Properties

Label 112.10.p.a.31.8
Level $112$
Weight $10$
Character 112.31
Analytic conductor $57.684$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [112,10,Mod(31,112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(112, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 1])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("112.31"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 112.p (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,-162] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(57.6840136504\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 31.8
Character \(\chi\) \(=\) 112.31
Dual form 112.10.p.a.47.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(22.7708 - 39.4402i) q^{3} +(-1500.67 + 866.412i) q^{5} +(-6349.75 - 185.284i) q^{7} +(8804.48 + 15249.8i) q^{9} +(-71855.0 - 41485.5i) q^{11} -151879. i q^{13} +78915.7i q^{15} +(-325208. - 187759. i) q^{17} +(167329. + 289822. i) q^{19} +(-151897. + 246216. i) q^{21} +(-1.23177e6 + 711164. i) q^{23} +(524777. - 908940. i) q^{25} +1.69834e6 q^{27} +5.11171e6 q^{29} +(-443123. + 767512. i) q^{31} +(-3.27240e6 + 1.88932e6i) q^{33} +(9.68940e6 - 5.22345e6i) q^{35} +(7.46397e6 + 1.29280e7i) q^{37} +(-5.99014e6 - 3.45841e6i) q^{39} +1.60174e7i q^{41} +2.69275e7i q^{43} +(-2.64252e7 - 1.52566e7i) q^{45} +(-2.88694e7 - 5.00033e7i) q^{47} +(4.02849e7 + 2.35301e6i) q^{49} +(-1.48105e7 + 8.55084e6i) q^{51} +(4.55716e7 - 7.89324e7i) q^{53} +1.43774e8 q^{55} +1.52408e7 q^{57} +(-1.65678e6 + 2.86964e6i) q^{59} +(-7.99730e7 + 4.61724e7i) q^{61} +(-5.30807e7 - 9.84637e7i) q^{63} +(1.31590e8 + 2.27920e8i) q^{65} +(-4.61774e7 - 2.66605e7i) q^{67} +6.47752e7i q^{69} -1.85803e8i q^{71} +(2.17356e8 + 1.25491e8i) q^{73} +(-2.38992e7 - 4.13946e7i) q^{75} +(4.48575e8 + 2.76736e8i) q^{77} +(3.29407e8 - 1.90183e8i) q^{79} +(-1.34626e8 + 2.33179e8i) q^{81} +6.02933e8 q^{83} +6.50705e8 q^{85} +(1.16398e8 - 2.01607e8i) q^{87} +(3.63585e8 - 2.09916e8i) q^{89} +(-2.81407e7 + 9.64393e8i) q^{91} +(2.01806e7 + 3.49538e7i) q^{93} +(-5.02210e8 - 2.89951e8i) q^{95} -2.18214e8i q^{97} -1.46103e9i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q - 162 q^{3} - 852 q^{5} - 6744 q^{7} - 77884 q^{9} - 57534 q^{11} + 789336 q^{17} + 469098 q^{19} - 2104376 q^{21} + 1553682 q^{23} + 3602544 q^{25} + 6389244 q^{27} - 2462040 q^{29} - 10306686 q^{31}+ \cdots + 1433917218 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/112\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(17\) \(85\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 22.7708 39.4402i 0.162306 0.281121i −0.773390 0.633931i \(-0.781440\pi\)
0.935695 + 0.352810i \(0.114774\pi\)
\(4\) 0 0
\(5\) −1500.67 + 866.412i −1.07379 + 0.619954i −0.929215 0.369540i \(-0.879515\pi\)
−0.144577 + 0.989494i \(0.546182\pi\)
\(6\) 0 0
\(7\) −6349.75 185.284i −0.999575 0.0291673i
\(8\) 0 0
\(9\) 8804.48 + 15249.8i 0.447314 + 0.774770i
\(10\) 0 0
\(11\) −71855.0 41485.5i −1.47976 0.854338i −0.480019 0.877258i \(-0.659370\pi\)
−0.999737 + 0.0229207i \(0.992703\pi\)
\(12\) 0 0
\(13\) 151879.i 1.47487i −0.675420 0.737433i \(-0.736038\pi\)
0.675420 0.737433i \(-0.263962\pi\)
\(14\) 0 0
\(15\) 78915.7i 0.402488i
\(16\) 0 0
\(17\) −325208. 187759.i −0.944366 0.545230i −0.0530399 0.998592i \(-0.516891\pi\)
−0.891326 + 0.453362i \(0.850224\pi\)
\(18\) 0 0
\(19\) 167329. + 289822.i 0.294564 + 0.510199i 0.974883 0.222716i \(-0.0714924\pi\)
−0.680320 + 0.732915i \(0.738159\pi\)
\(20\) 0 0
\(21\) −151897. + 246216.i −0.170436 + 0.276268i
\(22\) 0 0
\(23\) −1.23177e6 + 711164.i −0.917815 + 0.529901i −0.882937 0.469491i \(-0.844438\pi\)
−0.0348780 + 0.999392i \(0.511104\pi\)
\(24\) 0 0
\(25\) 524777. 908940.i 0.268686 0.465377i
\(26\) 0 0
\(27\) 1.69834e6 0.615017
\(28\) 0 0
\(29\) 5.11171e6 1.34207 0.671036 0.741425i \(-0.265850\pi\)
0.671036 + 0.741425i \(0.265850\pi\)
\(30\) 0 0
\(31\) −443123. + 767512.i −0.0861781 + 0.149265i −0.905893 0.423507i \(-0.860799\pi\)
0.819715 + 0.572772i \(0.194132\pi\)
\(32\) 0 0
\(33\) −3.27240e6 + 1.88932e6i −0.480345 + 0.277327i
\(34\) 0 0
\(35\) 9.68940e6 5.22345e6i 1.09142 0.588371i
\(36\) 0 0
\(37\) 7.46397e6 + 1.29280e7i 0.654729 + 1.13402i 0.981962 + 0.189081i \(0.0605508\pi\)
−0.327232 + 0.944944i \(0.606116\pi\)
\(38\) 0 0
\(39\) −5.99014e6 3.45841e6i −0.414617 0.239379i
\(40\) 0 0
\(41\) 1.60174e7i 0.885246i 0.896708 + 0.442623i \(0.145952\pi\)
−0.896708 + 0.442623i \(0.854048\pi\)
\(42\) 0 0
\(43\) 2.69275e7i 1.20112i 0.799579 + 0.600561i \(0.205056\pi\)
−0.799579 + 0.600561i \(0.794944\pi\)
\(44\) 0 0
\(45\) −2.64252e7 1.52566e7i −0.960644 0.554628i
\(46\) 0 0
\(47\) −2.88694e7 5.00033e7i −0.862973 1.49471i −0.869045 0.494732i \(-0.835266\pi\)
0.00607192 0.999982i \(-0.498067\pi\)
\(48\) 0 0
\(49\) 4.02849e7 + 2.35301e6i 0.998299 + 0.0583098i
\(50\) 0 0
\(51\) −1.48105e7 + 8.55084e6i −0.306552 + 0.176988i
\(52\) 0 0
\(53\) 4.55716e7 7.89324e7i 0.793329 1.37409i −0.130567 0.991440i \(-0.541680\pi\)
0.923895 0.382646i \(-0.124987\pi\)
\(54\) 0 0
\(55\) 1.43774e8 2.11860
\(56\) 0 0
\(57\) 1.52408e7 0.191237
\(58\) 0 0
\(59\) −1.65678e6 + 2.86964e6i −0.0178005 + 0.0308314i −0.874788 0.484505i \(-0.839000\pi\)
0.856988 + 0.515336i \(0.172333\pi\)
\(60\) 0 0
\(61\) −7.99730e7 + 4.61724e7i −0.739536 + 0.426971i −0.821900 0.569631i \(-0.807086\pi\)
0.0823648 + 0.996602i \(0.473753\pi\)
\(62\) 0 0
\(63\) −5.30807e7 9.84637e7i −0.424526 0.787488i
\(64\) 0 0
\(65\) 1.31590e8 + 2.27920e8i 0.914349 + 1.58370i
\(66\) 0 0
\(67\) −4.61774e7 2.66605e7i −0.279958 0.161634i 0.353447 0.935455i \(-0.385010\pi\)
