Properties

Label 112.10.f.b.111.5
Level $112$
Weight $10$
Character 112.111
Analytic conductor $57.684$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [112,10,Mod(111,112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(112, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("112.111"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 112.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(57.6840136504\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 111.5
Character \(\chi\) \(=\) 112.111
Dual form 112.10.f.b.111.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-168.927 q^{3} +1693.73i q^{5} +(-6136.85 - 1640.94i) q^{7} +8853.27 q^{9} -45208.8i q^{11} +49206.6i q^{13} -286117. i q^{15} -295750. i q^{17} -460692. q^{19} +(1.03668e6 + 277199. i) q^{21} -1.79721e6i q^{23} -915608. q^{25} +1.82943e6 q^{27} -5.43628e6 q^{29} -4.36627e6 q^{31} +7.63697e6i q^{33} +(2.77932e6 - 1.03942e7i) q^{35} -1.38090e7 q^{37} -8.31232e6i q^{39} -6.11229e6i q^{41} +1.02988e7i q^{43} +1.49951e7i q^{45} -1.82144e6 q^{47} +(3.49682e7 + 2.01404e7i) q^{49} +4.99602e7i q^{51} +8.73449e7 q^{53} +7.65716e7 q^{55} +7.78233e7 q^{57} +1.13887e8 q^{59} +3.81369e7i q^{61} +(-5.43312e7 - 1.45277e7i) q^{63} -8.33429e7 q^{65} +2.09793e8i q^{67} +3.03598e8i q^{69} -1.24067e8i q^{71} +2.09070e8i q^{73} +1.54671e8 q^{75} +(-7.41851e7 + 2.77439e8i) q^{77} -4.05189e8i q^{79} -4.83299e8 q^{81} +1.21182e8 q^{83} +5.00922e8 q^{85} +9.18334e8 q^{87} +1.05652e9i q^{89} +(8.07453e7 - 3.01974e8i) q^{91} +7.37580e8 q^{93} -7.80290e8i q^{95} +7.91112e8i q^{97} -4.00246e8i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 155768 q^{9} + 220672 q^{21} - 9187656 q^{25} + 14881104 q^{29} + 2829456 q^{37} - 214802472 q^{49} + 327087120 q^{53} + 238245440 q^{57} - 495797952 q^{65} + 347010000 q^{77} + 1816013720 q^{81}+ \cdots + 288442240 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/112\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(17\) \(85\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −168.927 −1.20407 −0.602037 0.798468i \(-0.705644\pi\)
−0.602037 + 0.798468i \(0.705644\pi\)
\(4\) 0 0
\(5\) 1693.73i 1.21194i 0.795489 + 0.605969i \(0.207214\pi\)
−0.795489 + 0.605969i \(0.792786\pi\)
\(6\) 0 0
\(7\) −6136.85 1640.94i −0.966060 0.258317i
\(8\) 0 0
\(9\) 8853.27 0.449793
\(10\) 0 0
\(11\) 45208.8i 0.931013i −0.885045 0.465506i \(-0.845872\pi\)
0.885045 0.465506i \(-0.154128\pi\)
\(12\) 0 0
\(13\) 49206.6i 0.477836i 0.971040 + 0.238918i \(0.0767926\pi\)
−0.971040 + 0.238918i \(0.923207\pi\)
\(14\) 0 0
\(15\) 286117.i 1.45926i
\(16\) 0 0
\(17\) 295750.i 0.858826i −0.903108 0.429413i \(-0.858720\pi\)
0.903108 0.429413i \(-0.141280\pi\)
\(18\) 0 0
\(19\) −460692. −0.810998 −0.405499 0.914096i \(-0.632902\pi\)
−0.405499 + 0.914096i \(0.632902\pi\)
\(20\) 0 0
\(21\) 1.03668e6 + 277199.i 1.16321 + 0.311032i
\(22\) 0 0
\(23\) 1.79721e6i 1.33914i −0.742751 0.669568i \(-0.766479\pi\)
0.742751 0.669568i \(-0.233521\pi\)
\(24\) 0 0
\(25\) −915608. −0.468791
\(26\) 0 0
\(27\) 1.82943e6 0.662490
\(28\) 0 0
\(29\) −5.43628e6 −1.42729 −0.713643 0.700510i \(-0.752956\pi\)
−0.713643 + 0.700510i \(0.752956\pi\)
\(30\) 0 0
\(31\) −4.36627e6 −0.849147 −0.424574 0.905393i \(-0.639576\pi\)
−0.424574 + 0.905393i \(0.639576\pi\)
\(32\) 0 0
\(33\) 7.63697e6i 1.12101i
\(34\) 0 0
\(35\) 2.77932e6 1.03942e7i 0.313064 1.17080i
\(36\) 0 0
\(37\) −1.38090e7 −1.21131 −0.605655 0.795728i \(-0.707089\pi\)
−0.605655 + 0.795728i \(0.707089\pi\)
\(38\) 0 0
\(39\) 8.31232e6i 0.575349i
\(40\) 0 0
\(41\) 6.11229e6i 0.337813i −0.985632 0.168907i \(-0.945976\pi\)
0.985632 0.168907i \(-0.0540237\pi\)
\(42\) 0 0
\(43\) 1.02988e7i 0.459389i 0.973263 + 0.229694i \(0.0737727\pi\)
−0.973263 + 0.229694i \(0.926227\pi\)
\(44\) 0 0
\(45\) 1.49951e7i 0.545121i
\(46\) 0 0
\(47\) −1.82144e6 −0.0544471 −0.0272236 0.999629i \(-0.508667\pi\)
−0.0272236 + 0.999629i \(0.508667\pi\)
\(48\) 0 0
\(49\) 3.49682e7 + 2.01404e7i 0.866545 + 0.499099i
\(50\) 0 0
\(51\) 4.99602e7i 1.03409i
\(52\) 0 0
\(53\) 8.73449e7 1.52053 0.760267 0.649611i \(-0.225068\pi\)
0.760267 + 0.649611i \(0.225068\pi\)
\(54\) 0 0
\(55\) 7.65716e7 1.12833
\(56\) 0 0
\(57\) 7.78233e7 0.976501
\(58\) 0 0
\(59\) 1.13887e8 1.22360 0.611801 0.791012i \(-0.290446\pi\)
0.611801 + 0.791012i \(0.290446\pi\)
\(60\) 0 0
\(61\) 3.81369e7i 0.352664i 0.984331 + 0.176332i \(0.0564233\pi\)
−0.984331 + 0.176332i \(0.943577\pi\)
\(62\) 0 0
\(63\) −5.43312e7 1.45277e7i −0.434527 0.116189i
\(64\) 0 0
\(65\) −8.33429e7 −0.579107
\(66\) 0 0
\(67\) 2.09793e8i 1.27190i 0.771729 + 0.635952i \(0.219392\pi\)
−0.771729 + 0.635952i \(0.780608\pi\)
