Properties

Label 112.10.f.b.111.15
Level $112$
Weight $10$
Character 112.111
Analytic conductor $57.684$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [112,10,Mod(111,112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(112, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("112.111"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 112.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(57.6840136504\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 111.15
Character \(\chi\) \(=\) 112.111
Dual form 112.10.f.b.111.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+64.1982 q^{3} +287.809i q^{5} +(-6348.43 + 225.841i) q^{7} -15561.6 q^{9} +34079.3i q^{11} +69110.3i q^{13} +18476.8i q^{15} -247175. i q^{17} +266515. q^{19} +(-407558. + 14498.6i) q^{21} -2.00717e6i q^{23} +1.87029e6 q^{25} -2.26264e6 q^{27} +1.51576e6 q^{29} +4.35389e6 q^{31} +2.18783e6i q^{33} +(-64999.0 - 1.82713e6i) q^{35} -4.73155e6 q^{37} +4.43676e6i q^{39} -2.17361e7i q^{41} +5.28283e6i q^{43} -4.47876e6i q^{45} +1.61100e7 q^{47} +(4.02516e7 - 2.86747e6i) q^{49} -1.58682e7i q^{51} -7.33344e7 q^{53} -9.80832e6 q^{55} +1.71098e7 q^{57} +5.42398e7 q^{59} -1.54440e8i q^{61} +(9.87917e7 - 3.51444e6i) q^{63} -1.98905e7 q^{65} +1.59079e8i q^{67} -1.28857e8i q^{69} +1.43343e8i q^{71} -3.33960e8i q^{73} +1.20069e8 q^{75} +(-7.69651e6 - 2.16350e8i) q^{77} -4.15669e8i q^{79} +1.61041e8 q^{81} +6.30458e8 q^{83} +7.11390e7 q^{85} +9.73092e7 q^{87} -5.95650e8i q^{89} +(-1.56079e7 - 4.38742e8i) q^{91} +2.79512e8 q^{93} +7.67054e7i q^{95} -1.06914e9i q^{97} -5.30328e8i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 155768 q^{9} + 220672 q^{21} - 9187656 q^{25} + 14881104 q^{29} + 2829456 q^{37} - 214802472 q^{49} + 327087120 q^{53} + 238245440 q^{57} - 495797952 q^{65} + 347010000 q^{77} + 1816013720 q^{81}+ \cdots + 288442240 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/112\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(17\) \(85\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 64.1982 0.457591 0.228796 0.973475i \(-0.426521\pi\)
0.228796 + 0.973475i \(0.426521\pi\)
\(4\) 0 0
\(5\) 287.809i 0.205939i 0.994685 + 0.102970i \(0.0328344\pi\)
−0.994685 + 0.102970i \(0.967166\pi\)
\(6\) 0 0
\(7\) −6348.43 + 225.841i −0.999368 + 0.0355518i
\(8\) 0 0
\(9\) −15561.6 −0.790610
\(10\) 0 0
\(11\) 34079.3i 0.701817i 0.936410 + 0.350909i \(0.114127\pi\)
−0.936410 + 0.350909i \(0.885873\pi\)
\(12\) 0 0
\(13\) 69110.3i 0.671116i 0.942019 + 0.335558i \(0.108925\pi\)
−0.942019 + 0.335558i \(0.891075\pi\)
\(14\) 0 0
\(15\) 18476.8i 0.0942358i
\(16\) 0 0
\(17\) 247175.i 0.717768i −0.933382 0.358884i \(-0.883157\pi\)
0.933382 0.358884i \(-0.116843\pi\)
\(18\) 0 0
\(19\) 266515. 0.469171 0.234586 0.972095i \(-0.424627\pi\)
