-0.676171\pi\)
\(354\) 0 0
\(355\) 2.94795e11 + 5.10601e11i 0.985129 + 1.70629i
\(356\) 0 0
\(357\) −3.39792e11 + 9.34949e10i −1.10715 + 0.304636i
\(358\) 0 0
\(359\) −4.04926e11 + 2.33784e11i −1.28662 + 0.742832i −0.978050 0.208369i \(-0.933184\pi\)
−0.308572 + 0.951201i \(0.599851\pi\)
\(360\) 0 0
\(361\) −6.79078e10 + 1.17620e11i −0.210444 + 0.364501i
\(362\) 0 0
\(363\) −2.08381e11 −0.629909
\(364\) 0 0
\(365\) 7.21671e10 0.212824
\(366\) 0 0
\(367\) 1.44777e11 2.50761e11i 0.416583 0.721542i −0.579010 0.815320i \(-0.696561\pi\)
0.995593 + 0.0937777i \(0.0298943\pi\)
\(368\) 0 0
\(369\) −1.48308e11 + 8.56259e10i −0.416435 + 0.240429i
\(370\) 0 0
\(371\) 7.42153e10 7.52179e10i 0.203381 0.206129i
\(372\) 0 0
\(373\) −4.54927e10 7.87957e10i −0.121689 0.210772i 0.798745 0.601670i \(-0.205498\pi\)
−0.920434 + 0.390898i \(0.872164\pi\)
\(374\) 0 0
\(375\) 2.24101e10 + 1.29385e10i 0.0585199 + 0.0337865i
\(376\) 0 0
\(377\) 2.34763e11i 0.598542i
\(378\) 0 0
\(379\) 6.69685e11i 1.66722i 0.552351 + 0.833612i \(0.313731\pi\)
−0.552351 + 0.833612i \(0.686269\pi\)
\(380\) 0 0
\(381\) 3.22144e10 + 1.85990e10i 0.0783226 + 0.0452196i
\(382\) 0 0
\(383\) 1.85802e11 + 3.21818e11i 0.441220 + 0.764216i 0.997780 0.0665913i \(-0.0212124\pi\)
−0.556560 + 0.830807i \(0.687879\pi\)
\(384\) 0 0
\(385\) 4.88621e10 + 1.27418e10i 0.113344 + 0.0295569i
\(386\) 0 0
\(387\) 2.11620e11 1.22179e11i 0.479577 0.276884i
\(388\) 0 0
\(389\) 2.95600e11 5.11995e11i 0.654533 1.13369i −0.327477 0.944859i \(-0.606198\pi\)
0.982011 0.188826i \(-0.0604682\pi\)
\(390\) 0 0
\(391\) 2.02923e11 0.439073
\(392\) 0 0
\(393\) 4.70391e11 0.994702
\(394\) 0 0
\(395\) 3.51085e11 6.08097e11i 0.725646 1.25686i
\(396\) 0 0
\(397\) −1.25499e11 + 7.24571e10i −0.253562 + 0.146394i −0.621394 0.783498i \(-0.713433\pi\)
0.367832 + 0.929892i \(0.380100\pi\)
\(398\) 0 0
\(399\) −3.70476e11 9.66093e10i −0.731782 0.190828i
\(400\) 0 0
\(401\) −1.95373e11 3.38396e11i −0.377324 0.653544i 0.613348 0.789813i \(-0.289822\pi\)
−0.990672 + 0.136269i \(0.956489\pi\)
\(402\) 0 0
\(403\) −4.88073e11 2.81789e11i −0.921748 0.532171i
\(404\) 0 0
\(405\) 3.41730e10i 0.0631154i
\(406\) 0 0
\(407\) 6.78913e10i 0.122642i
\(408\) 0 0
\(409\) −4.10530e11 2.37020e11i −0.725421 0.418822i 0.0913238 0.995821i \(-0.470890\pi\)
−0.816745 + 0.576999i \(0.804223\pi\)
\(410\) 0 0
\(411\) 2.56654e11 + 4.44537e11i 0.443669 + 0.768458i
\(412\) 0 0
\(413\) −7.44617e11 + 7.54676e11i −1.25938 + 1.27640i
\(414\) 0 0
\(415\) −1.00908e11 + 5.82595e10i −0.166998 + 0.0964162i
\(416\) 0 0
\(417\) −3.60639e11 + 6.24645e11i −0.584064 + 1.01163i
\(418\) 0 0
\(419\) −1.49336e11 −0.236702 −0.118351 0.992972i \(-0.537761\pi\)
−0.118351 + 0.992972i \(0.537761\pi\)
\(420\) 0 0
\(421\) −8.57426e11 −1.33023 −0.665116 0.746740i \(-0.731618\pi\)
−0.665116 + 0.746740i \(0.731618\pi\)
\(422\) 0 0
\(423\) −1.06898e10 + 1.85152e10i −0.0162344 + 0.0281188i
\(424\) 0 0
\(425\) 9.73290e11 5.61929e11i 1.44708 0.835471i
\(426\) 0 0
\(427\) −2.06926e11 + 5.69364e10i −0.301225 + 0.0828829i
\(428\) 0 0
\(429\) −1.70096e10 2.94615e10i −0.0242458 0.0419950i
\(430\) 0 0
\(431\) −4.15497e11 2.39887e11i −0.579989 0.334857i 0.181140 0.983457i \(-0.442021\pi\)
−0.761129 + 0.648600i \(0.775355\pi\)
\(432\) 0 0
\(433\) 3.26515e11i 0.446383i −0.974775 0.223192i \(-0.928352\pi\)