−0.633404 + 0.773821i \(0.718343\pi\)
\(68\) 0 0
\(69\) 6.47752e7i 0.344023i
\(70\) 0 0
\(71\) 1.85803e8i 0.867743i −0.900975 0.433871i \(-0.857147\pi\)
0.900975 0.433871i \(-0.142853\pi\)
\(72\) 0 0
\(73\) 2.17356e8 + 1.25491e8i 0.895817 + 0.517200i 0.875841 0.482600i \(-0.160308\pi\)
0.0199765 + 0.999800i \(0.493641\pi\)
\(74\) 0 0
\(75\) −2.38992e7 4.13946e7i −0.0872183 0.151067i
\(76\) 0 0
\(77\) 4.48575e8 + 2.76736e8i 1.45421 + 0.897135i
\(78\) 0 0
\(79\) 3.29407e8 1.90183e8i 0.951505 0.549352i 0.0579567 0.998319i \(-0.481541\pi\)
0.893548 + 0.448968i \(0.148208\pi\)
\(80\) 0 0
\(81\) −1.34626e8 + 2.33179e8i −0.347493 + 0.601876i
\(82\) 0 0
\(83\) 6.02933e8 1.39450 0.697249 0.716829i \(-0.254407\pi\)
0.697249 + 0.716829i \(0.254407\pi\)
\(84\) 0 0
\(85\) 6.50705e8 1.35207
\(86\) 0 0
\(87\) 1.16398e8 2.01607e8i 0.217826 0.377285i
\(88\) 0 0
\(89\) 3.63585e8 2.09916e8i 0.614258 0.354642i −0.160372 0.987057i \(-0.551269\pi\)
0.774630 + 0.632415i \(0.217936\pi\)
\(90\) 0 0
\(91\) −2.81407e7 + 9.64393e8i −0.0430179 + 1.47424i
\(92\) 0 0
\(93\) 2.01806e7 + 3.49538e7i 0.0279743 + 0.0484530i
\(94\) 0 0
\(95\) −5.02210e8 2.89951e8i −0.632600 0.365232i
\(96\) 0 0
\(97\) 2.18214e8i 0.250271i −0.992140 0.125135i \(-0.960064\pi\)
0.992140 0.125135i \(-0.0399365\pi\)
\(98\) 0 0
\(99\) 1.46103e9i 1.52863i
\(100\) 0 0
\(101\) 1.44885e9 + 8.36492e8i 1.38540 + 0.799863i 0.992793 0.119841i \(-0.0382386\pi\)
0.392611 + 0.919705i \(0.371572\pi\)
\(102\) 0 0
\(103\) −1.20613e8 2.08908e8i −0.105591 0.182889i 0.808389 0.588649i \(-0.200340\pi\)
−0.913979 + 0.405761i \(0.867007\pi\)
\(104\) 0 0
\(105\) 1.46218e7 5.01095e8i 0.0117395 0.402316i
\(106\) 0 0
\(107\) −1.00885e9 + 5.82462e8i −0.744048 + 0.429577i −0.823539 0.567259i \(-0.808004\pi\)
0.0794911 + 0.996836i \(0.474670\pi\)
\(108\) 0 0
\(109\) −1.25277e9 + 2.16987e9i −0.850067 + 1.47236i 0.0310799 + 0.999517i \(0.490105\pi\)
−0.881147 + 0.472842i \(0.843228\pi\)
\(110\) 0 0
\(111\) 6.79843e8 0.425065
\(112\) 0 0
\(113\) −9.63673e8 −0.556002 −0.278001 0.960581i \(-0.589672\pi\)
−0.278001 + 0.960581i \(0.589672\pi\)
\(114\) 0 0
\(115\) 1.23232e9 2.13445e9i 0.657028 1.13801i
\(116\) 0 0
\(117\) 2.31613e9 1.33722e9i 1.14268 0.659728i
\(118\) 0 0
\(119\) 2.03020e9 + 1.25248e9i 0.928062 + 0.572543i
\(120\) 0 0
\(121\) 2.26312e9 + 3.91984e9i 0.959785 + 1.66240i
\(122\) 0 0
\(123\) 6.31729e8 + 3.64729e8i 0.248862 + 0.143680i
\(124\) 0 0
\(125\) 1.56573e9i 0.573617i
\(126\) 0 0
\(127\) 4.36434e9i 1.48868i −0.667801 0.744340i \(-0.732764\pi\)
0.667801 0.744340i \(-0.267236\pi\)
\(128\) 0 0
\(129\) 1.06203e9 + 6.13160e8i 0.337661 + 0.194949i
\(130\) 0 0
\(131\) −3.32537e8 5.75972e8i −0.0986551 0.170876i 0.812473 0.582999i \(-0.198121\pi\)
−0.911128 + 0.412123i \(0.864787\pi\)
\(132\) 0 0
\(133\) −1.00879e9 1.87130e9i −0.279557 0.518574i
\(134\) 0 0
\(135\) −2.54864e9 + 1.47146e9i −0.660400 + 0.381282i
\(136\) 0 0
\(137\) 6.32515e8 1.09555e9i 0.153401 0.265698i −0.779075 0.626931i \(-0.784311\pi\)
0.932476 + 0.361233i \(0.117644\pi\)
\(138\) 0 0
\(139\) 2.88275e9 0.655000 0.327500 0.944851i \(-0.393794\pi\)
0.327500 + 0.944851i \(0.393794\pi\)
\(140\) 0 0
\(141\) −2.62952e9 −0.560261
\(142\) 0 0
\(143\) −6.30078e9 + 1.09133e10i −1.26003 + 2.18244i
\(144\) 0 0
\(145\) −7.67099e9 + 4.42885e9i −1.44110 + 0.832022i
\(146\) 0 0
\(147\) 1.01012e9 1.53527e9i 0.178421 0.271179i
\(148\) 0 0
\(149\) −2.35256e9 4.07475e9i −0.391023 0.677271i 0.601562 0.798826i \(-0.294545\pi\)
−0.992585 + 0.121555i \(0.961212\pi\)
\(150\) 0 0
\(151\) 1.90746e9 + 1.10127e9i 0.298579 + 0.172385i 0.641804 0.766868i \(-0.278186\pi\)
−0.343225 + 0.939253i \(0.611519\pi\)
\(152\) 0 0
\(153\) 6.61247e9i 0.975556i
\(154\) 0 0
\(155\) 1.53571e9i 0.213706i
\(156\) 0 0
\(157\) −1.03562e10 5.97918e9i −1.36036 0.785404i −0.370687 0.928758i \(-0.620878\pi\)
−0.989671 + 0.143354i \(0.954211\pi\)
\(158\) 0 0
\(159\) −2.07541e9 3.59471e9i −0.257523 0.446043i
\(160\) 0 0
\(161\) 7.95321e9 4.28749e9i 0.932881 0.502905i
\(162\) 0 0
\(163\) −1.19142e10 + 6.87866e9i −1.32197 + 0.763237i −0.984042 0.177937i \(-0.943058\pi\)
−0.337923 + 0.941174i \(0.609724\pi\)
\(164\) 0 0
\(165\) 3.27386e9 5.67049e9i 0.343860 0.595584i
\(166\) 0 0
\(167\) 1.23344e9 0.122714 0.0613570 0.998116i \(-0.480457\pi\)
0.0613570 + 0.998116i \(0.480457\pi\)
\(168\) 0 0
\(169\) −1.24627e10 −1.17523
\(170\) 0 0
\(171\) −2.94648e9 + 5.10346e9i −0.263525 + 0.456438i
\(172\) 0 0
\(173\) 2.47079e9 1.42651e9i 0.209714 0.121079i −0.391464 0.920193i \(-0.628031\pi\)
0.601179 + 0.799115i \(0.294698\pi\)
\(174\) 0 0
\(175\) −3.50061e9 + 5.67430e9i −0.282145 + 0.457342i
\(176\) 0 0
\(177\) 7.54527e7 + 1.30688e8i 0.00577824 + 0.0100082i
\(178\) 0 0
\(179\) −6.20782e9 3.58409e9i −0.451960 0.260939i 0.256697 0.966492i \(-0.417366\pi\)
−0.708658 + 0.705552i \(0.750699\pi\)
\(180\) 0 0
\(181\) 1.94335e10i 1.34585i 0.739710 + 0.672926i \(0.234963\pi\)
−0.739710 + 0.672926i \(0.765037\pi\)
\(182\) 0 0
\(183\) 4.20554e9i 0.277199i
\(184\) 0 0
\(185\) −2.24019e10 1.29337e10i −1.40609 0.811804i
\(186\) 0 0
\(187\) 1.55785e10 + 2.69828e10i 0.931621 + 1.61362i
\(188\) 0 0
\(189\) −1.07840e10 3.14674e8i −0.614755 0.0179384i
\(190\) 0 0
\(191\) 1.94679e10 1.12398e10i 1.05845 0.611095i 0.133445 0.991056i \(-0.457396\pi\)
0.925002 + 0.379962i \(0.124063\pi\)
\(192\) 0 0
\(193\) −2.04218e9 + 3.53717e9i −0.105947 + 0.183505i −0.914125 0.405433i \(-0.867121\pi\)
0.808178 + 0.588938i \(0.200454\pi\)
\(194\) 0 0
\(195\) 1.19856e10 0.593616