0.234586 + 0.972095i \(0.424627\pi\)
\(20\) 0 0
\(21\) −407558. + 14498.6i −0.457302 + 0.0162682i
\(22\) 0 0
\(23\) 2.00717e6i 1.49558i −0.663937 0.747789i \(-0.731116\pi\)
0.663937 0.747789i \(-0.268884\pi\)
\(24\) 0 0
\(25\) 1.87029e6 0.957589
\(26\) 0 0
\(27\) −2.26264e6 −0.819367
\(28\) 0 0
\(29\) 1.51576e6 0.397960 0.198980 0.980004i \(-0.436237\pi\)
0.198980 + 0.980004i \(0.436237\pi\)
\(30\) 0 0
\(31\) 4.35389e6 0.846739 0.423370 0.905957i \(-0.360847\pi\)
0.423370 + 0.905957i \(0.360847\pi\)
\(32\) 0 0
\(33\) 2.18783e6i 0.321145i
\(34\) 0 0
\(35\) −64999.0 1.82713e6i −0.00732151 0.205809i
\(36\) 0 0
\(37\) −4.73155e6 −0.415046 −0.207523 0.978230i \(-0.566540\pi\)
−0.207523 + 0.978230i \(0.566540\pi\)
\(38\) 0 0
\(39\) 4.43676e6i 0.307097i
\(40\) 0 0
\(41\) 2.17361e7i 1.20131i −0.799509 0.600654i \(-0.794907\pi\)
0.799509 0.600654i \(-0.205093\pi\)
\(42\) 0 0
\(43\) 5.28283e6i 0.235645i 0.993035 + 0.117823i \(0.0375914\pi\)
−0.993035 + 0.117823i \(0.962409\pi\)
\(44\) 0 0
\(45\) 4.47876e6i 0.162818i
\(46\) 0 0
\(47\) 1.61100e7 0.481566 0.240783 0.970579i \(-0.422596\pi\)
0.240783 + 0.970579i \(0.422596\pi\)
\(48\) 0 0
\(49\) 4.02516e7 2.86747e6i 0.997472 0.0710587i
\(50\) 0 0
\(51\) 1.58682e7i 0.328444i
\(52\) 0 0
\(53\) −7.33344e7 −1.27663 −0.638317 0.769774i \(-0.720369\pi\)
−0.638317 + 0.769774i \(0.720369\pi\)
\(54\) 0 0
\(55\) −9.80832e6 −0.144532
\(56\) 0 0
\(57\) 1.71098e7 0.214688
\(58\) 0 0
\(59\) 5.42398e7 0.582752 0.291376 0.956609i \(-0.405887\pi\)
0.291376 + 0.956609i \(0.405887\pi\)
\(60\) 0 0
\(61\) 1.54440e8i 1.42816i −0.700065 0.714079i \(-0.746846\pi\)
0.700065 0.714079i \(-0.253154\pi\)
\(62\) 0 0
\(63\) 9.87917e7 3.51444e6i 0.790111 0.0281076i
\(64\) 0 0
\(65\) −1.98905e7 −0.138209
\(66\) 0 0
\(67\) 1.59079e8i 0.964444i 0.876049 + 0.482222i \(0.160170\pi\)
−0.876049 + 0.482222i \(0.839830\pi\)
\(68\) 0 0
\(69\) 1.28857e8i 0.684363i
\(70\) 0 0
\(71\) 1.43343e8i 0.669445i 0.942317 + 0.334722i \(0.108643\pi\)
−0.942317 + 0.334722i \(0.891357\pi\)
\(72\) 0 0
\(73\) 3.33960e8i 1.37639i −0.725526 0.688194i \(-0.758404\pi\)
0.725526 0.688194i \(-0.241596\pi\)
\(74\) 0 0
\(75\) 1.20069e8 0.438184
\(76\) 0 0
\(77\) −7.69651e6 2.16350e8i −0.0249509 0.701373i
\(78\) 0 0
\(79\) 4.15669e8i 1.20068i −0.799746 0.600338i \(-0.795033\pi\)
0.799746 0.600338i \(-0.204967\pi\)
\(80\) 0 0
\(81\) 1.61041e8 0.415675
\(82\) 0 0
\(83\) 6.30458e8 1.45816 0.729079 0.684430i \(-0.239949\pi\)
0.729079 + 0.684430i \(0.239949\pi\)
\(84\) 0 0
\(85\) 7.11390e7 0.147816
\(86\) 0 0
\(87\) 9.73092e7 0.182103
\(88\) 0 0
\(89\) 5.95650e8i 1.00632i −0.864193 0.503160i \(-0.832171\pi\)
0.864193 0.503160i \(-0.167829\pi\)
\(90\) 0 0
\(91\) −1.56079e7 4.38742e8i −0.0238594 0.670692i