0.974775 0.223192i \(-0.0716476\pi\)
\(434\) 0 0
\(435\) 4.34599e11i 0.581952i
\(436\) 0 0
\(437\) 1.90918e11 + 1.10227e11i 0.250427 + 0.144584i
\(438\) 0 0
\(439\) −2.06834e11 3.58247e11i −0.265786 0.460355i 0.701983 0.712193i \(-0.252298\pi\)
−0.967769 + 0.251839i \(0.918965\pi\)
\(440\) 0 0
\(441\) 6.36779e9 + 4.74533e11i 0.00801706 + 0.597438i
\(442\) 0 0
\(443\) −5.14995e11 + 2.97333e11i −0.635311 + 0.366797i −0.782806 0.622266i \(-0.786212\pi\)
0.147495 + 0.989063i \(0.452879\pi\)
\(444\) 0 0
\(445\) 8.25823e11 1.43037e12i 0.998313 1.72913i
\(446\) 0 0
\(447\) 9.67937e10 0.114674
\(448\) 0 0
\(449\) −8.08300e11 −0.938564 −0.469282 0.883048i \(-0.655487\pi\)
−0.469282 + 0.883048i \(0.655487\pi\)
\(450\) 0 0
\(451\) 2.98622e10 5.17229e10i 0.0339882 0.0588692i
\(452\) 0 0
\(453\) −1.01746e11 + 5.87432e10i −0.113521 + 0.0655414i
\(454\) 0 0
\(455\) −3.04366e11 1.10617e12i −0.332924 1.20996i
\(456\) 0 0
\(457\) 4.86355e11 + 8.42392e11i 0.521592 + 0.903423i 0.999685 + 0.0251138i \(0.00799482\pi\)
−0.478093 + 0.878309i \(0.658672\pi\)
\(458\) 0 0
\(459\) 1.51071e12 + 8.72208e11i 1.58863 + 0.917197i
\(460\) 0 0
\(461\) 5.63074e11i 0.580646i −0.956929 0.290323i \(-0.906237\pi\)
0.956929 0.290323i \(-0.0937628\pi\)
\(462\) 0 0
\(463\) 1.60048e12i 1.61859i −0.587406 0.809293i \(-0.699851\pi\)
0.587406 0.809293i \(-0.300149\pi\)
\(464\) 0 0
\(465\) 9.03532e11 + 5.21654e11i 0.896200 + 0.517421i
\(466\) 0 0
\(467\) 7.87544e11 + 1.36407e12i 0.766212 + 1.32712i 0.939603 + 0.342266i \(0.111194\pi\)
−0.173391 + 0.984853i \(0.555472\pi\)
\(468\) 0 0
\(469\) 8.70659e11 + 8.59054e11i 0.830942 + 0.819866i
\(470\) 0 0
\(471\) −9.07909e11 + 5.24181e11i −0.850057 + 0.490781i
\(472\) 0 0
\(473\) −4.26102e10 + 7.38030e10i −0.0391416 + 0.0677952i
\(474\) 0 0
\(475\) 1.22094e12 1.10046
\(476\) 0 0
\(477\) −1.95625e11 −0.173018
\(478\) 0 0
\(479\) 9.11211e11 1.57826e12i 0.790877 1.36984i −0.134547 0.990907i \(-0.542958\pi\)
0.925424 0.378933i \(-0.123709\pi\)
\(480\) 0 0
\(481\) 1.33585e12 7.71251e11i 1.13790 0.656966i
\(482\) 0 0
\(483\) −4.64508e10 + 1.78129e11i −0.0388357 + 0.148926i
\(484\) 0 0
\(485\) 1.50700e12 + 2.61019e12i 1.23673 + 2.14207i
\(486\) 0 0
\(487\) 4.31571e11 + 2.49167e11i 0.347673 + 0.200729i 0.663660 0.748034i \(-0.269002\pi\)
−0.315987 + 0.948764i \(0.602335\pi\)
\(488\) 0 0
\(489\) 3.79961e11i 0.300503i
\(490\) 0 0
\(491\) 1.46306e12i 1.13605i −0.823013 0.568023i \(-0.807709\pi\)
0.823013 0.568023i \(-0.192291\pi\)
\(492\) 0 0
\(493\) 1.35987e12 + 7.85120e11i 1.03678 + 0.598584i
\(494\) 0 0
\(495\) −4.67423e10 8.09601e10i −0.0349934 0.0606104i
\(496\) 0 0
\(497\) 4.87628e11 1.86995e12i 0.358496 1.37475i
\(498\) 0 0
\(499\) −1.25906e12 + 7.26918e11i −0.909063 + 0.524848i −0.880129 0.474734i \(-0.842544\pi\)
−0.0289331 + 0.999581i \(0.509211\pi\)
\(500\) 0 0
\(501\) −4.61519e10 + 7.99375e10i −0.0327281 + 0.0566867i
\(502\) 0 0
\(503\) 1.47160e12 1.02502 0.512511 0.858681i \(-0.328716\pi\)
0.512511 + 0.858681i \(0.328716\pi\)
\(504\) 0 0
\(505\) 2.40283e12 1.64404
\(506\) 0 0
\(507\) 8.54857e10 1.48066e11i 0.0574590 0.0995218i
\(508\) 0 0
\(509\) −6.23026e11 + 3.59704e11i −0.411411 + 0.237529i −0.691396 0.722476i \(-0.743004\pi\)
0.279985 + 0.960005i \(0.409671\pi\)
\(510\) 0 0
\(511\) −1.68377e11 1.66133e11i −0.109242 0.107786i
\(512\) 0 0