\(196\) 0 0
\(197\) 1.76297e10 0.833962 0.416981 0.908915i \(-0.363088\pi\)
0.416981 + 0.908915i \(0.363088\pi\)
\(198\) 0 0
\(199\) 8.57463e9 1.48517e10i 0.387594 0.671332i −0.604532 0.796581i \(-0.706640\pi\)
0.992125 + 0.125249i \(0.0399730\pi\)
\(200\) 0 0
\(201\) −2.10299e9 + 1.21416e9i −0.0908774 + 0.0524681i
\(202\) 0 0
\(203\) −3.24581e10 9.47118e8i −1.34150 0.0391446i
\(204\) 0 0
\(205\) −1.38776e10 2.40368e10i −0.548812 0.950570i
\(206\) 0 0
\(207\) −2.16902e10 1.25229e10i −0.821103 0.474064i
\(208\) 0 0
\(209\) 2.77669e10i 1.00663i
\(210\) 0 0
\(211\) 3.97909e10i 1.38201i 0.722848 + 0.691007i \(0.242833\pi\)
−0.722848 + 0.691007i \(0.757167\pi\)
\(212\) 0 0
\(213\) −7.32813e9 4.23090e9i −0.243941 0.140839i
\(214\) 0 0
\(215\) −2.33303e10 4.04092e10i −0.744640 1.28975i
\(216\) 0 0
\(217\) 2.95593e9 4.79140e9i 0.0904950 0.146688i
\(218\) 0 0
\(219\) 9.89877e9 5.71506e9i 0.290792 0.167889i
\(220\) 0 0
\(221\) −2.85166e10 + 4.93922e10i −0.804142 + 1.39281i
\(222\) 0 0
\(223\) −6.75244e10 −1.82848 −0.914238 0.405178i \(-0.867209\pi\)
−0.914238 + 0.405178i \(0.867209\pi\)
\(224\) 0 0
\(225\) 1.84815e10 0.480747
\(226\) 0 0
\(227\) 7.84953e9 1.35958e10i 0.196213 0.339850i −0.751085 0.660206i \(-0.770469\pi\)
0.947297 + 0.320356i \(0.103802\pi\)
\(228\) 0 0
\(229\) 2.45655e10 1.41829e10i 0.590292 0.340805i −0.174921 0.984582i \(-0.555967\pi\)
0.765213 + 0.643777i \(0.222634\pi\)
\(230\) 0 0
\(231\) 2.11290e10 1.13904e10i 0.488230 0.263199i
\(232\) 0 0
\(233\) 1.00851e10 + 1.74679e10i 0.224170 + 0.388274i 0.956070 0.293138i \(-0.0946995\pi\)
−0.731900 + 0.681412i \(0.761366\pi\)
\(234\) 0 0
\(235\) 8.66469e10 + 5.00256e10i 1.85331 + 1.07001i
\(236\) 0 0
\(237\) 1.73225e10i 0.356651i
\(238\) 0 0
\(239\) 1.43373e10i 0.284234i −0.989850 0.142117i \(-0.954609\pi\)
0.989850 0.142117i \(-0.0453909\pi\)
\(240\) 0 0
\(241\) 5.39213e10 + 3.11315e10i 1.02964 + 0.594461i 0.916880 0.399162i \(-0.130699\pi\)
0.112756 + 0.993623i \(0.464032\pi\)
\(242\) 0 0
\(243\) 2.28453e10 + 3.95692e10i 0.420309 + 0.727996i
\(244\) 0 0
\(245\) −6.24931e10 + 3.13723e10i −1.10811 + 0.556287i
\(246\) 0 0
\(247\) 4.40178e10 2.54137e10i 0.752475 0.434442i
\(248\) 0 0
\(249\) 1.37293e10 2.37798e10i 0.226335 0.392023i
\(250\) 0 0
\(251\) 1.58215e10 0.251604 0.125802 0.992055i \(-0.459850\pi\)
0.125802 + 0.992055i \(0.459850\pi\)
\(252\) 0 0
\(253\) 1.18012e11 1.81086
\(254\) 0 0
\(255\) 1.48171e10 2.56640e10i 0.219448 0.380096i
\(256\) 0 0
\(257\) 4.52041e10 2.60986e10i 0.646367 0.373180i −0.140696 0.990053i \(-0.544934\pi\)
0.787063 + 0.616873i \(0.211601\pi\)
\(258\) 0 0
\(259\) −4.49989e10 8.34723e10i −0.621374 1.15264i
\(260\) 0 0
\(261\) 4.50060e10 + 7.79526e10i 0.600327 + 1.03980i
\(262\) 0 0
\(263\) 6.84368e10 + 3.95120e10i 0.882041 + 0.509247i 0.871331 0.490696i \(-0.163257\pi\)
0.0107103 + 0.999943i \(0.496591\pi\)
\(264\) 0 0
\(265\) 1.57935e11i 1.96731i
\(266\) 0 0
\(267\) 1.91198e10i 0.230241i
\(268\) 0 0
\(269\) 7.01776e10 + 4.05170e10i 0.817171 + 0.471794i 0.849440 0.527685i \(-0.176940\pi\)
−0.0322689 + 0.999479i \(0.510273\pi\)
\(270\) 0 0
\(271\) −4.69082e10 8.12474e10i −0.528308 0.915056i −0.999455 0.0330013i \(-0.989493\pi\)
0.471148 0.882054i \(-0.343840\pi\)
\(272\) 0 0
\(273\) 3.73951e10 + 2.30699e10i 0.407458 + 0.251370i
\(274\) 0 0
\(275\) −7.54157e10 + 4.35413e10i −0.795178 + 0.459096i
\(276\) 0 0
\(277\) 1.65232e10 2.86190e10i 0.168630 0.292076i −0.769308 0.638878i \(-0.779399\pi\)
0.937938 + 0.346802i \(0.112732\pi\)
\(278\) 0 0
\(279\) −1.56059e10 −0.154195
\(280\) 0 0
\(281\) −2.97809e10 −0.284944 −0.142472 0.989799i \(-0.545505\pi\)
−0.142472 + 0.989799i \(0.545505\pi\)
\(282\) 0 0
\(283\) 2.89160e10 5.00840e10i 0.267978 0.464152i −0.700361 0.713789i \(-0.746978\pi\)
0.968340 + 0.249636i \(0.0803111\pi\)
\(284\) 0 0
\(285\) −2.28715e10 + 1.32049e10i −0.205349 + 0.118558i
\(286\) 0 0
\(287\) 2.96776e9 1.01706e11i 0.0258202 0.884869i
\(288\) 0 0
\(289\) 1.12127e10 + 1.94210e10i 0.0945518 + 0.163768i
\(290\) 0 0
\(291\) −8.60641e9 4.96891e9i −0.0703564 0.0406203i
\(292\) 0 0
\(293\) 2.52839e10i 0.200420i 0.994966 + 0.100210i \(0.0319514\pi\)
−0.994966 + 0.100210i \(0.968049\pi\)
\(294\) 0 0
\(295\) 5.74183e9i 0.0441419i
\(296\) 0 0
\(297\) −1.22034e11 7.04564e10i −0.910075 0.525432i
\(298\) 0 0
\(299\) 1.08011e11 + 1.87080e11i 0.781533 + 1.35366i
\(300\) 0 0
\(301\) 4.98922e9 1.70982e11i 0.0350335 1.20061i
\(302\) 0 0
\(303\) 6.59829e10 3.80953e10i 0.449717 0.259644i
\(304\) 0 0
\(305\) 8.00087e10 1.38579e11i 0.529405 0.916956i
\(306\) 0 0
\(307\) 4.28902e10 0.275572 0.137786 0.990462i \(-0.456001\pi\)
0.137786 + 0.990462i \(0.456001\pi\)
\(308\) 0 0
\(309\) −1.09858e10 −0.0685519
\(310\) 0 0
\(311\) −2.90092e10 + 5.02454e10i −0.175838 + 0.304561i −0.940451 0.339929i \(-0.889597\pi\)
0.764613 + 0.644490i \(0.222930\pi\)
\(312\) 0 0
\(313\) 4.14519e10 2.39323e10i 0.244116 0.140940i −0.372951 0.927851i \(-0.621654\pi\)
0.617067 + 0.786911i \(0.288321\pi\)
\(314\) 0 0
\(315\) 1.64967e11 + 1.01772e11i 0.944058 + 0.582411i
\(316\) 0 0
\(317\) 2.01989e10 + 3.49855e10i 0.112347 + 0.194590i 0.916716 0.399539i \(-0.130830\pi\)
−0.804369 + 0.594130i \(0.797497\pi\)
\(318\) 0 0
\(319\) −3.67302e11 2.12062e11i −1.98594 1.14658i
\(320\) 0 0
\(321\) 5.30526e10i 0.278891i
\(322\) 0 0
\(323\) 1.25670e11i 0.642420i
\(324\) 0 0
\(325\) −1.38049e11 7.97026e10i −0.686369 0.396275i
\(326\) 0 0
\(327\) 5.70534e10 + 9.88193e10i 0.275941 + 0.477944i
\(328\) 0 0
\(329\) 1.74049e11 + 3.22857e11i 0.819010 + 1.51925i