\(68\) 0 0
\(69\) 3.03598e8i 1.61242i
\(70\) 0 0
\(71\) 1.24067e8i 0.579422i −0.957114 0.289711i \(-0.906441\pi\)
0.957114 0.289711i \(-0.0935592\pi\)
\(72\) 0 0
\(73\) 2.09070e8i 0.861665i 0.902432 + 0.430833i \(0.141780\pi\)
−0.902432 + 0.430833i \(0.858220\pi\)
\(74\) 0 0
\(75\) 1.54671e8 0.564459
\(76\) 0 0
\(77\) −7.41851e7 + 2.77439e8i −0.240496 + 0.899414i
\(78\) 0 0
\(79\) 4.05189e8i 1.17040i −0.810887 0.585202i \(-0.801015\pi\)
0.810887 0.585202i \(-0.198985\pi\)
\(80\) 0 0
\(81\) −4.83299e8 −1.24748
\(82\) 0 0
\(83\) 1.21182e8 0.280276 0.140138 0.990132i \(-0.455245\pi\)
0.140138 + 0.990132i \(0.455245\pi\)
\(84\) 0 0
\(85\) 5.00922e8 1.04084
\(86\) 0 0
\(87\) 9.18334e8 1.71856
\(88\) 0 0
\(89\) 1.05652e9i 1.78494i 0.451110 + 0.892469i \(0.351028\pi\)
−0.451110 + 0.892469i \(0.648972\pi\)
\(90\) 0 0
\(91\) 8.07453e7 3.01974e8i 0.123433 0.461618i
\(92\) 0 0
\(93\) 7.37580e8 1.02244
\(94\) 0 0
\(95\) 7.80290e8i 0.982878i
\(96\) 0 0
\(97\) 7.91112e8i 0.907330i 0.891172 + 0.453665i \(0.149884\pi\)
−0.891172 + 0.453665i \(0.850116\pi\)
\(98\) 0 0
\(99\) 4.00246e8i 0.418763i
\(100\) 0 0
\(101\) 4.89619e8i 0.468180i −0.972215 0.234090i \(-0.924789\pi\)
0.972215 0.234090i \(-0.0752110\pi\)
\(102\) 0 0
\(103\) −1.74244e9 −1.52542 −0.762710 0.646741i \(-0.776132\pi\)
−0.762710 + 0.646741i \(0.776132\pi\)
\(104\) 0 0
\(105\) −4.69502e8 + 1.75586e9i −0.376952 + 1.40973i
\(106\) 0 0
\(107\) 9.55807e7i 0.0704925i −0.999379 0.0352463i \(-0.988778\pi\)
0.999379 0.0352463i \(-0.0112216\pi\)
\(108\) 0 0
\(109\) 2.59562e9 1.76126 0.880628 0.473808i \(-0.157121\pi\)
0.880628 + 0.473808i \(0.157121\pi\)
\(110\) 0 0
\(111\) 2.33271e9 1.45851
\(112\) 0 0
\(113\) −2.15286e9 −1.24212 −0.621059 0.783764i \(-0.713297\pi\)
−0.621059 + 0.783764i \(0.713297\pi\)
\(114\) 0 0
\(115\) 3.04400e9 1.62295
\(116\) 0 0
\(117\) 4.35640e8i 0.214927i
\(118\) 0 0
\(119\) −4.85310e8 + 1.81498e9i −0.221849 + 0.829678i
\(120\) 0 0
\(121\) 3.14115e8 0.133215
\(122\) 0 0
\(123\) 1.03253e9i 0.406752i
\(124\) 0 0
\(125\) 1.75728e9i 0.643791i
\(126\) 0 0
\(127\) 4.00213e9i 1.36513i 0.730825 + 0.682565i \(0.239136\pi\)
−0.730825 + 0.682565i \(0.760864\pi\)
\(128\) 0 0
\(129\) 1.73975e9i 0.553138i
\(130\) 0 0
\(131\) −2.97589e9 −0.882869 −0.441434 0.897294i \(-0.645530\pi\)
−0.441434 + 0.897294i \(0.645530\pi\)
\(132\) 0 0
\(133\) 2.82720e9 + 7.55970e8i 0.783473 + 0.209494i
\(134\) 0 0
\(135\) 3.09857e9i 0.802896i
\(136\) 0 0
\(137\) −2.51690e9 −0.610413 −0.305207 0.952286i \(-0.598726\pi\)
−0.305207 + 0.952286i \(0.598726\pi\)
\(138\) 0 0
\(139\) 2.36033e9 0.536298 0.268149 0.963377i \(-0.413588\pi\)
0.268149 + 0.963377i \(0.413588\pi\)
\(140\) 0 0
\(141\) 3.07691e8 0.0655584
\(142\) 0 0
\(143\) 2.22457e9 0.444871
\(144\) 0 0
\(145\) 9.20761e9i 1.72978i
\(146\) 0 0
\(147\) −5.90707e9 3.40226e9i −1.04338 0.600952i
\(148\) 0 0
\(149\) 1.02809e9 0.170881 0.0854404 0.996343i \(-0.472770\pi\)
0.0854404 + 0.996343i \(0.472770\pi\)
\(150\) 0 0
\(151\) 7.43840e9i 1.16435i −0.813064 0.582175i \(-0.802202\pi\)
0.813064 0.582175i \(-0.197798\pi\)
\(152\) 0 0
\(153\) 2.61836e9i 0.386294i
\(154\) 0 0
\(155\) 7.39530e9i 1.02911i
\(156\) 0 0
\(157\) 1.13686e10i 1.49334i −0.665196 0.746669i \(-0.731652\pi\)
0.665196 0.746669i \(-0.268348\pi\)
\(158\) 0 0
\(159\) −1.47549e10 −1.83084
\(160\) 0 0
\(161\) −2.94913e9 + 1.10292e10i −0.345921 + 1.29369i
\(162\) 0 0
\(163\) 7.02745e9i 0.779747i −0.920868 0.389873i \(-0.872519\pi\)
0.920868 0.389873i \(-0.127481\pi\)
\(164\) 0 0
\(165\) −1.29350e10 −1.35859
\(166\) 0 0
\(167\) −4.19723e9 −0.417579 −0.208790 0.977961i \(-0.566952\pi\)
−0.208790 + 0.977961i \(0.566952\pi\)
\(168\) 0 0
\(169\) 8.18321e9 0.771673
\(170\) 0 0
\(171\) −4.07863e9 −0.364781
\(172\) 0 0
\(173\) 2.31245e10i 1.96275i −0.192104 0.981375i \(-0.561531\pi\)
0.192104 0.981375i \(-0.438469\pi\)
\(174\) 0 0
\(175\) 5.61895e9 + 1.50246e9i 0.452881 + 0.121097i
\(176\) 0 0
\(177\) −1.92386e10 −1.47331
\(178\) 0 0
\(179\) 2.18114e10i 1.58798i 0.607929 + 0.793992i \(0.292001\pi\)
−0.607929 + 0.793992i \(0.707999\pi\)
\(180\) 0 0
\(181\) 8.40374e9i 0.581995i 0.956724 + 0.290998i \(0.0939871\pi\)
−0.956724 + 0.290998i \(0.906013\pi\)
\(182\) 0 0
\(183\) 6.44235e9i 0.424634i
\(184\) 0 0
\(185\) 2.33888e10i 1.46803i
\(186\) 0 0
\(187\) −1.33705e10 −0.799578
\(188\) 0 0
\(189\) −1.12269e10 3.00199e9i −0.640005 0.171132i
\(190\) 0 0
\(191\) 2.50676e10i 1.36289i 0.731867 + 0.681447i \(0.238649\pi\)
−0.731867 + 0.681447i \(0.761351\pi\)
\(192\) 0 0
\(193\) 1.56589e10 0.812368 0.406184 0.913791i \(-0.366859\pi\)
0.406184 + 0.913791i \(0.366859\pi\)