\(92\) 0 0
\(93\) 2.79512e8 0.387460
\(94\) 0 0
\(95\) 7.67054e7i 0.0966206i
\(96\) 0 0
\(97\) 1.06914e9i 1.22621i −0.790003 0.613103i \(-0.789921\pi\)
0.790003 0.613103i \(-0.210079\pi\)
\(98\) 0 0
\(99\) 5.30328e8i 0.554864i
\(100\) 0 0
\(101\) 1.48238e9i 1.41747i −0.705476 0.708734i \(-0.749267\pi\)
0.705476 0.708734i \(-0.250733\pi\)
\(102\) 0 0
\(103\) 1.58348e9 1.38626 0.693132 0.720811i \(-0.256230\pi\)
0.693132 + 0.720811i \(0.256230\pi\)
\(104\) 0 0
\(105\) −4.17282e6 1.17299e8i −0.00335025 0.0941763i
\(106\) 0 0
\(107\) 1.79438e9i 1.32339i 0.749773 + 0.661695i \(0.230162\pi\)
−0.749773 + 0.661695i \(0.769838\pi\)
\(108\) 0 0
\(109\) −6.50786e8 −0.441590 −0.220795 0.975320i \(-0.570865\pi\)
−0.220795 + 0.975320i \(0.570865\pi\)
\(110\) 0 0
\(111\) −3.03757e8 −0.189921
\(112\) 0 0
\(113\) −8.96788e8 −0.517413 −0.258706 0.965956i \(-0.583296\pi\)
−0.258706 + 0.965956i \(0.583296\pi\)
\(114\) 0 0
\(115\) 5.77681e8 0.307998
\(116\) 0 0
\(117\) 1.07547e9i 0.530592i
\(118\) 0 0
\(119\) 5.58222e7 + 1.56917e9i 0.0255179 + 0.717314i
\(120\) 0 0
\(121\) 1.19655e9 0.507453
\(122\) 0 0
\(123\) 1.39542e9i 0.549707i
\(124\) 0 0
\(125\) 1.10041e9i 0.403144i
\(126\) 0 0
\(127\) 1.04283e7i 0.00355710i −0.999998 0.00177855i \(-0.999434\pi\)
0.999998 0.00177855i \(-0.000566130\pi\)
\(128\) 0 0
\(129\) 3.39148e8i 0.107829i
\(130\) 0 0
\(131\) −6.46180e6 −0.00191705 −0.000958523 1.00000i \(-0.500305\pi\)
−0.000958523 1.00000i \(0.500305\pi\)
\(132\) 0 0
\(133\) −1.69196e9 + 6.01901e7i −0.468874 + 0.0166799i
\(134\) 0 0
\(135\) 6.51207e8i 0.168740i
\(136\) 0 0
\(137\) 3.63532e9 0.881659 0.440829 0.897591i \(-0.354684\pi\)
0.440829 + 0.897591i \(0.354684\pi\)
\(138\) 0 0
\(139\) −2.48715e9 −0.565113 −0.282556 0.959251i \(-0.591182\pi\)
−0.282556 + 0.959251i \(0.591182\pi\)
\(140\) 0 0
\(141\) 1.03424e9 0.220360
\(142\) 0 0
\(143\) −2.35523e9 −0.471001
\(144\) 0 0
\(145\) 4.36249e8i 0.0819556i
\(146\) 0 0
\(147\) 2.58408e9 1.84087e8i 0.456434 0.0325158i
\(148\) 0 0
\(149\) −6.75454e9 −1.12268 −0.561342 0.827584i \(-0.689715\pi\)
−0.561342 + 0.827584i \(0.689715\pi\)
\(150\) 0 0
\(151\) 8.66313e8i 0.135606i −0.997699 0.0678030i \(-0.978401\pi\)
0.997699 0.0678030i \(-0.0215989\pi\)
\(152\) 0 0
\(153\) 3.84643e9i 0.567475i
\(154\) 0 0
\(155\) 1.25309e9i 0.174377i
\(156\) 0 0
\(157\) 7.59365e9i 0.997475i 0.866753 + 0.498738i \(0.166203\pi\)
−0.866753 + 0.498738i \(0.833797\pi\)
\(158\) 0 0
\(159\) −4.70794e9 −0.584176
\(160\) 0 0
\(161\) 4.53301e8 + 1.27424e10i 0.0531705 + 1.49463i
\(162\) 0 0
\(163\) 2.06374e9i 0.228987i −0.993424 0.114494i \(-0.963475\pi\)
0.993424 0.114494i \(-0.0365245\pi\)
\(164\) 0 0
\(165\) −6.29677e8 −0.0661363
\(166\) 0 0