\(330\) 0 0
\(331\) −6.73267e10 + 3.88711e10i −0.308291 + 0.177992i −0.646162 0.763201i \(-0.723627\pi\)
0.337870 + 0.941193i \(0.390293\pi\)
\(332\) 0 0
\(333\) −1.31433e11 + 2.27648e11i −0.585739 + 1.01453i
\(334\) 0 0
\(335\) 9.23959e10 0.400822
\(336\) 0 0
\(337\) −2.55640e11 −1.07968 −0.539840 0.841768i \(-0.681515\pi\)
−0.539840 + 0.841768i \(0.681515\pi\)
\(338\) 0 0
\(339\) −2.19436e10 + 3.80075e10i −0.0902422 + 0.156304i
\(340\) 0 0
\(341\) 6.36812e10 3.67664e10i 0.255045 0.147250i
\(342\) 0 0
\(343\) −2.55363e11 2.24052e10i −0.996173 0.0874026i
\(344\) 0 0
\(345\) −5.61220e10 9.72062e10i −0.213279 0.369409i
\(346\) 0 0
\(347\) 2.13731e11 + 1.23398e11i 0.791379 + 0.456903i 0.840448 0.541893i \(-0.182292\pi\)
−0.0490688 + 0.998795i \(0.515625\pi\)
\(348\) 0 0
\(349\) 3.44751e11i 1.24392i −0.783050 0.621959i \(-0.786337\pi\)
0.783050 0.621959i \(-0.213663\pi\)
\(350\) 0 0
\(351\) 2.57942e11i 0.907068i
\(352\) 0 0
\(353\) −8.14773e10 4.70410e10i −0.279287 0.161246i 0.353814 0.935316i \(-0.384885\pi\)
−0.633101 + 0.774070i \(0.718218\pi\)
\(354\) 0 0
\(355\) 1.60982e11 + 2.78829e11i 0.537961 + 0.931775i
\(356\) 0 0
\(357\) 9.56272e10 5.15515e10i 0.311584 0.167971i
\(358\) 0 0
\(359\) −4.88810e11 + 2.82215e11i −1.55316 + 0.896715i −0.555275 + 0.831667i \(0.687387\pi\)
−0.997882 + 0.0650484i \(0.979280\pi\)
\(360\) 0 0
\(361\) 1.05346e11 1.82465e11i 0.326465 0.565453i
\(362\) 0 0
\(363\) 2.06133e11 0.623114
\(364\) 0 0
\(365\) −4.34907e11 −1.28256
\(366\) 0 0
\(367\) 2.22369e11 3.85154e11i 0.639848 1.10825i −0.345618 0.938375i \(-0.612331\pi\)
0.985466 0.169874i \(-0.0543361\pi\)
\(368\) 0 0
\(369\) −2.44262e11 + 1.41025e11i −0.685862 + 0.395983i
\(370\) 0 0
\(371\) −3.03993e11 + 4.92757e11i −0.833069 + 1.35036i
\(372\) 0 0
\(373\) 1.15395e11 + 1.99870e11i 0.308672 + 0.534636i 0.978072 0.208266i \(-0.0667821\pi\)
−0.669400 + 0.742902i \(0.733449\pi\)
\(374\) 0 0
\(375\) −6.17528e10 3.56530e10i −0.161256 0.0931012i
\(376\) 0 0
\(377\) 7.76362e11i 1.97938i
\(378\) 0 0
\(379\) 7.54247e11i 1.87775i 0.344263 + 0.938873i \(0.388129\pi\)
−0.344263 + 0.938873i \(0.611871\pi\)
\(380\) 0 0
\(381\) −1.72130e11 9.93796e10i −0.418500 0.241621i
\(382\) 0 0
\(383\) −1.98093e11 3.43108e11i −0.470409 0.814772i 0.529019 0.848610i \(-0.322560\pi\)
−0.999427 + 0.0338384i \(0.989227\pi\)
\(384\) 0 0
\(385\) −9.12930e11 2.66390e10i −2.11770 0.0617938i
\(386\) 0 0
\(387\) −4.10638e11 + 2.37082e11i −0.930594 + 0.537279i
\(388\) 0 0
\(389\) −5.07159e10 + 8.78425e10i −0.112298 + 0.194505i −0.916696 0.399585i \(-0.869154\pi\)
0.804399 + 0.594090i \(0.202488\pi\)
\(390\) 0 0
\(391\) 5.34109e11 1.15567
\(392\) 0 0
\(393\) −3.02886e10 −0.0640491
\(394\) 0 0
\(395\) −3.29554e11 + 5.70804e11i −0.681145 + 1.17978i
\(396\) 0 0
\(397\) 4.39290e11 2.53624e11i 0.887552 0.512428i 0.0144108 0.999896i \(-0.495413\pi\)
0.873141 + 0.487468i \(0.162079\pi\)
\(398\) 0 0
\(399\) −9.67755e10 2.82388e9i −0.191156 0.00557787i
\(400\) 0 0
\(401\) −2.59688e11 4.49793e11i −0.501537 0.868687i −0.999998 0.00177532i \(-0.999435\pi\)
0.498462 0.866912i \(-0.333898\pi\)
\(402\) 0 0
\(403\) 1.16569e11 + 6.73011e10i 0.220146 + 0.127101i
\(404\) 0 0
\(405\) 4.66566e11i 0.861719i
\(406\) 0 0
\(407\) 1.23859e12i 2.23744i
\(408\) 0 0
\(409\) 7.03601e11 + 4.06224e11i 1.24329 + 0.717813i 0.969762 0.244052i \(-0.0784768\pi\)
0.273526 + 0.961865i \(0.411810\pi\)
\(410\) 0 0
\(411\) −2.88058e10 4.98931e10i −0.0497956 0.0862486i
\(412\) 0 0
\(413\) 1.10519e10 1.79145e10i 0.0186922 0.0302991i
\(414\) 0 0
\(415\) −9.04803e11 + 5.22388e11i −1.49740 + 0.864524i
\(416\) 0 0
\(417\) 6.56427e10 1.13697e11i 0.106310 0.184134i
\(418\) 0 0
\(419\) 2.53960e11 0.402534 0.201267 0.979536i \(-0.435494\pi\)
0.201267 + 0.979536i \(0.435494\pi\)
\(420\) 0 0
\(421\) −3.17135e11 −0.492011 −0.246006 0.969268i \(-0.579118\pi\)
−0.246006 + 0.969268i \(0.579118\pi\)
\(422\) 0 0
\(423\) 5.08360e11 8.80505e11i 0.772040 1.33721i
\(424\) 0 0
\(425\) −3.41323e11 + 1.97063e11i −0.507475 + 0.292991i
\(426\) 0 0
\(427\) 5.16363e11 2.78366e11i 0.751675 0.405219i
\(428\) 0 0
\(429\) 2.86948e11 + 4.97009e11i 0.409021 + 0.708445i
\(430\) 0 0
\(431\) 3.58037e11 + 2.06713e11i 0.499781 + 0.288549i 0.728623 0.684915i \(-0.240161\pi\)
−0.228842 + 0.973464i \(0.573494\pi\)
\(432\) 0 0
\(433\) 7.97087e11i 1.08971i 0.838531 + 0.544854i \(0.183415\pi\)
−0.838531 + 0.544854i \(0.816585\pi\)
\(434\) 0 0
\(435\) 4.03394e11i 0.540167i
\(436\) 0 0
\(437\) −4.12222e11 2.37996e11i −0.540710 0.312179i
\(438\) 0 0
\(439\) 3.21289e11 + 5.56488e11i 0.412862 + 0.715098i 0.995201 0.0978478i \(-0.0311959\pi\)
−0.582339 + 0.812946i \(0.697863\pi\)
\(440\) 0 0
\(441\) 3.18805e11 + 6.35055e11i 0.401376 + 0.799535i
\(442\) 0 0
\(443\) −6.85528e10 + 3.95790e10i −0.0845684 + 0.0488256i −0.541688 0.840580i \(-0.682215\pi\)
0.457119 + 0.889405i \(0.348881\pi\)
\(444\) 0 0
\(445\) −3.63747e11 + 6.30029e11i −0.439724 + 0.761624i
\(446\) 0 0
\(447\) −2.14279e11 −0.253861
\(448\) 0 0
\(449\) 2.80684e11 0.325919 0.162959 0.986633i \(-0.447896\pi\)
0.162959 + 0.986633i \(0.447896\pi\)
\(450\) 0 0
\(451\) 6.64489e11 1.15093e12i 0.756299 1.30995i
\(452\) 0 0
\(453\) 8.68690e10 5.01538e10i 0.0969221 0.0559580i
\(454\) 0 0
\(455\) −7.93332e11 1.47162e12i −0.867768 1.60969i
\(456\) 0 0
\(457\) 7.41362e11 + 1.28408e12i 0.795074 + 1.37711i 0.922792 + 0.385297i \(0.125901\pi\)
−0.127719 + 0.991810i \(0.540766\pi\)
\(458\) 0 0
\(459\) −5.52312e11 3.18878e11i −0.580801 0.335326i
\(460\) 0 0
\(461\) 2.09388e11i 0.215923i −0.994155 0.107961i \(-0.965568\pi\)