\(513\) 9.47555e11 + 1.64121e12i 0.604054 + 1.04625i
\(514\) 0 0
\(515\) −1.83469e12 1.05926e12i −1.14929 0.663543i
\(516\) 0 0
\(517\) 7.45616e9i 0.00458995i
\(518\) 0 0
\(519\) 3.39734e11i 0.205535i
\(520\) 0 0
\(521\) −2.28654e12 1.32013e12i −1.35959 0.784961i −0.370024 0.929022i \(-0.620650\pi\)
−0.989569 + 0.144061i \(0.953984\pi\)
\(522\) 0 0
\(523\) 9.31384e11 + 1.61320e12i 0.544341 + 0.942827i 0.998648 + 0.0519813i \(0.0165536\pi\)
−0.454307 + 0.890845i \(0.650113\pi\)
\(524\) 0 0
\(525\) 2.70474e11 + 9.82996e11i 0.155385 + 0.564722i
\(526\) 0 0
\(527\) −3.26453e12 + 1.88478e12i −1.84362 + 1.06442i
\(528\) 0 0
\(529\) −8.47578e11 + 1.46805e12i −0.470575 + 0.815061i
\(530\) 0 0
\(531\) 1.96274e12 1.07137
\(532\) 0 0
\(533\) −1.35695e12 −0.728268
\(534\) 0 0
\(535\) 1.14719e12 1.98700e12i 0.605403 1.04859i
\(536\) 0 0
\(537\) 1.06161e12 6.12922e11i 0.550911 0.318069i
\(538\) 0 0
\(539\) −8.46704e10 1.42212e11i −0.0432098 0.0725749i
\(540\) 0 0
\(541\) −9.07717e11 1.57221e12i −0.455578 0.789084i 0.543143 0.839640i \(-0.317234\pi\)
−0.998721 + 0.0505558i \(0.983901\pi\)
\(542\) 0 0
\(543\) −1.13621e12 6.55989e11i −0.560865 0.323815i
\(544\) 0 0
\(545\) 3.22489e12i 1.56578i
\(546\) 0 0
\(547\) 2.91430e12i 1.39185i −0.718116 0.695923i \(-0.754995\pi\)
0.718116 0.695923i \(-0.245005\pi\)
\(548\) 0 0
\(549\) 3.44093e11 + 1.98662e11i 0.161659 + 0.0933340i
\(550\) 0 0
\(551\) 8.52944e11 + 1.47734e12i 0.394220 + 0.682808i
\(552\) 0 0
\(553\) −2.21901e12 + 6.10567e11i −1.00901 + 0.277632i
\(554\) 0 0
\(555\) −2.47295e12 + 1.42776e12i −1.10636 + 0.638757i
\(556\) 0 0
\(557\) 6.37219e11 1.10370e12i 0.280505 0.485849i −0.691004 0.722851i \(-0.742831\pi\)
0.971509 + 0.237002i \(0.0761648\pi\)
\(558\) 0 0
\(559\) 1.93622e12 0.838690
\(560\) 0 0
\(561\) −2.27541e11 −0.0969900
\(562\) 0 0
\(563\) 2.99481e11 5.18716e11i 0.125626 0.217591i −0.796351 0.604835i \(-0.793239\pi\)
0.921978 + 0.387243i \(0.126573\pi\)
\(564\) 0 0
\(565\) 2.51363e12 1.45124e12i 1.03773 0.599132i
\(566\) 0 0
\(567\) −7.86681e10 + 7.97309e10i −0.0319650 + 0.0323968i
\(568\) 0 0
\(569\) 6.38022e11 + 1.10509e12i 0.255170 + 0.441968i 0.964942 0.262464i \(-0.0845351\pi\)
−0.709771 + 0.704432i \(0.751202\pi\)
\(570\) 0 0
\(571\) 1.51715e12 + 8.75926e11i 0.597263 + 0.344830i 0.767964 0.640493i \(-0.221270\pi\)
−0.170701 + 0.985323i \(0.554603\pi\)
\(572\) 0 0
\(573\) 9.85876e11i 0.382055i
\(574\) 0 0
\(575\) 5.87043e11i 0.223957i
\(576\) 0 0
\(577\) −4.18956e12 2.41884e12i −1.57354 0.908482i −0.995731 0.0923074i \(-0.970576\pi\)
−0.577806 0.816174i \(-0.696091\pi\)
\(578\) 0 0
\(579\) −9.29836e10 1.61052e11i −0.0343837 0.0595544i
\(580\) 0 0
\(581\) 3.69551e11 + 9.63683e10i 0.134550 + 0.0350866i
\(582\) 0 0
\(583\) 5.90842e10 3.41123e10i 0.0211818 0.0122293i
\(584\) 0 0
\(585\) −1.06199e12 + 1.83943e12i −0.374904 + 0.649353i
\(586\) 0 0
\(587\) 2.28419e11 0.0794073 0.0397036 0.999211i \(-0.487359\pi\)
0.0397036 + 0.999211i \(0.487359\pi\)
\(588\) 0 0
\(589\) −4.09519e12 −1.40202
\(590\) 0 0
\(591\) −4.78139e11 + 8.28162e11i −0.161217 + 0.279236i
\(592\) 0 0
\(593\) 1.98325e11 1.14503e11i 0.0658616 0.0380252i −0.466708 0.884412i \(-0.654560\pi\)
0.532569 + 0.846386i \(0.321227\pi\)
\(594\) 0 0
\(595\) −7.42539e12 1.93633e12i −2.42881 0.633362i
\(596\) 0 0
\(597\) 1.15759e12 + 2.00501e12i 0.372968 + 0.646000i
\(598\) 0 0