\(167\) −7.54280e9 −0.750427 −0.375214 0.926938i \(-0.622431\pi\)
−0.375214 + 0.926938i \(0.622431\pi\)
\(168\) 0 0
\(169\) 5.82826e9 0.549603
\(170\) 0 0
\(171\) −4.14740e9 −0.370932
\(172\) 0 0
\(173\) 2.70454e9i 0.229554i 0.993391 + 0.114777i \(0.0366154\pi\)
−0.993391 + 0.114777i \(0.963385\pi\)
\(174\) 0 0
\(175\) −1.18734e10 + 4.22389e8i −0.956984 + 0.0340440i
\(176\) 0 0
\(177\) 3.48210e9 0.266662
\(178\) 0 0
\(179\) 2.66970e9i 0.194367i −0.995266 0.0971837i \(-0.969017\pi\)
0.995266 0.0971837i \(-0.0309834\pi\)
\(180\) 0 0
\(181\) 2.42989e10i 1.68281i 0.540409 + 0.841403i \(0.318270\pi\)
−0.540409 + 0.841403i \(0.681730\pi\)
\(182\) 0 0
\(183\) 9.91480e9i 0.653513i
\(184\) 0 0
\(185\) 1.36178e9i 0.0854741i
\(186\) 0 0
\(187\) 8.42355e9 0.503742
\(188\) 0 0
\(189\) 1.43642e10 5.10997e8i 0.818849 0.0291300i
\(190\) 0 0
\(191\) 1.18264e8i 0.00642986i 0.999995 + 0.00321493i \(0.00102335\pi\)
−0.999995 + 0.00321493i \(0.998977\pi\)
\(192\) 0 0
\(193\) −2.37032e10 −1.22970 −0.614851 0.788643i \(-0.710784\pi\)
−0.614851 + 0.788643i \(0.710784\pi\)
\(194\) 0 0
\(195\) −1.27694e9 −0.0632432
\(196\) 0 0
\(197\) −2.95896e9 −0.139972 −0.0699861 0.997548i \(-0.522295\pi\)
−0.0699861 + 0.997548i \(0.522295\pi\)
\(198\) 0 0
\(199\) −6.90176e9 −0.311976 −0.155988 0.987759i \(-0.549856\pi\)
−0.155988 + 0.987759i \(0.549856\pi\)
\(200\) 0 0
\(201\) 1.02126e10i 0.441321i
\(202\) 0 0
\(203\) −9.62271e9 + 3.42321e8i −0.397709 + 0.0141482i
\(204\) 0 0
\(205\) 6.25583e9 0.247396
\(206\) 0 0
\(207\) 3.12347e10i 1.18242i
\(208\) 0 0
\(209\) 9.08267e9i 0.329272i
\(210\) 0 0
\(211\) 3.12457e10i 1.08522i 0.839984 + 0.542611i \(0.182564\pi\)
−0.839984 + 0.542611i \(0.817436\pi\)
\(212\) 0 0
\(213\) 9.20239e9i 0.306332i
\(214\) 0 0
\(215\) −1.52044e9 −0.0485286
\(216\) 0 0
\(217\) −2.76404e10 + 9.83287e8i −0.846204 + 0.0301031i
\(218\) 0 0
\(219\) 2.14396e10i 0.629823i
\(220\) 0 0
\(221\) 1.70823e10 0.481706
\(222\) 0 0
\(223\) −1.52691e10 −0.413467 −0.206733 0.978397i \(-0.566283\pi\)
−0.206733 + 0.978397i \(0.566283\pi\)
\(224\) 0 0
\(225\) −2.91047e10 −0.757080
\(226\) 0 0
\(227\) 2.79932e10 0.699738 0.349869 0.936799i \(-0.386226\pi\)
0.349869 + 0.936799i \(0.386226\pi\)
\(228\) 0 0
\(229\) 6.19384e10i 1.48833i −0.667993 0.744167i \(-0.732847\pi\)
0.667993 0.744167i \(-0.267153\pi\)
\(230\) 0 0
\(231\) −4.94103e8 1.38893e10i −0.0114173 0.320942i
\(232\) 0 0
\(233\) 2.11411e10 0.469923 0.234961 0.972005i \(-0.424504\pi\)
0.234961 + 0.972005i \(0.424504\pi\)
\(234\) 0 0
\(235\) 4.63660e9i 0.0991733i
\(236\) 0 0
\(237\) 2.66852e10i 0.549419i
\(238\) 0 0
\(239\) 6.13506e10i 1.21627i −0.793835 0.608133i \(-0.791919\pi\)
0.793835 0.608133i \(-0.208081\pi\)
\(240\) 0 0
\(241\) 3.31588e10i 0.633173i −0.948564 0.316587i \(-0.897463\pi\)