0.994155 0.107961i \(-0.0344323\pi\)
\(462\) 0 0
\(463\) 5.00270e11i 0.505929i 0.967476 + 0.252965i \(0.0814056\pi\)
−0.967476 + 0.252965i \(0.918594\pi\)
\(464\) 0 0
\(465\) −6.05687e10 3.49694e10i −0.0600772 0.0346856i
\(466\) 0 0
\(467\) 9.06637e11 + 1.57034e12i 0.882079 + 1.52781i 0.849025 + 0.528352i \(0.177190\pi\)
0.0330541 + 0.999454i \(0.489477\pi\)
\(468\) 0 0
\(469\) 2.88275e11 + 1.77843e11i 0.275124 + 0.169731i
\(470\) 0 0
\(471\) −4.71640e11 + 2.72302e11i −0.441587 + 0.254951i
\(472\) 0 0
\(473\) 1.11710e12 1.93487e12i 1.02616 1.77737i
\(474\) 0 0
\(475\) 3.51241e11 0.316580
\(476\) 0 0
\(477\) 1.60494e12 1.41947
\(478\) 0 0
\(479\) 4.22930e11 7.32537e11i 0.367079 0.635799i −0.622029 0.782994i \(-0.713691\pi\)
0.989107 + 0.147196i \(0.0470247\pi\)
\(480\) 0 0
\(481\) 1.96349e12 1.13362e12i 1.67254 0.965639i
\(482\) 0 0
\(483\) 1.20018e10 4.11306e11i 0.0100342 0.343877i
\(484\) 0 0
\(485\) 1.89063e11 + 3.27467e11i 0.155156 + 0.268738i
\(486\) 0 0
\(487\) 1.58566e11 + 9.15479e10i 0.127741 + 0.0737511i 0.562509 0.826791i \(-0.309836\pi\)
−0.434768 + 0.900542i \(0.643170\pi\)
\(488\) 0 0
\(489\) 6.26531e11i 0.495510i
\(490\) 0 0
\(491\) 1.77766e12i 1.38033i −0.723654 0.690163i \(-0.757539\pi\)
0.723654 0.690163i \(-0.242461\pi\)
\(492\) 0 0
\(493\) −1.66237e12 9.59768e11i −1.26741 0.731738i
\(494\) 0 0
\(495\) 1.26586e12 + 2.19253e12i 0.947679 + 1.64143i
\(496\) 0 0
\(497\) −3.44264e10 + 1.17980e12i −0.0253097 + 0.867374i
\(498\) 0 0
\(499\) 1.19124e12 6.87763e11i 0.860096 0.496577i −0.00394819 0.999992i \(-0.501257\pi\)
0.864045 + 0.503415i \(0.167923\pi\)
\(500\) 0 0
\(501\) 2.80865e10 4.86472e10i 0.0199171 0.0344975i
\(502\) 0 0
\(503\) −1.43021e12 −0.996194 −0.498097 0.867121i \(-0.665968\pi\)
−0.498097 + 0.867121i \(0.665968\pi\)
\(504\) 0 0
\(505\) −2.89899e12 −1.98351
\(506\) 0 0
\(507\) −2.83787e11 + 4.91533e11i −0.190746 + 0.330383i
\(508\) 0 0
\(509\) 1.22938e12 7.09784e11i 0.811814 0.468701i −0.0357713 0.999360i \(-0.511389\pi\)
0.847586 + 0.530659i \(0.178055\pi\)
\(510\) 0 0
\(511\) −1.35691e12 8.37107e11i −0.880351 0.543109i
\(512\) 0 0
\(513\) 2.84180e11 + 4.92215e11i 0.181162 + 0.313781i
\(514\) 0 0
\(515\) 3.62000e11 + 2.09001e11i 0.226765 + 0.130923i
\(516\) 0 0
\(517\) 4.79065e12i 2.94908i
\(518\) 0 0
\(519\) 1.29931e11i 0.0786069i
\(520\) 0 0
\(521\) 1.94785e12 + 1.12459e12i 1.15820 + 0.668689i 0.950873 0.309582i \(-0.100189\pi\)
0.207330 + 0.978271i \(0.433522\pi\)
\(522\) 0 0
\(523\) 8.86935e9 + 1.53622e10i 0.00518363 + 0.00897831i 0.868606 0.495504i \(-0.165017\pi\)
−0.863422 + 0.504482i \(0.831683\pi\)
\(524\) 0 0
\(525\) 1.44084e11 + 2.67274e11i 0.0827750 + 0.153546i
\(526\) 0 0
\(527\) 2.88214e11 1.66400e11i 0.162767 0.0939738i
\(528\) 0 0
\(529\) 1.10933e11 1.92142e11i 0.0615901 0.106677i
\(530\) 0 0
\(531\) −5.83485e10 −0.0318496
\(532\) 0 0
\(533\) 2.43270e12 1.30562
\(534\) 0 0
\(535\) 1.00930e12 1.74817e12i 0.532635 0.922551i
\(536\) 0 0
\(537\) −2.82714e11 + 1.63225e11i −0.146711 + 0.0847038i
\(538\) 0 0
\(539\) −2.79706e12 1.84032e12i −1.42742 0.939168i
\(540\) 0 0
\(541\) 1.17269e12 + 2.03116e12i 0.588566 + 1.01943i 0.994420 + 0.105489i \(0.0336407\pi\)
−0.405854 + 0.913938i \(0.633026\pi\)
\(542\) 0 0
\(543\) 7.66462e11 + 4.42517e11i 0.378348 + 0.218439i
\(544\) 0 0
\(545\) 4.34167e12i 2.10801i
\(546\) 0 0
\(547\) 8.78562e11i 0.419594i 0.977745 + 0.209797i \(0.0672803\pi\)
−0.977745 + 0.209797i \(0.932720\pi\)
\(548\) 0 0
\(549\) −1.40824e12 8.13048e11i −0.661609 0.381980i
\(550\) 0 0
\(551\) 8.55336e11 + 1.48149e12i 0.395325 + 0.684723i
\(552\) 0 0
\(553\) −2.12689e12 + 1.14658e12i −0.967123 + 0.521365i
\(554\) 0 0
\(555\) −1.02022e12 + 5.89024e11i −0.456431 + 0.263521i
\(556\) 0 0
\(557\) 2.50713e11 4.34247e11i 0.110364 0.191156i −0.805553 0.592524i \(-0.798132\pi\)
0.915917 + 0.401368i \(0.131465\pi\)
\(558\) 0 0
\(559\) 4.08971e12 1.77149
\(560\) 0 0
\(561\) 1.41894e12 0.604829
\(562\) 0 0
\(563\) 1.45457e12 2.51939e12i 0.610164 1.05684i −0.381048 0.924555i \(-0.624437\pi\)
0.991212 0.132280i \(-0.0422298\pi\)
\(564\) 0 0
\(565\) 1.44615e12 8.34938e11i 0.597031 0.344696i
\(566\) 0 0
\(567\) 8.98045e11 1.45568e12i 0.364900 0.591484i
\(568\) 0 0
\(569\) −1.13834e12 1.97167e12i −0.455269 0.788549i 0.543435 0.839451i \(-0.317124\pi\)
−0.998704 + 0.0509025i \(0.983790\pi\)
\(570\) 0 0
\(571\) 2.77798e12 + 1.60387e12i 1.09362 + 0.631402i 0.934538 0.355863i \(-0.115813\pi\)
0.159083 + 0.987265i \(0.449146\pi\)
\(572\) 0 0
\(573\) 1.02376e12i 0.396736i
\(574\) 0 0
\(575\) 1.49281e12i 0.569507i
\(576\) 0 0
\(577\) −1.10796e12 6.39682e11i −0.416134 0.240255i 0.277288 0.960787i \(-0.410564\pi\)
−0.693422 + 0.720532i \(0.743898\pi\)
\(578\) 0 0
\(579\) 9.30045e10 + 1.61088e11i 0.0343914 + 0.0595677i
\(580\) 0 0
\(581\) −3.82847e12 1.11714e11i −1.39390 0.0406737i
\(582\) 0 0
\(583\) −6.54910e12 + 3.78113e12i −2.34787 + 1.35554i
\(584\) 0 0
\(585\) −2.31716e12 + 4.01344e12i −0.818002 + 1.41682i
\(586\) 0 0
\(587\) −2.01269e12 −0.699690 −0.349845 0.936808i \(-0.613766\pi\)
−0.349845 + 0.936808i \(0.613766\pi\)
\(588\) 0 0
\(589\) −2.96589e11 −0.101540
\(590\) 0 0
\(591\) 4.01442e11 6.95318e11i 0.135357 0.234444i
\(592\) 0 0
\(593\) 1.10703e12 6.39147e11i 0.367633 0.212253i −0.304791 0.952419i \(-0.598586\pi\)
0.672424 + 0.740166i \(0.265253\pi\)
\(594\) 0 0
\(595\) −4.13181e12 1.20565e11i −1.35149 0.0394362i
\(596\) 0 0
\(597\) −3.90503e11 6.76371e11i −0.125817 0.217922i
\(598\) 0 0
\(599\) 1.08604e12 + 6.27024e11i 0.344687 + 0.199005i 0.662343 0.749201i \(-0.269562\pi\)