\(599\) 2.88988e12 + 1.66847e12i 0.917190 + 0.529540i 0.882738 0.469866i \(-0.155698\pi\)
0.0344526 + 0.999406i \(0.489031\pi\)
\(600\) 0 0
\(601\) 2.59183e12i 0.810348i 0.914240 + 0.405174i \(0.132789\pi\)
−0.914240 + 0.405174i \(0.867211\pi\)
\(602\) 0 0
\(603\) 2.26439e12i 0.697466i
\(604\) 0 0
\(605\) −3.92946e12 2.26867e12i −1.19243 0.688450i
\(606\) 0 0
\(607\) 3.20276e12 + 5.54734e12i 0.957580 + 1.65858i 0.728351 + 0.685204i \(0.240287\pi\)
0.229228 + 0.973373i \(0.426380\pi\)
\(608\) 0 0
\(609\) −1.00047e12 + 1.01399e12i −0.294732 + 0.298713i
\(610\) 0 0
\(611\) −1.46709e11 + 8.47026e10i −0.0425865 + 0.0245873i
\(612\) 0 0
\(613\) −1.39443e12 + 2.41522e12i −0.398863 + 0.690851i −0.993586 0.113079i \(-0.963929\pi\)
0.594723 + 0.803931i \(0.297262\pi\)
\(614\) 0 0
\(615\) 2.51201e12 0.708083
\(616\) 0 0
\(617\) 2.93747e12 0.816001 0.408000 0.912982i \(-0.366226\pi\)
0.408000 + 0.912982i \(0.366226\pi\)
\(618\) 0 0
\(619\) 1.85916e12 3.22016e12i 0.508990 0.881596i −0.490956 0.871184i \(-0.663352\pi\)
0.999946 0.0104116i \(-0.00331419\pi\)
\(620\) 0 0
\(621\) 7.89113e11 4.55594e11i 0.212925 0.122932i
\(622\) 0 0
\(623\) −5.21956e12 + 1.43618e12i −1.38815 + 0.381955i
\(624\) 0 0
\(625\) 2.04259e12 + 3.53786e12i 0.535452 + 0.927430i
\(626\) 0 0
\(627\) −2.14079e11 1.23599e11i −0.0553186 0.0319382i
\(628\) 0 0
\(629\) 1.03172e13i 2.62805i
\(630\) 0 0
\(631\) 5.54087e12i 1.39138i 0.718342 + 0.695690i \(0.244901\pi\)
−0.718342 + 0.695690i \(0.755099\pi\)
\(632\) 0 0
\(633\) −3.27102e12 1.88853e12i −0.809780 0.467526i
\(634\) 0 0
\(635\) 4.04979e11 + 7.01445e11i 0.0988442 + 0.171203i
\(636\) 0 0
\(637\) −1.83633e12 + 3.28154e12i −0.441900 + 0.789677i
\(638\) 0 0
\(639\) −3.09833e12 + 1.78882e12i −0.735146 + 0.424437i
\(640\) 0 0
\(641\) 1.65826e12 2.87219e12i 0.387964 0.671973i −0.604212 0.796824i \(-0.706512\pi\)
0.992176 + 0.124851i \(0.0398452\pi\)
\(642\) 0 0
\(643\) −6.25708e12 −1.44352 −0.721759 0.692144i \(-0.756666\pi\)
−0.721759 + 0.692144i \(0.756666\pi\)
\(644\) 0 0
\(645\) −3.58437e12 −0.815445
\(646\) 0 0
\(647\) −2.54826e12 + 4.41371e12i −0.571708 + 0.990227i 0.424683 + 0.905342i \(0.360386\pi\)
−0.996391 + 0.0848847i \(0.972948\pi\)
\(648\) 0 0
\(649\) −5.92803e11 + 3.42255e11i −0.131162 + 0.0757266i
\(650\) 0 0
\(651\) −9.07202e11 3.29708e12i −0.197965 0.719474i
\(652\) 0 0
\(653\) −3.01691e12 5.22544e12i −0.649311 1.12464i −0.983288 0.182058i \(-0.941724\pi\)
0.333977 0.942581i \(-0.391609\pi\)
\(654\) 0 0
\(655\) 8.87021e12 + 5.12122e12i 1.88299 + 1.08715i
\(656\) 0 0
\(657\) 4.37910e11i 0.0916940i
\(658\) 0 0
\(659\) 3.07274e12i 0.634660i 0.948315 + 0.317330i \(0.102786\pi\)
−0.948315 + 0.317330i \(0.897214\pi\)
\(660\) 0 0
\(661\) −2.97147e12 1.71558e12i −0.605431 0.349546i 0.165744 0.986169i \(-0.446997\pi\)
−0.771175 + 0.636623i \(0.780331\pi\)
\(662\) 0 0
\(663\) 2.58489e12 + 4.47715e12i 0.519554 + 0.899893i
\(664\) 0 0
\(665\) −5.93429e12 5.85519e12i −1.17672 1.16103i
\(666\) 0 0
\(667\) 7.10322e11 4.10105e11i 0.138960 0.0802284i
\(668\) 0 0
\(669\) 2.06095e12 3.56967e12i 0.397786 0.688986i
\(670\) 0 0
\(671\) −1.38568e11 −0.0263883
\(672\) 0 0
\(673\) 1.60656e12 0.301876 0.150938 0.988543i \(-0.451771\pi\)
0.150938 + 0.988543i \(0.451771\pi\)
\(674\) 0 0
\(675\) 2.52324e12 4.37037e12i 0.467833 0.810310i
\(676\) 0 0