\(194\) 0 0
\(195\) 1.40789e10 0.697287
\(196\) 0 0
\(197\) −1.28676e9 −0.0608694 −0.0304347 0.999537i \(-0.509689\pi\)
−0.0304347 + 0.999537i \(0.509689\pi\)
\(198\) 0 0
\(199\) −3.28256e10 −1.48379 −0.741897 0.670514i \(-0.766074\pi\)
−0.741897 + 0.670514i \(0.766074\pi\)
\(200\) 0 0
\(201\) 3.54396e10i 1.53146i
\(202\) 0 0
\(203\) 3.33616e10 + 8.92063e9i 1.37884 + 0.368692i
\(204\) 0 0
\(205\) 1.03526e10 0.409409
\(206\) 0 0
\(207\) 1.59112e10i 0.602334i
\(208\) 0 0
\(209\) 2.08273e10i 0.755049i
\(210\) 0 0
\(211\) 4.02405e10i 1.39763i 0.715302 + 0.698815i \(0.246289\pi\)
−0.715302 + 0.698815i \(0.753711\pi\)
\(212\) 0 0
\(213\) 2.09583e10i 0.697666i
\(214\) 0 0
\(215\) −1.74435e10 −0.556751
\(216\) 0 0
\(217\) 2.67951e10 + 7.16481e9i 0.820328 + 0.219349i
\(218\) 0 0
\(219\) 3.53175e10i 1.03751i
\(220\) 0 0
\(221\) 1.45529e10 0.410378
\(222\) 0 0
\(223\) −1.30506e9 −0.0353394 −0.0176697 0.999844i \(-0.505625\pi\)
−0.0176697 + 0.999844i \(0.505625\pi\)
\(224\) 0 0
\(225\) −8.10613e9 −0.210859
\(226\) 0 0
\(227\) 3.49416e9 0.0873426 0.0436713 0.999046i \(-0.486095\pi\)
0.0436713 + 0.999046i \(0.486095\pi\)
\(228\) 0 0
\(229\) 6.06601e10i 1.45762i −0.684717 0.728809i \(-0.740074\pi\)
0.684717 0.728809i \(-0.259926\pi\)
\(230\) 0 0
\(231\) 1.25318e10 4.68670e10i 0.289575 1.08296i
\(232\) 0 0
\(233\) 5.36507e10 1.19254 0.596271 0.802783i \(-0.296648\pi\)
0.596271 + 0.802783i \(0.296648\pi\)
\(234\) 0 0
\(235\) 3.08504e9i 0.0659865i
\(236\) 0 0
\(237\) 6.84473e10i 1.40925i
\(238\) 0 0
\(239\) 4.89762e10i 0.970944i 0.874252 + 0.485472i \(0.161352\pi\)
−0.874252 + 0.485472i \(0.838648\pi\)
\(240\) 0 0
\(241\) 4.99585e10i 0.953966i 0.878913 + 0.476983i \(0.158270\pi\)
−0.878913 + 0.476983i \(0.841730\pi\)
\(242\) 0 0
\(243\) 4.56335e10 0.839567
\(244\) 0 0
\(245\) −3.41125e10 + 5.92268e10i −0.604877 + 1.05020i
\(246\) 0 0
\(247\) 2.26691e10i 0.387524i
\(248\) 0 0
\(249\) −2.04709e10 −0.337473
\(250\) 0 0
\(251\) 6.39457e10 1.01690 0.508451 0.861091i \(-0.330218\pi\)
0.508451 + 0.861091i \(0.330218\pi\)
\(252\) 0 0
\(253\) −8.12498e10 −1.24675
\(254\) 0 0
\(255\) −8.46192e10 −1.25325
\(256\) 0 0
\(257\) 5.38824e10i 0.770455i −0.922822 0.385228i \(-0.874123\pi\)
0.922822 0.385228i \(-0.125877\pi\)
\(258\) 0 0
\(259\) 8.47438e10 + 2.26598e10i 1.17020 + 0.312901i
\(260\) 0 0
\(261\) −4.81289e10 −0.641983
\(262\) 0 0
\(263\) 4.22799e10i 0.544920i −0.962167 0.272460i \(-0.912163\pi\)
0.962167 0.272460i \(-0.0878373\pi\)
\(264\) 0 0
\(265\) 1.47939e11i 1.84279i
\(266\) 0 0
\(267\) 1.78475e11i 2.14920i
\(268\) 0 0
\(269\) 1.05246e11i 1.22552i 0.790268 + 0.612761i \(0.209941\pi\)
−0.790268 + 0.612761i \(0.790059\pi\)
\(270\) 0 0
\(271\) 6.03804e10 0.680039 0.340020 0.940418i \(-0.389566\pi\)
0.340020 + 0.940418i \(0.389566\pi\)
\(272\) 0 0
\(273\) −1.36400e10 + 5.10114e10i −0.148622 + 0.555822i
\(274\) 0 0
\(275\) 4.13935e10i 0.436451i
\(276\) 0 0
\(277\) −9.12817e8 −0.00931590 −0.00465795 0.999989i \(-0.501483\pi\)
−0.00465795 + 0.999989i \(0.501483\pi\)
\(278\) 0 0
\(279\) −3.86558e10 −0.381940
\(280\) 0 0
\(281\) 1.98039e11 1.89484 0.947418 0.319999i \(-0.103683\pi\)
0.947418 + 0.319999i \(0.103683\pi\)
\(282\) 0 0
\(283\) −3.67215e10 −0.340315 −0.170158 0.985417i \(-0.554428\pi\)
−0.170158 + 0.985417i \(0.554428\pi\)
\(284\) 0 0
\(285\) 1.31812e11i 1.18346i
\(286\) 0 0
\(287\) −1.00299e10 + 3.75102e10i −0.0872628 + 0.326348i
\(288\) 0 0
\(289\) 3.11196e10 0.262418
\(290\) 0 0
\(291\) 1.33640e11i 1.09249i
\(292\) 0 0
\(293\) 8.62876e10i 0.683981i −0.939703 0.341990i \(-0.888899\pi\)
0.939703 0.341990i \(-0.111101\pi\)
\(294\) 0 0
\(295\) 1.92894e11i 1.48293i
\(296\) 0 0
\(297\) 8.27063e10i 0.616786i
\(298\) 0 0
\(299\) 8.84348e10 0.639887
\(300\) 0 0
\(301\) 1.68998e10 6.32025e10i 0.118668 0.443797i
\(302\) 0 0
\(303\) 8.27099e10i 0.563723i
\(304\) 0 0
\(305\) −6.45938e10 −0.427407
\(306\) 0 0
\(307\) 2.00085e11 1.28556 0.642781 0.766050i \(-0.277781\pi\)
0.642781 + 0.766050i \(0.277781\pi\)
\(308\) 0 0
\(309\) 2.94344e11 1.83672
\(310\) 0 0
\(311\) 1.11203e11 0.674057 0.337028 0.941494i \(-0.390578\pi\)
0.337028 + 0.941494i \(0.390578\pi\)
\(312\) 0 0
\(313\) 3.94588e10i 0.232378i −0.993227 0.116189i \(-0.962932\pi\)
0.993227 0.116189i \(-0.0370678\pi\)
\(314\) 0 0
\(315\) 2.46061e10 9.20226e10i 0.140814 0.526619i
\(316\) 0 0
\(317\) 1.34898e11 0.750307 0.375154 0.926963i \(-0.377590\pi\)
0.375154 + 0.926963i \(0.377590\pi\)
\(318\) 0 0
\(319\) 2.45768e11i 1.32882i
\(320\) 0 0
\(321\) 1.61461e10i 0.0848782i
\(322\) 0 0
\(323\) 1.36250e11i 0.696506i
\(324\) 0 0
\(325\) 4.50540e10i 0.224005i
\(326\) 0 0
\(327\) −4.38471e11 −2.12068