−0.317656 + 0.948206i \(0.602896\pi\)
\(600\) 0 0
\(601\) 5.17545e12i 1.61813i −0.587720 0.809065i \(-0.699974\pi\)
0.587720 0.809065i \(-0.300026\pi\)
\(602\) 0 0
\(603\) 9.38928e11i 0.289204i
\(604\) 0 0
\(605\) −6.79240e12 3.92159e12i −2.06122 1.19005i
\(606\) 0 0
\(607\) 8.83052e10 + 1.52949e11i 0.0264020 + 0.0457296i 0.878925 0.476961i \(-0.158262\pi\)
−0.852523 + 0.522691i \(0.824928\pi\)
\(608\) 0 0
\(609\) −7.76452e11 + 1.25859e12i −0.228737 + 0.370771i
\(610\) 0 0
\(611\) −7.59445e12 + 4.38466e12i −2.20450 + 1.27277i
\(612\) 0 0
\(613\) 4.87539e11 8.44443e11i 0.139456 0.241545i −0.787835 0.615887i \(-0.788798\pi\)
0.927291 + 0.374342i \(0.122131\pi\)
\(614\) 0 0
\(615\) −1.26402e12 −0.356301
\(616\) 0 0
\(617\) −2.89535e12 −0.804300 −0.402150 0.915574i \(-0.631737\pi\)
−0.402150 + 0.915574i \(0.631737\pi\)
\(618\) 0 0
\(619\) 2.76348e12 4.78649e12i 0.756570 1.31042i −0.188021 0.982165i \(-0.560207\pi\)
0.944590 0.328252i \(-0.106459\pi\)
\(620\) 0 0
\(621\) −2.09197e12 + 1.20780e12i −0.564472 + 0.325898i
\(622\) 0 0
\(623\) −2.34757e12 + 1.26555e12i −0.624341 + 0.336575i
\(624\) 0 0
\(625\) 2.38152e12 + 4.12492e12i 0.624302 + 1.08132i
\(626\) 0 0
\(627\) −1.09513e12 6.32274e11i −0.282984 0.163381i
\(628\) 0 0
\(629\) 5.60570e12i 1.42791i
\(630\) 0 0
\(631\) 4.28386e11i 0.107573i 0.998552 + 0.0537864i \(0.0171290\pi\)
−0.998552 + 0.0537864i \(0.982871\pi\)
\(632\) 0 0
\(633\) 1.56936e12 + 9.06071e11i 0.388514 + 0.224308i
\(634\) 0 0
\(635\) 3.78131e12 + 6.54943e12i 0.922913 + 1.59853i
\(636\) 0 0
\(637\) 3.57373e11 6.11844e12i 0.0859991 1.47236i
\(638\) 0 0
\(639\) 2.83347e12 1.63590e12i 0.672301 0.388153i
\(640\) 0 0
\(641\) 4.05915e11 7.03066e11i 0.0949674 0.164488i −0.814628 0.579984i \(-0.803059\pi\)
0.909595 + 0.415496i \(0.136392\pi\)
\(642\) 0 0
\(643\) 7.07574e12 1.63238 0.816192 0.577780i \(-0.196081\pi\)
0.816192 + 0.577780i \(0.196081\pi\)
\(644\) 0 0
\(645\) −2.12500e12 −0.483437
\(646\) 0 0
\(647\) −2.31746e12 + 4.01396e12i −0.519928 + 0.900542i 0.479803 + 0.877376i \(0.340708\pi\)
−0.999732 + 0.0231661i \(0.992625\pi\)
\(648\) 0 0
\(649\) 2.38097e11 1.37465e11i 0.0526808 0.0304153i
\(650\) 0 0
\(651\) −1.21665e11 2.25687e11i −0.0265492 0.0492483i
\(652\) 0 0
\(653\) 1.68840e12 + 2.92439e12i 0.363383 + 0.629399i 0.988515 0.151121i \(-0.0482882\pi\)
−0.625132 + 0.780519i \(0.714955\pi\)
\(654\) 0 0
\(655\) 9.98058e11 + 5.76229e11i 0.211870 + 0.122323i
\(656\) 0 0
\(657\) 4.41952e12i 0.925404i
\(658\) 0 0
\(659\) 4.33660e12i 0.895705i −0.894107 0.447853i \(-0.852189\pi\)
0.894107 0.447853i \(-0.147811\pi\)
\(660\) 0 0
\(661\) 6.25703e11 + 3.61250e11i 0.127486 + 0.0736039i 0.562387 0.826874i \(-0.309883\pi\)
−0.434901 + 0.900478i \(0.643217\pi\)
\(662\) 0 0
\(663\) 1.29869e12 + 2.24940e12i 0.261033 + 0.452123i
\(664\) 0 0
\(665\) 3.13518e12 + 1.93417e12i 0.621678 + 0.383527i
\(666\) 0 0
\(667\) −6.29647e12 + 3.63527e12i −1.23177 + 0.711165i
\(668\) 0 0
\(669\) −1.53759e12 + 2.66318e12i −0.296772 + 0.514024i
\(670\) 0 0
\(671\) 7.66195e12 1.45911
\(672\) 0 0
\(673\) −5.83276e12 −1.09599 −0.547995 0.836482i \(-0.684609\pi\)
−0.547995 + 0.836482i \(0.684609\pi\)
\(674\) 0 0
\(675\) 8.91248e11 1.54369e12i 0.165246 0.286215i
\(676\) 0 0
\(677\) 7.68759e12 4.43843e12i 1.40650 0.812046i 0.411455 0.911430i \(-0.365021\pi\)
0.995049 + 0.0993845i \(0.0316874\pi\)
\(678\) 0 0
\(679\) −4.04315e10 + 1.38560e12i −0.00729972 + 0.250164i
\(680\) 0 0
\(681\) −3.57480e11 6.19174e11i −0.0636928 0.110319i
\(682\) 0 0
\(683\) −8.48026e12 4.89608e12i −1.49113 0.860906i −0.491184 0.871056i \(-0.663436\pi\)
−0.999948 + 0.0101504i \(0.996769\pi\)
\(684\) 0 0
\(685\) 2.19207e12i 0.380406i
\(686\) 0 0
\(687\) 1.29183e12i 0.221258i
\(688\) 0 0
\(689\) −1.19882e13 6.92137e12i −2.02659 1.17005i
\(690\) 0 0
\(691\) 1.95856e12 + 3.39232e12i 0.326802 + 0.566038i 0.981875 0.189528i \(-0.0606956\pi\)
−0.655073 + 0.755565i \(0.727362\pi\)
\(692\) 0 0
\(693\) −2.70706e11 + 9.27719e12i −0.0445860 + 1.52798i
\(694\) 0 0
\(695\) −4.32606e12 + 2.49765e12i −0.703333 + 0.406070i
\(696\) 0 0
\(697\) 3.00740e12 5.20897e12i 0.482663 0.835997i
\(698\) 0 0
\(699\) 9.18583e11 0.145536
\(700\) 0 0
\(701\) −1.21201e12 −0.189572 −0.0947860 0.995498i \(-0.530217\pi\)
−0.0947860 + 0.995498i \(0.530217\pi\)
\(702\) 0 0
\(703\) −2.49787e12 + 4.32644e12i −0.385719 + 0.668085i
\(704\) 0 0
\(705\) 3.94604e12 2.27825e12i 0.601604 0.347336i
\(706\) 0 0
\(707\) −9.04482e12 5.57996e12i −1.36148 0.839932i
\(708\) 0 0
\(709\) 3.50414e12 + 6.06935e12i 0.520803 + 0.902058i 0.999707 + 0.0241906i \(0.00770085\pi\)
−0.478904 + 0.877867i \(0.658966\pi\)
\(710\) 0 0
\(711\) 5.80051e12 + 3.34893e12i 0.851243 + 0.491465i
\(712\) 0 0
\(713\) 1.26053e12i 0.182663i
\(714\) 0 0
\(715\) 2.18363e13i 3.12465i
\(716\) 0 0
\(717\) −5.65465e11 3.26472e11i −0.0799042 0.0461327i
\(718\) 0 0
\(719\) 4.05381e12 + 7.02140e12i 0.565696 + 0.979814i 0.996985 + 0.0776001i \(0.0247257\pi\)
−0.431289 + 0.902214i \(0.641941\pi\)
\(720\) 0 0
\(721\) 7.27154e11 + 1.34886e12i 0.100212 + 0.185891i
\(722\) 0 0
\(723\) 2.45567e12 1.41778e12i 0.334231 0.192968i
\(724\) 0 0
\(725\) 2.68251e12 4.64624e12i 0.360595 0.624569i
\(726\) 0 0
\(727\) 3.54300e12 0.470399 0.235200 0.971947i \(-0.424426\pi\)
0.235200 + 0.971947i \(0.424426\pi\)
\(728\) 0 0
\(729\) −3.21886e12 −0.422113
\(730\) 0 0
\(731\) 5.05586e12 8.75701e12i 0.654888 1.13430i
\(732\) 0 0
\(733\) −1.19145e12 + 6.87884e11i −0.152443 + 0.0880131i −0.574281 0.818658i \(-0.694718\pi\)