\(677\) 4.30495e12 2.48546e12i 0.787624 0.454735i −0.0515011 0.998673i \(-0.516401\pi\)
0.839126 + 0.543938i \(0.183067\pi\)
\(678\) 0 0
\(679\) 2.49276e12 9.55917e12i 0.450055 1.72586i
\(680\) 0 0
\(681\) 1.74230e11 + 3.01774e11i 0.0310427 + 0.0537676i
\(682\) 0 0
\(683\) −5.58468e12 3.22432e12i −0.981985 0.566949i −0.0791163 0.996865i \(-0.525210\pi\)
−0.902869 + 0.429916i \(0.858543\pi\)
\(684\) 0 0
\(685\) 1.11769e13i 1.93961i
\(686\) 0 0
\(687\) 4.54588e11i 0.0778597i
\(688\) 0 0
\(689\) −1.34240e12 7.75037e11i −0.226932 0.131019i
\(690\) 0 0
\(691\) 5.39277e12 + 9.34055e12i 0.899830 + 1.55855i 0.827711 + 0.561155i \(0.189643\pi\)
0.0721192 + 0.997396i \(0.477024\pi\)
\(692\) 0 0
\(693\) −7.73175e10 + 2.96496e11i −0.0127344 + 0.0488336i
\(694\) 0 0
\(695\) −1.36012e13 + 7.85265e12i −2.21129 + 1.27669i
\(696\) 0 0
\(697\) −4.53805e12 + 7.86013e12i −0.728319 + 1.26149i
\(698\) 0 0
\(699\) 2.81736e12 0.446371
\(700\) 0 0
\(701\) 7.58708e12 1.18671 0.593354 0.804942i \(-0.297804\pi\)
0.593354 + 0.804942i \(0.297804\pi\)
\(702\) 0 0
\(703\) 5.60423e12 9.70681e12i 0.865400 1.49892i
\(704\) 0 0
\(705\) 2.71591e11 1.56803e11i 0.0414061 0.0239058i
\(706\) 0 0
\(707\) −5.60616e12 5.53144e12i −0.843876 0.832628i
\(708\) 0 0
\(709\) 3.76590e12 + 6.52272e12i 0.559706 + 0.969440i 0.997521 + 0.0703743i \(0.0224194\pi\)
−0.437814 + 0.899065i \(0.644247\pi\)
\(710\) 0 0
\(711\) 3.68994e12 + 2.13039e12i 0.541509 + 0.312640i
\(712\) 0 0
\(713\) 1.96901e12i 0.285329i
\(714\) 0 0
\(715\) 7.40744e11i 0.105996i
\(716\) 0 0
\(717\) −1.09018e12 6.29415e11i −0.154050 0.0889407i
\(718\) 0 0
\(719\) −1.33565e12 2.31341e12i −0.186385 0.322829i 0.757657 0.652653i \(-0.226344\pi\)
−0.944043 + 0.329824i \(0.893011\pi\)
\(720\) 0 0
\(721\) 1.84214e12 + 6.69496e12i 0.253871 + 0.922655i
\(722\) 0 0
\(723\) −3.58052e11 + 2.06721e11i −0.0487331 + 0.0281361i
\(724\) 0 0
\(725\) 2.27130e12 3.93400e12i 0.305318 0.528827i
\(726\) 0 0
\(727\) −4.80151e11 −0.0637490 −0.0318745 0.999492i \(-0.510148\pi\)
−0.0318745 + 0.999492i \(0.510148\pi\)
\(728\) 0 0
\(729\) 5.11065e12 0.670196
\(730\) 0 0
\(731\) 6.47531e12 1.12156e13i 0.838749 1.45276i
\(732\) 0 0
\(733\) 7.07802e12 4.08650e12i 0.905616 0.522858i 0.0265980 0.999646i \(-0.491533\pi\)
0.879018 + 0.476789i \(0.158199\pi\)
\(734\) 0 0
\(735\) 3.39946e12 6.07485e12i 0.429652 0.767790i
\(736\) 0 0
\(737\) 3.94855e11 + 6.83909e11i 0.0492985 + 0.0853876i
\(738\) 0 0
\(739\) −6.66043e12 3.84540e12i −0.821490 0.474288i 0.0294397 0.999567i \(-0.490628\pi\)
−0.850930 + 0.525279i \(0.823961\pi\)
\(740\) 0 0
\(741\) 5.61637e12i 0.684343i
\(742\) 0 0
\(743\) 6.90697e12i 0.831453i −0.909490 0.415727i \(-0.863527\pi\)
0.909490 0.415727i \(-0.136473\pi\)
\(744\) 0 0
\(745\) 1.82525e12 + 1.05381e12i 0.217079 + 0.125331i
\(746\) 0 0
\(747\) −3.53519e11 6.12313e11i −0.0415403 0.0719500i
\(748\) 0 0
\(749\) −7.25076e12 + 1.99507e12i −0.841812 + 0.231627i
\(750\) 0 0
\(751\) 1.07624e13 6.21366e12i 1.23461 0.712801i 0.266620 0.963802i \(-0.414093\pi\)
0.967987 + 0.251001i \(0.0807598\pi\)
\(752\) 0 0
\(753\) 2.59088e12 4.48754e12i 0.293677 0.508664i
\(754\) 0 0
\(755\) −2.55818e12 −0.286530
\(756\) 0 0
\(757\) 7.06812e12 0.782299 0.391149 0.920327i \(-0.372078\pi\)
0.391149 + 0.920327i \(0.372078\pi\)
\(758\) 0 0
\(759\) −5.94276e10 + 1.02932e11i −0.00649981 + 0.0112580i