\(328\) 0 0
\(329\) 1.11779e10 + 2.98888e9i 0.0525992 + 0.0140646i
\(330\) 0 0
\(331\) 1.60155e11i 0.733356i 0.930348 + 0.366678i \(0.119505\pi\)
−0.930348 + 0.366678i \(0.880495\pi\)
\(332\) 0 0
\(333\) −1.22255e11 −0.544838
\(334\) 0 0
\(335\) −3.55333e11 −1.54147
\(336\) 0 0
\(337\) −3.33346e11 −1.40787 −0.703933 0.710267i \(-0.748574\pi\)
−0.703933 + 0.710267i \(0.748574\pi\)
\(338\) 0 0
\(339\) 3.63676e11 1.49560
\(340\) 0 0
\(341\) 1.97394e11i 0.790567i
\(342\) 0 0
\(343\) −1.81545e11 1.80980e11i −0.708209 0.706003i
\(344\) 0 0
\(345\) −5.14213e11 −1.95415
\(346\) 0 0
\(347\) 3.13544e11i 1.16096i −0.814276 0.580478i \(-0.802866\pi\)
0.814276 0.580478i \(-0.197134\pi\)
\(348\) 0 0
\(349\) 4.90813e11i 1.77093i −0.464705 0.885466i \(-0.653840\pi\)
0.464705 0.885466i \(-0.346160\pi\)
\(350\) 0 0
\(351\) 9.00201e10i 0.316561i
\(352\) 0 0
\(353\) 5.10486e10i 0.174984i −0.996165 0.0874918i \(-0.972115\pi\)
0.996165 0.0874918i \(-0.0278852\pi\)
\(354\) 0 0
\(355\) 2.10137e11 0.702223
\(356\) 0 0
\(357\) 8.19818e10 3.06598e11i 0.267123 0.998993i
\(358\) 0 0
\(359\) 2.94013e11i 0.934204i −0.884203 0.467102i \(-0.845298\pi\)
0.884203 0.467102i \(-0.154702\pi\)
\(360\) 0 0
\(361\) −1.10450e11 −0.342283
\(362\) 0 0
\(363\) −5.30624e10 −0.160401
\(364\) 0 0
\(365\) −3.54109e11 −1.04428
\(366\) 0 0
\(367\) −2.97585e11 −0.856276 −0.428138 0.903713i \(-0.640830\pi\)
−0.428138 + 0.903713i \(0.640830\pi\)
\(368\) 0 0
\(369\) 5.41138e10i 0.151946i
\(370\) 0 0
\(371\) −5.36023e11 1.43328e11i −1.46893 0.392779i
\(372\) 0 0
\(373\) 4.58974e11 1.22772 0.613858 0.789416i \(-0.289617\pi\)
0.613858 + 0.789416i \(0.289617\pi\)
\(374\) 0 0
\(375\) 2.96851e11i 0.775172i
\(376\) 0 0
\(377\) 2.67501e11i 0.682008i
\(378\) 0 0
\(379\) 3.16136e11i 0.787041i 0.919316 + 0.393521i \(0.128743\pi\)
−0.919316 + 0.393521i \(0.871257\pi\)
\(380\) 0 0
\(381\) 6.76066e11i 1.64372i
\(382\) 0 0
\(383\) −1.12180e11 −0.266393 −0.133196 0.991090i \(-0.542524\pi\)
−0.133196 + 0.991090i \(0.542524\pi\)
\(384\) 0 0
\(385\) −4.69908e11 1.25650e11i −1.09003 0.291466i
\(386\) 0 0
\(387\) 9.11785e10i 0.206630i
\(388\) 0 0
\(389\) 4.61511e11 1.02190 0.510950 0.859610i \(-0.329294\pi\)
0.510950 + 0.859610i \(0.329294\pi\)
\(390\) 0 0
\(391\) −5.31527e11 −1.15008
\(392\) 0 0
\(393\) 5.02708e11 1.06304
\(394\) 0 0
\(395\) 6.86283e11 1.41846
\(396\) 0 0
\(397\) 9.26586e11i 1.87210i 0.351870 + 0.936049i \(0.385546\pi\)
−0.351870 + 0.936049i \(0.614454\pi\)
\(398\) 0 0
\(399\) −4.77590e11 1.27704e11i −0.943359 0.252247i
\(400\) 0 0
\(401\) 1.51836e11 0.293241 0.146620 0.989193i \(-0.453160\pi\)
0.146620 + 0.989193i \(0.453160\pi\)
\(402\) 0 0
\(403\) 2.14849e11i 0.405753i
\(404\) 0 0
\(405\) 8.18580e11i 1.51187i
\(406\) 0 0
\(407\) 6.24289e11i 1.12774i
\(408\) 0 0
\(409\) 2.02579e11i 0.357965i −0.983852 0.178982i \(-0.942719\pi\)
0.983852 0.178982i \(-0.0572805\pi\)
\(410\) 0 0
\(411\) 4.25173e11 0.734983
\(412\) 0 0
\(413\) −6.98907e11 1.86882e11i −1.18207 0.316077i
\(414\) 0 0
\(415\) 2.05250e11i 0.339677i
\(416\) 0 0
\(417\) −3.98723e11 −0.645742
\(418\) 0 0
\(419\) 4.65377e11 0.737635 0.368818 0.929502i \(-0.379763\pi\)
0.368818 + 0.929502i \(0.379763\pi\)
\(420\) 0 0
\(421\) 9.20844e11 1.42862 0.714310 0.699829i \(-0.246741\pi\)
0.714310 + 0.699829i \(0.246741\pi\)
\(422\) 0 0
\(423\) −1.61257e10 −0.0244899
\(424\) 0 0
\(425\) 2.70791e11i 0.402610i
\(426\) 0 0
\(427\) 6.25805e10 2.34041e11i 0.0910991 0.340695i
\(428\) 0 0
\(429\) −3.75790e11 −0.535657
\(430\) 0 0
\(431\) 2.52962e11i 0.353108i 0.984291 + 0.176554i \(0.0564950\pi\)
−0.984291 + 0.176554i \(0.943505\pi\)
\(432\) 0 0
\(433\) 4.62645e11i 0.632488i −0.948678 0.316244i \(-0.897578\pi\)
0.948678 0.316244i \(-0.102422\pi\)
\(434\) 0 0
\(435\) 1.55541e12i 2.08278i
\(436\) 0 0
\(437\) 8.27962e11i 1.08604i
\(438\) 0 0
\(439\) −2.34018e11 −0.300718 −0.150359 0.988631i \(-0.548043\pi\)
−0.150359 + 0.988631i \(0.548043\pi\)
\(440\) 0 0
\(441\) 3.09583e11 + 1.78309e11i 0.389766 + 0.224491i
\(442\) 0 0
\(443\) 1.50254e11i 0.185357i −0.995696 0.0926787i \(-0.970457\pi\)
0.995696 0.0926787i \(-0.0295430\pi\)
\(444\) 0 0
\(445\) −1.78946e12 −2.16323
\(446\) 0 0
\(447\) −1.73672e11 −0.205753
\(448\) 0 0
\(449\) 4.37081e11 0.507520 0.253760 0.967267i \(-0.418333\pi\)
0.253760 + 0.967267i \(0.418333\pi\)
\(450\) 0 0
\(451\) −2.76329e11 −0.314509
\(452\) 0 0
\(453\) 1.25655e12i 1.40196i
\(454\) 0 0
\(455\) 5.11463e11 + 1.36761e11i 0.559452 + 0.149593i
\(456\) 0 0
\(457\) 1.80825e12 1.93925 0.969626 0.244591i \(-0.0786537\pi\)
0.969626 + 0.244591i \(0.0786537\pi\)
\(458\) 0 0
\(459\) 5.41055e11i 0.568963i