0.421838 + 0.906671i \(0.361385\pi\)
\(734\) 0 0
\(735\) −1.85689e11 + 3.17911e12i −0.0234690 + 0.401803i
\(736\) 0 0
\(737\) 2.21205e12 + 3.83138e12i 0.276179 + 0.478357i
\(738\) 0 0
\(739\) −1.24391e12 7.18171e11i −0.153422 0.0885784i 0.421323 0.906910i \(-0.361566\pi\)
−0.574746 + 0.818332i \(0.694899\pi\)
\(740\) 0 0
\(741\) 2.31476e12i 0.282049i
\(742\) 0 0
\(743\) 3.46371e12i 0.416958i −0.978027 0.208479i \(-0.933149\pi\)
0.978027 0.208479i \(-0.0668513\pi\)
\(744\) 0 0
\(745\) 7.06082e12 + 4.07657e12i 0.839754 + 0.484832i
\(746\) 0 0
\(747\) 5.30851e12 + 9.19461e12i 0.623778 + 1.08042i
\(748\) 0 0
\(749\) 6.51389e12 3.51156e12i 0.756261 0.407692i
\(750\) 0 0
\(751\) −1.03546e13 + 5.97822e12i −1.18782 + 0.685791i −0.957812 0.287396i \(-0.907210\pi\)
−0.230013 + 0.973187i \(0.573877\pi\)
\(752\) 0 0
\(753\) 3.60269e11 6.24005e11i 0.0408366 0.0707311i
\(754\) 0 0
\(755\) −3.81662e12 −0.427482
\(756\) 0 0
\(757\) 1.36803e12 0.151413 0.0757066 0.997130i \(-0.475879\pi\)
0.0757066 + 0.997130i \(0.475879\pi\)
\(758\) 0 0
\(759\) 2.68723e12 4.65443e12i 0.293912 0.509071i
\(760\) 0 0
\(761\) 3.93155e12 2.26988e12i 0.424945 0.245342i −0.272246 0.962228i \(-0.587766\pi\)
0.697191 + 0.716886i \(0.254433\pi\)
\(762\) 0 0
\(763\) 8.35683e12 1.35460e13i 0.892650 1.44694i
\(764\) 0 0
\(765\) 5.72912e12 + 9.92313e12i 0.604800 + 1.04754i
\(766\) 0 0
\(767\) 4.35837e11 + 2.51631e11i 0.0454721 + 0.0262534i
\(768\) 0 0
\(769\) 8.44287e12i 0.870606i 0.900284 + 0.435303i \(0.143359\pi\)
−0.900284 + 0.435303i \(0.856641\pi\)
\(770\) 0 0
\(771\) 2.37715e12i 0.242277i
\(772\) 0 0
\(773\) 5.59408e12 + 3.22975e12i 0.563536 + 0.325357i 0.754563 0.656227i \(-0.227849\pi\)
−0.191028 + 0.981585i \(0.561182\pi\)
\(774\) 0 0
\(775\) 4.65081e11 + 8.05544e11i 0.0463096 + 0.0802106i
\(776\) 0 0
\(777\) −4.31683e12 1.25964e11i −0.424884 0.0123980i
\(778\) 0 0
\(779\) −4.64218e12 + 2.68017e12i −0.451652 + 0.260761i
\(780\) 0 0
\(781\) −7.70815e12 + 1.33509e13i −0.741345 + 1.28405i
\(782\) 0 0
\(783\) 8.68142e12 0.825397
\(784\) 0 0
\(785\) 2.07217e13 1.94766
\(786\) 0 0
\(787\) 4.92098e12 8.52338e12i 0.457262 0.792001i −0.541553 0.840666i \(-0.682164\pi\)
0.998815 + 0.0486657i \(0.0154969\pi\)
\(788\) 0 0
\(789\) 3.11673e12 1.79944e12i 0.286320 0.165307i
\(790\) 0 0
\(791\) 6.11908e12 + 1.78553e11i 0.555766 + 0.0162171i
\(792\) 0 0
\(793\) 7.01262e12 + 1.21462e13i 0.629725 + 1.09072i
\(794\) 0 0
\(795\) 6.22900e12 + 3.59632e12i 0.553052 + 0.319305i
\(796\) 0 0
\(797\) 7.77271e12i 0.682355i −0.939999 0.341177i \(-0.889174\pi\)
0.939999 0.341177i \(-0.110826\pi\)
\(798\) 0 0
\(799\) 2.16819e13i 1.88208i
\(800\) 0 0
\(801\) 6.40235e12 + 3.69640e12i 0.549532 + 0.317273i
\(802\) 0 0
\(803\) −1.04121e13 1.80343e13i −0.883727 1.53066i
\(804\) 0 0
\(805\) −8.22041e12 + 1.33249e13i −0.689941 + 1.11836i
\(806\) 0 0
\(807\) 3.19600e12 1.84521e12i 0.265263 0.153149i
\(808\) 0 0
\(809\) 4.59800e12 7.96397e12i 0.377399 0.653674i −0.613284 0.789863i \(-0.710152\pi\)
0.990683 + 0.136188i \(0.0434852\pi\)
\(810\) 0 0
\(811\) 6.84596e12 0.555700 0.277850 0.960624i \(-0.410378\pi\)
0.277850 + 0.960624i \(0.410378\pi\)
\(812\) 0 0
\(813\) −4.27255e12 −0.342989
\(814\) 0 0
\(815\) 1.19195e13 2.06452e13i 0.946343 1.63911i
\(816\) 0 0
\(817\) −7.80416e12 + 4.50573e12i −0.612811 + 0.353807i
\(818\) 0 0
\(819\) −1.49546e13 + 8.06184e12i −1.16144 + 0.626119i
\(820\) 0 0
\(821\) −7.57450e12 1.31194e13i −0.581848 1.00779i −0.995260 0.0972467i \(-0.968996\pi\)
0.413412 0.910544i \(-0.364337\pi\)
\(822\) 0 0
\(823\) 1.68348e13 + 9.71957e12i 1.27911 + 0.738496i 0.976685 0.214677i \(-0.0688699\pi\)
0.302427 + 0.953173i \(0.402203\pi\)
\(824\) 0 0
\(825\) 3.96588e12i 0.298056i
\(826\) 0 0
\(827\) 1.88160e13i 1.39879i 0.714734 + 0.699396i \(0.246548\pi\)
−0.714734 + 0.699396i \(0.753452\pi\)
\(828\) 0 0
\(829\) 1.46989e13 + 8.48642e12i 1.08091 + 0.624064i 0.931142 0.364657i \(-0.118814\pi\)
0.149769 + 0.988721i \(0.452147\pi\)
\(830\) 0 0
\(831\) −7.52493e11 1.30336e12i −0.0547392 0.0948110i
\(832\) 0 0
\(833\) −1.26592e13 8.32906e12i −0.910967 0.599368i
\(834\) 0 0
\(835\) −1.85099e12 + 1.06867e12i −0.131769 + 0.0760770i
\(836\) 0 0
\(837\) −7.52573e11 + 1.30349e12i −0.0530010 + 0.0918004i
\(838\) 0 0
\(839\) −2.77217e13 −1.93148 −0.965740 0.259511i \(-0.916439\pi\)
−0.965740 + 0.259511i \(0.916439\pi\)
\(840\) 0 0
\(841\) 1.16225e13 0.801155
\(842\) 0 0
\(843\) −6.78136e11 + 1.17457e12i −0.0462479 + 0.0801038i
\(844\) 0 0
\(845\) 1.87025e13 1.07979e13i 1.26195 0.728589i
\(846\) 0 0
\(847\) −1.36440e13 2.53093e13i −0.910889 1.68968i
\(848\) 0 0
\(849\) −1.31688e12 2.28091e12i −0.0869887 0.150669i
\(850\) 0 0
\(851\) −1.83878e13 1.06162e13i −1.20184 0.693884i
\(852\) 0 0
\(853\) 1.50000e13i 0.970108i −0.874484 0.485054i \(-0.838800\pi\)
0.874484 0.485054i \(-0.161200\pi\)
\(854\) 0 0
\(855\) 1.02115e13i 0.653493i
\(856\) 0 0
\(857\) −1.66520e13 9.61406e12i −1.05452 0.608826i −0.130607 0.991434i \(-0.541692\pi\)
−0.923911 + 0.382609i \(0.875026\pi\)
\(858\) 0 0
\(859\) 9.45709e12 + 1.63802e13i 0.592636 + 1.02648i 0.993876 + 0.110503i \(0.0352462\pi\)
−0.401240 + 0.915973i \(0.631421\pi\)
\(860\) 0 0
\(861\) −3.94374e12 2.43299e12i −0.244565 0.150878i
\(862\) 0 0
\(863\) −8.63920e12 + 4.98784e12i −0.530182 + 0.306101i −0.741091 0.671405i \(-0.765691\pi\)
0.210909 + 0.977506i \(0.432358\pi\)
\(864\) 0 0
\(865\) −2.47189e12 + 4.28144e12i −0.150126 + 0.260026i
\(866\) 0 0
\(867\) 1.02129e12 0.0613851
\(868\) 0 0
\(869\) −3.15594e13 −1.87733
\(870\) 0 0