\(760\) 0 0
\(761\) 1.01979e13 5.88773e12i 1.10224 0.636381i 0.165435 0.986221i \(-0.447097\pi\)
0.936810 + 0.349840i \(0.113764\pi\)
\(762\) 0 0
\(763\) −7.42388e12 + 7.52417e12i −0.792995 + 0.803708i
\(764\) 0 0
\(765\) 7.10325e12 + 1.23032e13i 0.749861 + 1.29880i
\(766\) 0 0
\(767\) 1.34686e13 + 7.77609e12i 1.40522 + 0.811301i
\(768\) 0 0
\(769\) 6.85806e12i 0.707185i −0.935400 0.353592i \(-0.884960\pi\)
0.935400 0.353592i \(-0.115040\pi\)
\(770\) 0 0
\(771\) 7.99488e12i 0.814831i
\(772\) 0 0
\(773\) 1.74638e12 + 1.00827e12i 0.175926 + 0.101571i 0.585377 0.810761i \(-0.300946\pi\)
−0.409451 + 0.912332i \(0.634280\pi\)
\(774\) 0 0
\(775\) 5.45252e12 + 9.44405e12i 0.542925 + 0.940374i
\(776\) 0 0
\(777\) 9.05655e12 + 2.36169e12i 0.891391 + 0.232449i
\(778\) 0 0
\(779\) −8.53914e12 + 4.93007e12i −0.830798 + 0.479661i
\(780\) 0 0
\(781\) 6.23855e11 1.08055e12i 0.0600004 0.103924i
\(782\) 0 0
\(783\) 7.05086e12 0.670369
\(784\) 0 0
\(785\) −2.28274e13 −2.14557
\(786\) 0 0
\(787\) −5.94681e11 + 1.03002e12i −0.0552584 + 0.0957103i −0.892331 0.451381i \(-0.850932\pi\)
0.837073 + 0.547091i \(0.184265\pi\)
\(788\) 0 0
\(789\) −9.04435e12 + 5.22176e12i −0.830866 + 0.479701i
\(790\) 0 0
\(791\) −9.20553e12 2.40054e12i −0.836093 0.218029i
\(792\) 0 0
\(793\) 1.57414e12 + 2.72649e12i 0.141356 + 0.244836i
\(794\) 0 0
\(795\) 2.48509e12 + 1.43477e12i 0.220643 + 0.127388i
\(796\) 0 0
\(797\) 1.56560e13i 1.37442i −0.726460 0.687209i \(-0.758836\pi\)
0.726460 0.687209i \(-0.241164\pi\)
\(798\) 0 0
\(799\) 1.13308e12i 0.0983561i
\(800\) 0 0
\(801\) 8.67948e12 + 5.01110e12i 0.744985 + 0.430117i
\(802\) 0 0
\(803\) −7.63611e10 1.32261e11i −0.00648115 0.0112257i
\(804\) 0 0
\(805\) −2.81524e12 + 2.85327e12i −0.236284 + 0.239476i
\(806\) 0 0
\(807\) 8.40217e11 4.85100e11i 0.0697366 0.0402624i
\(808\) 0 0
\(809\) 9.65511e12 1.67231e13i 0.792481 1.37262i −0.131945 0.991257i \(-0.542122\pi\)
0.924426 0.381361i \(-0.124544\pi\)
\(810\) 0 0
\(811\) 1.51386e12 0.122883 0.0614414 0.998111i \(-0.480430\pi\)
0.0614414 + 0.998111i \(0.480430\pi\)
\(812\) 0 0
\(813\) 3.84671e11 0.0308804
\(814\) 0 0
\(815\) −4.13669e12 + 7.16495e12i −0.328430 + 0.568858i
\(816\) 0 0
\(817\) 1.21844e13 7.03468e12i 0.956767 0.552389i
\(818\) 0 0
\(819\) 6.71225e12 1.84690e12i 0.521304 0.143438i
\(820\) 0 0
\(821\) −9.93346e11 1.72053e12i −0.0763056 0.132165i 0.825348 0.564625i \(-0.190979\pi\)
−0.901653 + 0.432460i \(0.857646\pi\)
\(822\) 0 0
\(823\) −2.11949e13 1.22369e13i −1.61039 0.929760i −0.989279 0.146040i \(-0.953347\pi\)
−0.621113 0.783721i \(-0.713319\pi\)
\(824\) 0 0
\(825\) 6.58260e11i 0.0494715i
\(826\) 0 0
\(827\) 1.27673e13i 0.949125i −0.880222 0.474563i \(-0.842606\pi\)
0.880222 0.474563i \(-0.157394\pi\)
\(828\) 0 0
\(829\) 1.85602e13 + 1.07157e13i 1.36486 + 0.788000i 0.990266 0.139190i \(-0.0444499\pi\)
0.374591 + 0.927190i \(0.377783\pi\)
\(830\) 0 0
\(831\) 1.21096e12 + 2.09745e12i 0.0880901 + 0.152576i
\(832\) 0 0
\(833\) 1.28670e13 + 2.16114e13i 0.925926 + 1.55518i
\(834\) 0 0
\(835\) −1.74058e12 + 1.00493e12i −0.123910 + 0.0715393i
\(836\) 0 0
\(837\) −8.46322e12 + 1.46587e13i −0.596034 + 1.03236i
\(838\) 0 0
\(839\) 9.18960e12 0.640277 0.320138 0.947371i \(-0.396271\pi\)
0.320138 + 0.947371i \(0.396271\pi\)
\(840\) 0 0
\(841\) −8.16030e12 −0.562502
\(842\) 0 0