\(460\) 0 0
\(461\) 7.40235e11i 0.763335i 0.924300 + 0.381668i \(0.124650\pi\)
−0.924300 + 0.381668i \(0.875350\pi\)
\(462\) 0 0
\(463\) 9.62518e11i 0.973407i −0.873567 0.486703i \(-0.838199\pi\)
0.873567 0.486703i \(-0.161801\pi\)
\(464\) 0 0
\(465\) 1.24926e12i 1.23913i
\(466\) 0 0
\(467\) 1.51772e12 1.47661 0.738306 0.674466i \(-0.235626\pi\)
0.738306 + 0.674466i \(0.235626\pi\)
\(468\) 0 0
\(469\) 3.44258e11 1.28747e12i 0.328554 1.22874i
\(470\) 0 0
\(471\) 1.92046e12i 1.79809i
\(472\) 0 0
\(473\) 4.65598e11 0.427697
\(474\) 0 0
\(475\) 4.21813e11 0.380189
\(476\) 0 0
\(477\) 7.73288e11 0.683926
\(478\) 0 0
\(479\) 3.87370e11 0.336214 0.168107 0.985769i \(-0.446235\pi\)
0.168107 + 0.985769i \(0.446235\pi\)
\(480\) 0 0
\(481\) 6.79495e11i 0.578807i
\(482\) 0 0
\(483\) 4.98187e11 1.86313e12i 0.416514 1.55769i
\(484\) 0 0
\(485\) −1.33993e12 −1.09963
\(486\) 0 0
\(487\) 2.31594e12i 1.86572i −0.360240 0.932860i \(-0.617305\pi\)
0.360240 0.932860i \(-0.382695\pi\)
\(488\) 0 0
\(489\) 1.18713e12i 0.938872i
\(490\) 0 0
\(491\) 4.04008e11i 0.313706i 0.987622 + 0.156853i \(0.0501349\pi\)
−0.987622 + 0.156853i \(0.949865\pi\)
\(492\) 0 0
\(493\) 1.60778e12i 1.22579i
\(494\) 0 0
\(495\) 6.77909e11 0.507514
\(496\) 0 0
\(497\) −2.03587e11 + 7.61382e11i −0.149674 + 0.559756i
\(498\) 0 0
\(499\) 1.85192e12i 1.33712i −0.743660 0.668558i \(-0.766912\pi\)
0.743660 0.668558i \(-0.233088\pi\)
\(500\) 0 0
\(501\) 7.09025e11 0.502796
\(502\) 0 0
\(503\) −1.38084e12 −0.961805 −0.480903 0.876774i \(-0.659691\pi\)
−0.480903 + 0.876774i \(0.659691\pi\)
\(504\) 0 0
\(505\) 8.29285e11 0.567404
\(506\) 0 0
\(507\) −1.38236e12 −0.929151
\(508\) 0 0
\(509\) 2.41684e12i 1.59594i 0.602694 + 0.797972i \(0.294094\pi\)
−0.602694 + 0.797972i \(0.705906\pi\)
\(510\) 0 0
\(511\) 3.43072e11 1.28303e12i 0.222582 0.832420i
\(512\) 0 0
\(513\) −8.42805e11 −0.537278
\(514\) 0 0
\(515\) 2.95122e12i 1.84871i
\(516\) 0 0
\(517\) 8.23452e10i 0.0506910i
\(518\) 0 0
\(519\) 3.90635e12i 2.36329i
\(520\) 0 0
\(521\) 4.01142e11i 0.238522i −0.992863 0.119261i \(-0.961948\pi\)
0.992863 0.119261i \(-0.0380525\pi\)
\(522\) 0 0
\(523\) 1.62838e11 0.0951696 0.0475848 0.998867i \(-0.484848\pi\)
0.0475848 + 0.998867i \(0.484848\pi\)
\(524\) 0 0
\(525\) −9.49191e11 2.53806e11i −0.545302 0.145809i
\(526\) 0 0
\(527\) 1.29133e12i 0.729270i
\(528\) 0 0
\(529\) −1.42883e12 −0.793284
\(530\) 0 0
\(531\) 1.00827e12 0.550367
\(532\) 0 0
\(533\) 3.00765e11 0.161419
\(534\) 0 0
\(535\) 1.61888e11 0.0854325
\(536\) 0 0
\(537\) 3.68454e12i 1.91205i
\(538\) 0 0
\(539\) 9.10525e11 1.58087e12i 0.464668 0.806764i
\(540\) 0 0
\(541\) −1.25807e11 −0.0631416 −0.0315708 0.999502i \(-0.510051\pi\)
−0.0315708 + 0.999502i \(0.510051\pi\)
\(542\) 0 0
\(543\) 1.41962e12i 0.700765i
\(544\) 0 0
\(545\) 4.39630e12i 2.13453i
\(546\) 0 0
\(547\) 4.18042e12i 1.99654i 0.0588179 + 0.998269i \(0.481267\pi\)
−0.0588179 + 0.998269i \(0.518733\pi\)
\(548\) 0 0
\(549\) 3.37637e11i 0.158626i
\(550\) 0 0
\(551\) 2.50445e12 1.15753
\(552\) 0 0
\(553\) −6.64893e11 + 2.48659e12i −0.302335 + 1.13068i
\(554\) 0 0
\(555\) 3.95099e12i 1.76762i
\(556\) 0 0
\(557\) −9.36295e11 −0.412159 −0.206079 0.978535i \(-0.566071\pi\)
−0.206079 + 0.978535i \(0.566071\pi\)
\(558\) 0 0
\(559\) −5.06772e11 −0.219512
\(560\) 0 0
\(561\) 2.25864e12 0.962751
\(562\) 0 0
\(563\) −3.68677e12 −1.54653 −0.773265 0.634084i \(-0.781378\pi\)
−0.773265 + 0.634084i \(0.781378\pi\)
\(564\) 0 0
\(565\) 3.64637e12i 1.50537i
\(566\) 0 0
\(567\) 2.96593e12 + 7.93066e11i 1.20514 + 0.322245i
\(568\) 0 0
\(569\) 3.09650e12 1.23841 0.619207 0.785228i \(-0.287454\pi\)
0.619207 + 0.785228i \(0.287454\pi\)
\(570\) 0 0
\(571\) 3.20987e12i 1.26365i 0.775113 + 0.631823i \(0.217693\pi\)
−0.775113 + 0.631823i \(0.782307\pi\)
\(572\) 0 0
\(573\) 4.23459e12i 1.64103i
\(574\) 0 0
\(575\) 1.64554e12i 0.627775i
\(576\) 0 0
\(577\) 2.37360e12i 0.891491i −0.895160 0.445745i \(-0.852939\pi\)
0.895160 0.445745i \(-0.147061\pi\)
\(578\) 0 0
\(579\) −2.64520e12 −0.978150
\(580\) 0 0
\(581\) −7.43674e11 1.98853e11i −0.270764 0.0724000i
\(582\) 0 0
\(583\) 3.94876e12i 1.41564i
\(584\) 0 0
\(585\) −7.37858e11 −0.260478
\(586\) 0 0
\(587\) 2.76975e12 0.962874 0.481437 0.876481i \(-0.340115\pi\)
0.481437 + 0.876481i \(0.340115\pi\)
\(588\) 0 0
\(589\) 2.01151e12 0.688657
\(590\) 0 0
\(591\) 2.17368e11 0.0732913
\(592\) 0 0
\(593\) 2.42580e12i 0.805579i −0.915293 0.402790i \(-0.868041\pi\)
0.915293 0.402790i \(-0.131959\pi\)
\(594\) 0 0
\(595\) −3.07408e12 8.21985e11i −1.00552 0.268867i
\(596\) 0 0
\(597\) 5.54512e12 1.78660
\(598\) 0 0