\(871\) −4.04917e12 + 7.01337e12i −0.238388 + 0.412900i
\(872\) 0 0
\(873\) 3.32772e12 1.92126e12i 0.193902 0.111950i
\(874\) 0 0
\(875\) −2.90104e11 + 9.94199e12i −0.0167309 + 0.573373i
\(876\) 0 0
\(877\) −7.30706e12 1.26562e13i −0.417104 0.722446i 0.578543 0.815652i \(-0.303622\pi\)
−0.995647 + 0.0932065i \(0.970288\pi\)
\(878\) 0 0
\(879\) 9.97204e11 + 5.75736e11i 0.0563422 + 0.0325292i
\(880\) 0 0
\(881\) 1.00111e13i 0.559873i −0.960018 0.279937i \(-0.909687\pi\)
0.960018 0.279937i \(-0.0903134\pi\)
\(882\) 0 0
\(883\) 1.93746e13i 1.07253i 0.844050 + 0.536264i \(0.180165\pi\)
−0.844050 + 0.536264i \(0.819835\pi\)
\(884\) 0 0
\(885\) −2.26459e11 1.30746e11i −0.0124092 0.00716448i
\(886\) 0 0
\(887\) 1.02114e13 + 1.76866e13i 0.553895 + 0.959375i 0.997989 + 0.0633944i \(0.0201926\pi\)
−0.444093 + 0.895981i \(0.646474\pi\)
\(888\) 0 0
\(889\) −8.08641e11 + 2.77124e13i −0.0434208 + 1.48805i
\(890\) 0 0
\(891\) 1.93471e13 1.11701e13i 1.02841 0.593753i
\(892\) 0 0
\(893\) 9.66135e12 1.67340e13i 0.508401 0.880576i
\(894\) 0 0
\(895\) 1.24212e13 0.647082
\(896\) 0 0
\(897\) 9.83800e12 0.507389
\(898\) 0 0
\(899\) −2.26512e12 + 3.92330e12i −0.115657 + 0.200324i
\(900\) 0 0
\(901\) −2.96405e13 + 1.71129e13i −1.49839 + 0.865093i
\(902\) 0 0
\(903\) −6.62998e12 4.09019e12i −0.331831 0.204714i
\(904\) 0 0
\(905\) −1.68374e13 2.91633e13i −0.834366 1.44516i
\(906\) 0 0
\(907\) 2.90893e13 + 1.67947e13i 1.42725 + 0.824023i 0.996903 0.0786409i \(-0.0250580\pi\)
0.430347 + 0.902664i \(0.358391\pi\)
\(908\) 0 0
\(909\) 2.94595e13i 1.43116i
\(910\) 0 0
\(911\) 2.84450e12i 0.136828i −0.997657 0.0684138i \(-0.978206\pi\)
0.997657 0.0684138i \(-0.0217938\pi\)
\(912\) 0 0
\(913\) −4.33238e13 2.50130e13i −2.06352 1.19137i
\(914\) 0 0
\(915\) −3.64373e12 6.31112e12i −0.171851 0.297654i
\(916\) 0 0
\(917\) 2.00481e12 + 3.71889e12i 0.0936292 + 0.173681i
\(918\) 0 0
\(919\) 4.76309e12 2.74997e12i 0.220277 0.127177i −0.385802 0.922582i \(-0.626075\pi\)
0.606078 + 0.795405i \(0.292742\pi\)
\(920\) 0 0
\(921\) 9.76645e11 1.69160e12i 0.0447269 0.0774692i
\(922\) 0 0
\(923\) −2.82196e13 −1.27980
\(924\) 0 0
\(925\) 1.56677e13 0.703666
\(926\) 0 0
\(927\) 2.12387e12 3.67865e12i 0.0944645 0.163617i
\(928\) 0 0
\(929\) 9.90845e12 5.72064e12i 0.436450 0.251985i −0.265640 0.964072i \(-0.585583\pi\)
0.702091 + 0.712087i \(0.252250\pi\)
\(930\) 0 0
\(931\) 6.05887e12 + 1.20692e13i 0.264313 + 0.526507i
\(932\) 0 0
\(933\) 1.32113e12 + 2.28826e12i 0.0570791 + 0.0988639i
\(934\) 0 0
\(935\) −4.67565e13 2.69949e13i −2.00073 1.15512i
\(936\) 0 0
\(937\) 6.35103e12i 0.269163i 0.990902 + 0.134582i \(0.0429691\pi\)
−0.990902 + 0.134582i \(0.957031\pi\)
\(938\) 0 0
\(939\) 2.17983e12i 0.0915015i
\(940\) 0 0
\(941\) 6.71682e12 + 3.87796e12i 0.279261 + 0.161231i 0.633089 0.774079i \(-0.281787\pi\)
−0.353828 + 0.935311i \(0.615120\pi\)
\(942\) 0 0
\(943\) −1.13910e13 1.97298e13i −0.469093 0.812493i
\(944\) 0 0
\(945\) 1.64559e13 8.87118e12i 0.671240 0.361858i
\(946\) 0 0
\(947\) 2.18625e13 1.26223e13i 0.883334 0.509993i 0.0115777 0.999933i \(-0.496315\pi\)
0.871756 + 0.489940i \(0.162981\pi\)
\(948\) 0 0
\(949\) 1.90594e13 3.30119e13i 0.762802 1.32121i
\(950\) 0 0
\(951\) 1.83978e12 0.0729380
\(952\) 0 0
\(953\) −2.68632e13 −1.05497 −0.527484 0.849565i \(-0.676865\pi\)
−0.527484 + 0.849565i \(0.676865\pi\)
\(954\) 0 0
\(955\) −1.94766e13 + 3.37345e13i −0.757701 + 1.31238i
\(956\) 0 0
\(957\) −1.67276e13 + 9.65766e12i −0.644657 + 0.372193i
\(958\) 0 0
\(959\) −4.21930e12 + 6.83926e12i −0.161085 + 0.261111i
\(960\) 0 0
\(961\) 1.28271e13 + 2.22172e13i 0.485147 + 0.840299i
\(962\) 0 0
\(963\) −1.77649e13 1.02565e13i −0.665646 0.384311i
\(964\) 0 0
\(965\) 7.07749e12i 0.262728i
\(966\) 0 0
\(967\) 2.19533e12i 0.0807385i 0.999185 + 0.0403692i \(0.0128534\pi\)
−0.999185 + 0.0403692i \(0.987147\pi\)
\(968\) 0 0
\(969\) −4.95644e12 2.86160e12i −0.180598 0.104268i
\(970\) 0 0
\(971\) 1.41273e13 + 2.44693e13i 0.510005 + 0.883354i 0.999933 + 0.0115912i \(0.00368967\pi\)
−0.489928 + 0.871763i \(0.662977\pi\)
\(972\) 0 0
\(973\) −1.83048e13 5.34128e11i −0.654721 0.0191046i
\(974\) 0 0
\(975\) −6.28698e12 + 3.62979e12i −0.222803 + 0.128635i
\(976\) 0 0
\(977\) −1.27634e13 + 2.21068e13i −0.448166 + 0.776247i −0.998267 0.0588517i \(-0.981256\pi\)
0.550100 + 0.835098i \(0.314589\pi\)
\(978\) 0 0
\(979\) −3.48339e13 −1.21194
\(980\) 0 0
\(981\) −4.41201e13 −1.52099
\(982\) 0 0
\(983\) −8.44092e12 + 1.46201e13i −0.288336 + 0.499413i −0.973413 0.229058i \(-0.926435\pi\)
0.685077 + 0.728471i \(0.259769\pi\)
\(984\) 0 0
\(985\) −2.64563e13 + 1.52746e13i −0.895501 + 0.517018i
\(986\) 0 0
\(987\) 1.66968e13 + 4.87208e11i 0.560023 + 0.0163413i
\(988\) 0 0
\(989\) −1.91498e13 3.31685e13i −0.636476 1.10241i
\(990\) 0 0
\(991\) 1.80360e13 + 1.04131e13i 0.594032 + 0.342965i 0.766690 0.642017i \(-0.221902\pi\)
−0.172658 + 0.984982i \(0.555236\pi\)
\(992\) 0 0
\(993\) 3.54051e12i 0.115556i
\(994\) 0 0
\(995\) 2.97167e13i 0.961161i
\(996\) 0 0
\(997\) 6.71761e12 + 3.87841e12i 0.215321 + 0.124316i 0.603782 0.797150i \(-0.293660\pi\)
−0.388461 + 0.921465i \(0.626993\pi\)
\(998\) 0 0
\(999\) 1.26763e13 + 2.19561e13i 0.402670 + 0.697444i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 112.10.p.a.31.8 24
4.3 odd 2 112.10.p.c.31.5 yes 24
7.5 odd 6 112.10.p.c.47.5 yes 24
28.19 even 6 inner 112.10.p.a.47.8 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.10.p.a.31.8 24 1.1 even 1 trivial
112.10.p.a.47.8 yes 24 28.19 even 6 inner
112.10.p.c.31.5 yes 24 4.3 odd 2
112.10.p.c.47.5 yes 24 7.5 odd 6