\(843\) 5.81774e12 1.00766e13i 0.396762 0.687213i
\(844\) 0 0
\(845\) 3.22402e12 1.86139e12i 0.217542 0.125598i
\(846\) 0 0
\(847\) 3.94542e12 + 1.43390e13i 0.263401 + 0.957289i
\(848\) 0 0
\(849\) 4.26942e12 + 7.39486e12i 0.282023 + 0.488478i
\(850\) 0 0
\(851\) −4.66714e12 2.69457e12i −0.305047 0.176119i
\(852\) 0 0
\(853\) 3.86566e12i 0.250007i −0.992156 0.125004i \(-0.960106\pi\)
0.992156 0.125004i \(-0.0398943\pi\)
\(854\) 0 0
\(855\) 1.54338e13i 0.987698i
\(856\) 0 0
\(857\) −7.45970e12 4.30686e12i −0.472398 0.272739i 0.244845 0.969562i \(-0.421263\pi\)
−0.717243 + 0.696823i \(0.754596\pi\)
\(858\) 0 0
\(859\) 6.40133e12 + 1.10874e13i 0.401145 + 0.694803i 0.993864 0.110606i \(-0.0352792\pi\)
−0.592720 + 0.805409i \(0.701946\pi\)
\(860\) 0 0
\(861\) −5.86092e12 5.78280e12i −0.363456 0.358611i
\(862\) 0 0
\(863\) −2.77648e13 + 1.60300e13i −1.70391 + 0.983752i −0.762187 + 0.647356i \(0.775875\pi\)
−0.941721 + 0.336396i \(0.890792\pi\)
\(864\) 0 0
\(865\) −3.69874e12 + 6.40640e12i −0.224637 + 0.389082i
\(866\) 0 0
\(867\) 2.40232e13 1.44392
\(868\) 0 0
\(869\) −1.48595e12 −0.0883926
\(870\) 0 0
\(871\) 8.97118e12 1.55385e13i 0.528163 0.914804i
\(872\) 0 0
\(873\) −1.58387e13 + 9.14446e12i −0.922900 + 0.532837i
\(874\) 0 0
\(875\) 4.66010e11 1.78705e12i 0.0268757 0.103062i
\(876\) 0 0
\(877\) −1.74935e12 3.02997e12i −0.0998572 0.172958i 0.811768 0.583980i \(-0.198505\pi\)
−0.911625 + 0.411022i \(0.865172\pi\)
\(878\) 0 0
\(879\) 5.49674e12 + 3.17354e12i 0.310567 + 0.179306i
\(880\) 0 0
\(881\) 1.63962e13i 0.916962i −0.888704 0.458481i \(-0.848394\pi\)
0.888704 0.458481i \(-0.151606\pi\)
\(882\) 0 0
\(883\) 1.88925e13i 1.04584i −0.852381 0.522921i \(-0.824842\pi\)
0.852381 0.522921i \(-0.175158\pi\)
\(884\) 0 0
\(885\) −2.49333e13 1.43953e13i −1.36627 0.788815i
\(886\) 0 0
\(887\) −1.06658e13 1.84737e13i −0.578545 1.00207i −0.995647 0.0932096i \(-0.970287\pi\)
0.417101 0.908860i \(-0.363046\pi\)
\(888\) 0 0
\(889\) 6.69886e11 2.56886e12i 0.0359702 0.137938i
\(890\) 0 0
\(891\) −6.26291e10 + 3.61590e10i −0.00332910 + 0.00192206i
\(892\) 0 0
\(893\) −6.15483e11 + 1.06605e12i −0.0323881 + 0.0560977i
\(894\) 0 0
\(895\) 2.66919e13 1.39051
\(896\) 0 0
\(897\) 2.70041e12 0.139272
\(898\) 0 0
\(899\) −7.61819e12 + 1.31951e13i −0.388985 + 0.673742i
\(900\) 0 0
\(901\) −8.97880e12 + 5.18391e12i −0.453896 + 0.262057i
\(902\) 0 0
\(903\) 8.36290e12 + 8.25143e12i 0.418564 + 0.412985i
\(904\) 0 0
\(905\) −1.42837e13 2.47401e13i −0.707819 1.22598i
\(906\) 0 0
\(907\) −1.76767e13 1.02057e13i −0.867300 0.500736i −0.000849825 1.00000i \(-0.500271\pi\)
−0.866450 + 0.499264i \(0.833604\pi\)
\(908\) 0 0
\(909\) 1.45804e13i 0.708323i
\(910\) 0 0
\(911\) 1.91454e13i 0.920939i 0.887675 + 0.460470i \(0.152319\pi\)
−0.887675 + 0.460470i \(0.847681\pi\)
\(912\) 0 0
\(913\) 2.13545e11 + 1.23290e11i 0.0101712 + 0.00587234i
\(914\) 0 0
\(915\) −2.91409e12 5.04734e12i −0.137438 0.238050i
\(916\) 0 0
\(917\) −8.90624e12 3.23683e13i −0.415942 1.51167i
\(918\) 0 0
\(919\) −3.35564e13 + 1.93738e13i −1.55187 + 0.895973i −0.553881 + 0.832596i \(0.686854\pi\)
−0.997990 + 0.0633775i \(0.979813\pi\)
\(920\) 0 0
\(921\) 1.04975e13 1.81822e13i 0.480747 0.832679i
\(922\) 0 0
\(923\) −2.83482e13 −1.28563
\(924\) 0 0
\(925\) −2.98469e13 −1.34048
\(926\) 0 0
\(927\) 6.42758e12 1.11329e13i 0.285883 0.495164i