\(599\) 2.69284e12i 0.854652i −0.904098 0.427326i \(-0.859456\pi\)
0.904098 0.427326i \(-0.140544\pi\)
\(600\) 0 0
\(601\) 1.31161e12i 0.410081i −0.978754 0.205040i \(-0.934267\pi\)
0.978754 0.205040i \(-0.0657326\pi\)
\(602\) 0 0
\(603\) 1.85735e12i 0.572093i
\(604\) 0 0
\(605\) 5.32026e11i 0.161449i
\(606\) 0 0
\(607\) −5.89476e12 −1.76245 −0.881225 0.472697i \(-0.843281\pi\)
−0.881225 + 0.472697i \(0.843281\pi\)
\(608\) 0 0
\(609\) −5.63568e12 1.50693e12i −1.66023 0.443932i
\(610\) 0 0
\(611\) 8.96270e10i 0.0260168i
\(612\) 0 0
\(613\) −4.43845e12 −1.26958 −0.634788 0.772686i \(-0.718913\pi\)
−0.634788 + 0.772686i \(0.718913\pi\)
\(614\) 0 0
\(615\) −1.74883e12 −0.492958
\(616\) 0 0
\(617\) 2.76164e12 0.767157 0.383578 0.923508i \(-0.374692\pi\)
0.383578 + 0.923508i \(0.374692\pi\)
\(618\) 0 0
\(619\) −2.78619e12 −0.762785 −0.381392 0.924413i \(-0.624555\pi\)
−0.381392 + 0.924413i \(0.624555\pi\)
\(620\) 0 0
\(621\) 3.28788e12i 0.887164i
\(622\) 0 0
\(623\) 1.73369e12 6.48371e12i 0.461079 1.72436i
\(624\) 0 0
\(625\) −4.76466e12 −1.24903
\(626\) 0 0
\(627\) 3.51829e12i 0.909135i
\(628\) 0 0
\(629\) 4.08402e12i 1.04030i
\(630\) 0 0
\(631\) 6.34324e12i 1.59287i 0.604727 + 0.796433i \(0.293282\pi\)
−0.604727 + 0.796433i \(0.706718\pi\)
\(632\) 0 0
\(633\) 6.79770e12i 1.68285i
\(634\) 0 0
\(635\) −6.77853e12 −1.65445
\(636\) 0 0
\(637\) −9.91043e11 + 1.72067e12i −0.238487 + 0.414066i
\(638\) 0 0
\(639\) 1.09840e12i 0.260620i
\(640\) 0 0
\(641\) −3.00469e12 −0.702972 −0.351486 0.936193i \(-0.614323\pi\)
−0.351486 + 0.936193i \(0.614323\pi\)
\(642\) 0 0
\(643\) 4.27099e12 0.985324 0.492662 0.870221i \(-0.336024\pi\)
0.492662 + 0.870221i \(0.336024\pi\)
\(644\) 0 0
\(645\) 2.94668e12 0.670369
\(646\) 0 0
\(647\) 8.01078e12 1.79724 0.898619 0.438729i \(-0.144571\pi\)
0.898619 + 0.438729i \(0.144571\pi\)
\(648\) 0 0
\(649\) 5.14869e12i 1.13919i
\(650\) 0 0
\(651\) −4.52642e12 1.21033e12i −0.987735 0.264112i
\(652\) 0 0
\(653\) −4.20387e12 −0.904774 −0.452387 0.891822i \(-0.649427\pi\)
−0.452387 + 0.891822i \(0.649427\pi\)
\(654\) 0 0
\(655\) 5.04037e12i 1.06998i
\(656\) 0 0
\(657\) 1.85095e12i 0.387571i
\(658\) 0 0
\(659\) 3.07348e12i 0.634813i 0.948290 + 0.317406i \(0.102812\pi\)
−0.948290 + 0.317406i \(0.897188\pi\)
\(660\) 0 0
\(661\) 4.83796e12i 0.985725i −0.870107 0.492863i \(-0.835951\pi\)
0.870107 0.492863i \(-0.164049\pi\)
\(662\) 0 0
\(663\) −2.45837e12 −0.494125
\(664\) 0 0
\(665\) −1.28041e12 + 4.78852e12i −0.253894 + 0.949520i
\(666\) 0 0
\(667\) 9.77016e12i 1.91133i
\(668\) 0 0
\(669\) 2.20460e11 0.0425512
\(670\) 0 0
\(671\) 1.72412e12 0.328335
\(672\) 0 0
\(673\) −4.43989e12 −0.834265 −0.417133 0.908846i \(-0.636965\pi\)
−0.417133 + 0.908846i \(0.636965\pi\)
\(674\) 0 0
\(675\) −1.67504e12 −0.310569
\(676\) 0 0
\(677\) 4.81080e11i 0.0880174i −0.999031 0.0440087i \(-0.985987\pi\)
0.999031 0.0440087i \(-0.0140129\pi\)
\(678\) 0 0
\(679\) 1.29817e12 4.85494e12i 0.234379 0.876536i
\(680\) 0 0
\(681\) −5.90257e11 −0.105167
\(682\) 0 0
\(683\) 1.00344e13i 1.76441i −0.470867 0.882204i \(-0.656059\pi\)
0.470867 0.882204i \(-0.343941\pi\)
\(684\) 0 0
\(685\) 4.26296e12i 0.739783i
\(686\) 0 0
\(687\) 1.02471e13i 1.75508i
\(688\) 0 0
\(689\) 4.29795e12i 0.726565i
\(690\) 0 0
\(691\) −1.35628e12 −0.226306 −0.113153 0.993578i \(-0.536095\pi\)
−0.113153 + 0.993578i \(0.536095\pi\)
\(692\) 0 0
\(693\) −6.56781e11 + 2.45625e12i −0.108173 + 0.404550i
\(694\) 0 0
\(695\) 3.99777e12i 0.649960i
\(696\) 0 0
\(697\) −1.80771e12 −0.290123
\(698\) 0 0
\(699\) −9.06305e12 −1.43591
\(700\) 0 0
\(701\) 1.18722e13 1.85695 0.928477 0.371391i \(-0.121119\pi\)
0.928477 + 0.371391i \(0.121119\pi\)
\(702\) 0 0
\(703\) 6.36171e12 0.982369
\(704\) 0 0
\(705\) 5.21146e11i 0.0794526i
\(706\) 0 0
\(707\) −8.03438e11 + 3.00472e12i −0.120939 + 0.452290i
\(708\) 0 0
\(709\) 8.19927e11 0.121862 0.0609308 0.998142i \(-0.480593\pi\)
0.0609308 + 0.998142i \(0.480593\pi\)
\(710\) 0 0
\(711\) 3.58725e12i 0.526440i
\(712\) 0 0
\(713\) 7.84712e12i 1.13712i
\(714\) 0 0
\(715\) 3.76783e12i 0.539156i
\(716\) 0 0
\(717\) 8.27339e12i 1.16909i
\(718\) 0 0
\(719\) 4.47269e12 0.624149 0.312075 0.950058i \(-0.398976\pi\)
0.312075 + 0.950058i \(0.398976\pi\)
\(720\) 0 0
\(721\) 1.06931e13 + 2.85924e12i 1.47365 + 0.394041i
\(722\) 0 0
\(723\) 8.43933e12i 1.14864i
\(724\) 0 0
\(725\) 4.97750e12 0.669099
\(726\) 0 0
\(727\) 5.53064e12 0.734295 0.367147 0.930163i \(-0.380334\pi\)
0.367147 + 0.930163i \(0.380334\pi\)
\(728\) 0 0
\(729\) 1.80406e12 0.236579
\(730\) 0 0
\(731\) 3.04589e12 0.394535
\(732\) 0 0
\(733\) 6.69160e12i 0.856174i 0.903738 + 0.428087i \(0.140812\pi\)