\(928\) 0 0
\(929\) −2.77886e13 + 1.60437e13i −1.22404 + 0.706700i −0.965777 0.259374i \(-0.916484\pi\)
−0.258264 + 0.966074i \(0.583150\pi\)
\(930\) 0 0
\(931\) 3.66638e11 + 2.73221e13i 0.0159942 + 1.19190i
\(932\) 0 0
\(933\) 9.45539e10 + 1.63772e11i 0.00408519 + 0.00707576i
\(934\) 0 0
\(935\) −4.29076e12 2.47727e12i −0.183604 0.106004i
\(936\) 0 0
\(937\) 1.55947e13i 0.660921i −0.943820 0.330460i \(-0.892796\pi\)
0.943820 0.330460i \(-0.107204\pi\)
\(938\) 0 0
\(939\) 1.26067e13i 0.529184i
\(940\) 0 0
\(941\) −6.37940e12 3.68315e12i −0.265233 0.153132i 0.361487 0.932377i \(-0.382269\pi\)
−0.626719 + 0.779245i \(0.715603\pi\)
\(942\) 0 0
\(943\) 2.37043e12 + 4.10571e12i 0.0976169 + 0.169077i
\(944\) 0 0
\(945\) −3.32226e13 + 9.14130e12i −1.35516 + 0.372876i
\(946\) 0 0
\(947\) −5.37263e12 + 3.10189e12i −0.217076 + 0.125329i −0.604596 0.796532i \(-0.706665\pi\)
0.387519 + 0.921862i \(0.373332\pi\)
\(948\) 0 0
\(949\) −1.73494e12 + 3.00500e12i −0.0694361 + 0.120267i
\(950\) 0 0
\(951\) −2.73846e13 −1.08566
\(952\) 0 0
\(953\) −3.03409e13 −1.19154 −0.595772 0.803153i \(-0.703154\pi\)
−0.595772 + 0.803153i \(0.703154\pi\)
\(954\) 0 0
\(955\) −1.07334e13 + 1.85907e13i −0.417562 + 0.723239i
\(956\) 0 0
\(957\) −7.96494e11 + 4.59856e11i −0.0306958 + 0.0177222i
\(958\) 0 0
\(959\) 2.57299e13 2.60774e13i 0.982322 0.995592i
\(960\) 0 0
\(961\) −5.06858e12 8.77903e12i −0.191704 0.332041i
\(962\) 0 0
\(963\) 1.20571e13 + 6.96118e12i 0.451778 + 0.260834i
\(964\) 0 0
\(965\) 4.04930e12i 0.150317i
\(966\) 0 0
\(967\) 3.32759e13i 1.22380i −0.790935 0.611901i \(-0.790405\pi\)
0.790935 0.611901i \(-0.209595\pi\)
\(968\) 0 0
\(969\) 3.25328e13 + 1.87828e13i 1.18540 + 0.684391i
\(970\) 0 0
\(971\) 1.47854e13 + 2.56090e13i 0.533759 + 0.924498i 0.999222 + 0.0394309i \(0.0125545\pi\)
−0.465463 + 0.885067i \(0.654112\pi\)
\(972\) 0 0
\(973\) 4.98109e13 + 1.29893e13i 1.78163 + 0.464597i
\(974\) 0 0
\(975\) 1.29521e13 7.47789e12i 0.459007 0.265008i
\(976\) 0 0
\(977\) 1.45727e13 2.52406e13i 0.511698 0.886288i −0.488210 0.872726i \(-0.662350\pi\)
0.999908 0.0135612i \(-0.00431681\pi\)
\(978\) 0 0
\(979\) −3.49526e12 −0.121607
\(980\) 0 0
\(981\) 1.95687e13 0.674607
\(982\) 0 0
\(983\) −1.94903e13 + 3.37582e13i −0.665776 + 1.15316i 0.313299 + 0.949655i \(0.398566\pi\)
−0.979074 + 0.203503i \(0.934767\pi\)
\(984\) 0 0
\(985\) −1.80326e13 + 1.04111e13i −0.610374 + 0.352400i
\(986\) 0 0
\(987\) −9.94634e11 2.59372e11i −0.0333608 0.00869953i
\(988\) 0 0
\(989\) −3.38235e12 5.85841e12i −0.112418 0.194714i
\(990\) 0 0
\(991\) −9.11133e11 5.26043e11i −0.0300089 0.0173256i 0.484920 0.874558i \(-0.338849\pi\)
−0.514929 + 0.857233i \(0.672182\pi\)
\(992\) 0 0
\(993\) 1.37940e13i 0.450212i
\(994\) 0 0
\(995\) 5.04115e13i 1.63052i
\(996\) 0 0
\(997\) −1.72411e13 9.95415e12i −0.552633 0.319063i 0.197551 0.980293i \(-0.436701\pi\)
−0.750183 + 0.661230i \(0.770035\pi\)
\(998\) 0 0
\(999\) −2.31637e13 4.01207e13i −0.735805 1.27445i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 112.10.p.a.31.9 24
4.3 odd 2 112.10.p.c.31.4 yes 24
7.5 odd 6 112.10.p.c.47.4 yes 24
28.19 even 6 inner 112.10.p.a.47.9 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.10.p.a.31.9 24 1.1 even 1 trivial
112.10.p.a.47.9 yes 24 28.19 even 6 inner
112.10.p.c.31.4 yes 24 4.3 odd 2
112.10.p.c.47.4 yes 24 7.5 odd 6