−0.903738 + 0.428087i \(0.859188\pi\)
\(734\) 0 0
\(735\) 5.76252e12 1.00050e13i 0.728316 1.26452i
\(736\) 0 0
\(737\) 9.48448e12 1.18416
\(738\) 0 0
\(739\) 4.40470e12i 0.543271i 0.962400 + 0.271635i \(0.0875645\pi\)
−0.962400 + 0.271635i \(0.912436\pi\)
\(740\) 0 0
\(741\) 3.82942e12i 0.466607i
\(742\) 0 0
\(743\) 2.47583e12i 0.298038i 0.988834 + 0.149019i \(0.0476116\pi\)
−0.988834 + 0.149019i \(0.952388\pi\)
\(744\) 0 0
\(745\) 1.74131e12i 0.207097i
\(746\) 0 0
\(747\) 1.07286e12 0.126066
\(748\) 0 0
\(749\) −1.56842e11 + 5.86564e11i −0.0182094 + 0.0681000i
\(750\) 0 0
\(751\) 1.37467e13i 1.57696i 0.615062 + 0.788479i \(0.289131\pi\)
−0.615062 + 0.788479i \(0.710869\pi\)
\(752\) 0 0
\(753\) −1.08021e13 −1.22443
\(754\) 0 0
\(755\) 1.25987e13 1.41112
\(756\) 0 0
\(757\) 4.67655e11 0.0517600 0.0258800 0.999665i \(-0.491761\pi\)
0.0258800 + 0.999665i \(0.491761\pi\)
\(758\) 0 0
\(759\) 1.37253e13 1.50118
\(760\) 0 0
\(761\) 1.71021e13i 1.84850i 0.381793 + 0.924248i \(0.375307\pi\)
−0.381793 + 0.924248i \(0.624693\pi\)
\(762\) 0 0
\(763\) −1.59290e13 4.25927e12i −1.70148 0.454962i
\(764\) 0 0
\(765\) 4.43480e12 0.468164
\(766\) 0 0
\(767\) 5.60399e12i 0.584680i
\(768\) 0 0
\(769\) 1.03252e13i 1.06470i −0.846523 0.532352i \(-0.821308\pi\)
0.846523 0.532352i \(-0.178692\pi\)
\(770\) 0 0
\(771\) 9.10218e12i 0.927685i
\(772\) 0 0
\(773\) 1.78597e13i 1.79915i 0.436771 + 0.899573i \(0.356122\pi\)
−0.436771 + 0.899573i \(0.643878\pi\)
\(774\) 0 0
\(775\) 3.99779e12 0.398073
\(776\) 0 0
\(777\) −1.43155e13 3.82785e12i −1.40900 0.376756i
\(778\) 0 0
\(779\) 2.81589e12i 0.273966i
\(780\) 0 0
\(781\) −5.60893e12 −0.539449
\(782\) 0 0
\(783\) −9.94530e12 −0.945562
\(784\) 0 0
\(785\) 1.92554e13 1.80983
\(786\) 0 0
\(787\) −1.78811e13 −1.66153 −0.830764 0.556624i \(-0.812096\pi\)
−0.830764 + 0.556624i \(0.812096\pi\)
\(788\) 0 0
\(789\) 7.14221e12i 0.656124i
\(790\) 0 0
\(791\) 1.32118e13 + 3.53272e12i 1.19996 + 0.320860i
\(792\) 0 0
\(793\) −1.87659e12 −0.168515
\(794\) 0 0
\(795\) 2.49909e13i 2.21886i
\(796\) 0 0
\(797\) 1.20603e13i 1.05876i 0.848386 + 0.529378i \(0.177575\pi\)
−0.848386 + 0.529378i \(0.822425\pi\)
\(798\) 0 0
\(799\) 5.38692e11i 0.0467606i
\(800\) 0 0
\(801\) 9.35367e12i 0.802852i
\(802\) 0 0
\(803\) 9.45179e12 0.802221
\(804\) 0 0
\(805\) −1.86806e13 4.99503e12i −1.56787 0.419235i
\(806\) 0 0
\(807\) 1.77789e13i 1.47562i
\(808\) 0 0
\(809\) −3.38799e12 −0.278082 −0.139041 0.990287i \(-0.544402\pi\)
−0.139041 + 0.990287i \(0.544402\pi\)
\(810\) 0 0
\(811\) 1.43126e13 1.16178 0.580891 0.813982i \(-0.302704\pi\)
0.580891 + 0.813982i \(0.302704\pi\)
\(812\) 0 0
\(813\) −1.01999e13 −0.818817
\(814\) 0 0
\(815\) 1.19026e13 0.945004
\(816\) 0 0
\(817\) 4.74460e12i 0.372563i
\(818\) 0 0
\(819\) 7.14860e11 2.67345e12i 0.0555192 0.207632i
\(820\) 0 0
\(821\) −1.80121e12 −0.138363 −0.0691816 0.997604i \(-0.522039\pi\)
−0.0691816 + 0.997604i \(0.522039\pi\)
\(822\) 0 0
\(823\) 2.14788e13i 1.63196i −0.578078 0.815982i \(-0.696197\pi\)
0.578078 0.815982i \(-0.303803\pi\)
\(824\) 0 0
\(825\) 6.99248e12i 0.525519i
\(826\) 0 0
\(827\) 3.85779e12i 0.286790i 0.989666 + 0.143395i \(0.0458019\pi\)
−0.989666 + 0.143395i \(0.954198\pi\)
\(828\) 0 0
\(829\) 8.01507e12i 0.589402i 0.955589 + 0.294701i \(0.0952201\pi\)
−0.955589 + 0.294701i \(0.904780\pi\)
\(830\) 0 0
\(831\) 1.54199e11 0.0112170
\(832\) 0 0
\(833\) 5.95654e12 1.03419e13i 0.428639 0.744211i
\(834\) 0 0
\(835\) 7.10899e12i 0.506080i
\(836\) 0 0
\(837\) −7.98779e12 −0.562552
\(838\) 0 0
\(839\) −2.29199e13 −1.59692 −0.798460 0.602047i \(-0.794352\pi\)
−0.798460 + 0.602047i \(0.794352\pi\)
\(840\) 0 0
\(841\) 1.50460e13 1.03714
\(842\) 0 0
\(843\) −3.34540e13 −2.28152
\(844\) 0 0
\(845\) 1.38602e13i 0.935219i
\(846\) 0 0
\(847\) −1.92767e12 5.15444e11i −0.128694 0.0344117i
\(848\) 0 0
\(849\) 6.20324e12 0.409764
\(850\) 0 0
\(851\) 2.48178e13i 1.62211i
\(852\) 0 0
\(853\) 1.41724e13i 0.916584i −0.888802 0.458292i \(-0.848461\pi\)
0.888802 0.458292i \(-0.151539\pi\)
\(854\) 0 0
\(855\) 6.90812e12i 0.442092i
\(856\) 0 0
\(857\) 1.84260e13i 1.16686i 0.812164 + 0.583430i \(0.198290\pi\)
−0.812164 + 0.583430i \(0.801710\pi\)
\(858\) 0 0
\(859\) 2.29934e13 1.44090 0.720449 0.693508i \(-0.243936\pi\)
0.720449 + 0.693508i \(0.243936\pi\)
\(860\) 0 0
\(861\) 1.69432e12 6.33648e12i 0.105071 0.392947i
\(862\) 0 0
\(863\) 4.67630e12i 0.286981i −0.989652 0.143491i \(-0.954167\pi\)
0.989652 0.143491i \(-0.0458327\pi\)
\(864\) 0 0
\(865\) 3.91667e13 2.37873
\(866\) 0 0
\(867\) −5.25693e12 −0.315971
\(868\) 0 0
\(869\) −1.83181e13 −1.08966
\(870\) 0 0
\(871\) −1.03232e13 −0.607761
\(872\) 0 0
\(873\) 7.00393e12i 0.408111i
\(874\) 0 0
\(875\) 2.88359e12 1.07841e13i 0.166302 0.621941i
\(876\) 0 0
\(877\) 6.01431e12 0.343311 0.171655 0.985157i \(-0.445088\pi\)
0.171655 + 0.985157i \(0.445088\pi\)
\(878\) 0 0
\(879\) 1.45763e13i 0.823563i
\(880\) 0 0
\(881\) 2.75835e13i 1.54261i −0.636464 0.771307i \(-0.719603\pi\)
0.636464 0.771307i \(-0.280397\pi\)
\(882\) 0 0
\(883\) 1.63458e13i 0.904862i 0.891799 + 0.452431i \(0.149443\pi\)
−0.891799 + 0.452431i \(0.850557\pi\)
\(884\) 0 0
\(885\) 3.25850e13i 1.78555i
\(886\) 0 0
\(887\) 2.26877e13 1.23065 0.615323 0.788275i \(-0.289025\pi\)
0.615323 + 0.788275i \(0.289025\pi\)
\(888\) 0 0
\(889\) 6.56726e12 2.45604e13i 0.352636 1.31880i
\(890\) 0 0
\(891\) 2.18494e13i 1.16142i
\(892\) 0 0
\(893\) 8.39124e11 0.0441565
\(894\) 0 0
\(895\) −3.69428e13 −1.92454
\(896\) 0 0
\(897\) −1.49390e13 −0.770470
\(898\) 0 0
\(899\) 2.37363e13 1.21198
\(900\) 0 0
\(901\) 2.58323e13i 1.30587i
\(902\) 0 0
\(903\) −2.85483e12 + 1.06766e13i −0.142885 + 0.534365i
\(904\) 0 0
\(905\) −1.42337e13 −0.705341
\(906\) 0 0
\(907\) 1.63940e13i 0.804365i 0.915559 + 0.402183i \(0.131748\pi\)
−0.915559 + 0.402183i \(0.868252\pi\)
\(908\) 0 0
\(909\) 4.33473e12i 0.210584i
\(910\) 0 0
\(911\) 1.82806e13i 0.879344i 0.898159 + 0.439672i \(0.144905\pi\)
−0.898159 + 0.439672i \(0.855095\pi\)
\(912\) 0 0
\(913\) 5.47848e12i 0.260941i
\(914\) 0 0
\(915\) 1.09116e13 0.514629
\(916\) 0 0
\(917\) 1.82626e13 + 4.88327e12i 0.852904 + 0.228060i
\(918\) 0 0
\(919\) 2.05279e13i 0.949345i 0.880163 + 0.474672i \(0.157433\pi\)
−0.880163 + 0.474672i \(0.842567\pi\)
\(920\) 0 0
\(921\) −3.37998e13 −1.54791
\(922\) 0 0
\(923\) 6.10493e12 0.276868
\(924\) 0 0
\(925\) 1.26436e13 0.567851
\(926\) 0 0
\(927\) −1.54263e13 −0.686123
\(928\) 0 0
\(929\) 4.06890e13i 1.79228i 0.443771 + 0.896140i \(0.353640\pi\)
−0.443771 + 0.896140i \(0.646360\pi\)
\(930\) 0 0
\(931\) −1.61096e13 9.27855e12i −0.702766 0.404768i
\(932\) 0 0
\(933\) −1.87852e13 −0.811614
\(934\) 0 0
\(935\) 2.26461e13i 0.969038i
\(936\) 0 0
\(937\) 1.47151e13i 0.623641i −0.950141 0.311821i \(-0.899061\pi\)
0.950141 0.311821i \(-0.100939\pi\)
\(938\) 0 0
\(939\) 6.66565e12i 0.279800i
\(940\) 0 0
\(941\) 3.74200e12i 0.155579i 0.996970 + 0.0777895i \(0.0247862\pi\)
−0.996970 + 0.0777895i \(0.975214\pi\)
\(942\) 0 0
\(943\) −1.09851e13 −0.452378
\(944\) 0 0
\(945\) 5.08458e12 1.90154e13i 0.207401 0.775646i
\(946\) 0 0
\(947\) 6.99898e12i 0.282787i −0.989953 0.141394i \(-0.954842\pi\)
0.989953 0.141394i \(-0.0451583\pi\)
\(948\) 0 0
\(949\) −1.02876e13 −0.411734
\(950\) 0 0
\(951\) −2.27879e13 −0.903425
\(952\) 0 0
\(953\) −2.18454e13 −0.857911 −0.428955 0.903326i \(-0.641118\pi\)
−0.428955 + 0.903326i \(0.641118\pi\)
\(954\) 0 0
\(955\) −4.24578e13 −1.65174
\(956\) 0 0
\(957\) 4.15167e13i 1.60000i
\(958\) 0 0
\(959\) 1.54459e13 + 4.13010e12i 0.589696 + 0.157680i
\(960\) 0 0
\(961\) −7.37530e12 −0.278949
\(962\) 0 0
\(963\) 8.46202e11i 0.0317070i
\(964\) 0 0
\(965\) 2.65220e13i 0.984539i
\(966\) 0 0
\(967\) 3.85871e13i 1.41913i −0.704638 0.709567i \(-0.748890\pi\)
0.704638 0.709567i \(-0.251110\pi\)
\(968\) 0 0
\(969\) 2.30163e13i 0.838644i
\(970\) 0 0
\(971\) −2.99182e13 −1.08006 −0.540030 0.841645i \(-0.681587\pi\)
−0.540030 + 0.841645i \(0.681587\pi\)
\(972\) 0 0
\(973\) −1.44850e13 3.87317e12i −0.518096 0.138535i
\(974\) 0 0
\(975\) 7.61083e12i 0.269719i
\(976\) 0 0
\(977\) −7.34454e12 −0.257893 −0.128946 0.991652i \(-0.541160\pi\)
−0.128946 + 0.991652i \(0.541160\pi\)
\(978\) 0 0
\(979\) 4.77640e13 1.66180
\(980\) 0 0
\(981\) 2.29798e13 0.792201
\(982\) 0 0
\(983\) 1.79793e13 0.614159 0.307080 0.951684i \(-0.400648\pi\)
0.307080 + 0.951684i \(0.400648\pi\)
\(984\) 0 0
\(985\) 2.17943e12i 0.0737699i
\(986\) 0 0
\(987\) −1.88825e12 5.04903e11i −0.0633333 0.0169348i
\(988\) 0 0
\(989\) 1.85092e13 0.615184
\(990\) 0 0
\(991\) 7.25494e12i 0.238947i 0.992837 + 0.119474i \(0.0381207\pi\)
−0.992837 + 0.119474i \(0.961879\pi\)
\(992\) 0 0
\(993\) 2.70545e13i 0.883014i
\(994\) 0 0
\(995\) 5.55978e13i 1.79827i
\(996\) 0 0
\(997\) 2.82088e13i 0.904183i 0.891972 + 0.452091i \(0.149322\pi\)
−0.891972 + 0.452091i \(0.850678\pi\)
\(998\) 0 0
\(999\) −2.52626e13 −0.802480
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 112.10.f.b.111.5 24
4.3 odd 2 inner 112.10.f.b.111.19 yes 24
7.6 odd 2 inner 112.10.f.b.111.20 yes 24
28.27 even 2 inner 112.10.f.b.111.6 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.10.f.b.111.5 24 1.1 even 1 trivial
112.10.f.b.111.6 yes 24 28.27 even 2 inner
112.10.f.b.111.19 yes 24 4.3 odd 2 inner
112.10.f.b.111.20 yes 24 7.6 odd 2 inner