0.948564 0.316587i \(-0.102537\pi\)
\(242\) 0 0
\(243\) 5.48741e10 1.00958
\(244\) 0 0
\(245\) 8.25283e8 + 1.15848e10i 0.0146338 + 0.205418i
\(246\) 0 0
\(247\) 1.84190e10i 0.314868i
\(248\) 0 0
\(249\) 4.04743e10 0.667240
\(250\) 0 0
\(251\) 6.31734e10 1.00462 0.502311 0.864687i \(-0.332483\pi\)
0.502311 + 0.864687i \(0.332483\pi\)
\(252\) 0 0
\(253\) 6.84030e10 1.04962
\(254\) 0 0
\(255\) 4.56700e9 0.0676395
\(256\) 0 0
\(257\) 1.06241e11i 1.51912i −0.650436 0.759561i \(-0.725414\pi\)
0.650436 0.759561i \(-0.274586\pi\)
\(258\) 0 0
\(259\) 3.00379e10 1.06858e9i 0.414783 0.0147556i
\(260\) 0 0
\(261\) −2.35877e10 −0.314632
\(262\) 0 0
\(263\) 9.82440e9i 0.126621i −0.997994 0.0633104i \(-0.979834\pi\)
0.997994 0.0633104i \(-0.0201658\pi\)
\(264\) 0 0
\(265\) 2.11063e10i 0.262909i
\(266\) 0 0
\(267\) 3.82397e10i 0.460483i
\(268\) 0 0
\(269\) 6.10530e10i 0.710922i −0.934691 0.355461i \(-0.884324\pi\)
0.934691 0.355461i \(-0.115676\pi\)
\(270\) 0 0
\(271\) −6.84815e10 −0.771279 −0.385639 0.922650i \(-0.626019\pi\)
−0.385639 + 0.922650i \(0.626019\pi\)
\(272\) 0 0
\(273\) −1.00200e9 2.81665e10i −0.0109178 0.306903i
\(274\) 0 0
\(275\) 6.37383e10i 0.672052i
\(276\) 0 0
\(277\) −1.08197e11 −1.10422 −0.552112 0.833770i \(-0.686178\pi\)
−0.552112 + 0.833770i \(0.686178\pi\)
\(278\) 0 0
\(279\) −6.77534e10 −0.669441
\(280\) 0 0
\(281\) −2.84930e10 −0.272621 −0.136311 0.990666i \(-0.543524\pi\)
−0.136311 + 0.990666i \(0.543524\pi\)
\(282\) 0 0
\(283\) 1.97471e11 1.83005 0.915027 0.403393i \(-0.132169\pi\)
0.915027 + 0.403393i \(0.132169\pi\)
\(284\) 0 0
\(285\) 4.92435e9i 0.0442127i
\(286\) 0 0
\(287\) 4.90890e9 + 1.37990e11i 0.0427086 + 1.20055i
\(288\) 0 0
\(289\) 5.74925e10 0.484809
\(290\) 0 0
\(291\) 6.86372e10i 0.561101i
\(292\) 0 0
\(293\) 1.11667e11i 0.885159i −0.896729 0.442580i \(-0.854063\pi\)
0.896729 0.442580i \(-0.145937\pi\)
\(294\) 0 0
\(295\) 1.56107e10i 0.120011i
\(296\) 0 0
\(297\) 7.71093e10i 0.575046i
\(298\) 0 0
\(299\) 1.38716e11 1.00371
\(300\) 0 0
\(301\) −1.19308e9 3.35377e10i −0.00837761 0.235496i
\(302\) 0 0
\(303\) 9.51662e10i 0.648621i
\(304\) 0 0
\(305\) 4.44492e10 0.294114
\(306\) 0 0
\(307\) 8.44746e10 0.542754 0.271377 0.962473i \(-0.412521\pi\)
0.271377 + 0.962473i \(0.412521\pi\)
\(308\) 0 0
\(309\) 1.01657e11 0.634342
\(310\) 0 0
\(311\) −2.39332e11 −1.45070 −0.725352 0.688379i \(-0.758323\pi\)
−0.725352 + 0.688379i \(0.758323\pi\)
\(312\) 0 0
\(313\) 5.65996e10i 0.333322i 0.986014 + 0.166661i \(0.0532986\pi\)
−0.986014 + 0.166661i \(0.946701\pi\)
\(314\) 0 0
\(315\) 1.01149e9 + 2.84331e10i 0.00578846 + 0.162715i
\(316\) 0 0
\(317\) −2.10774e11 −1.17233 −0.586166 0.810191i \(-0.699363\pi\)
−0.586166 + 0.810191i \(0.699363\pi\)
\(318\) 0 0
\(319\) 5.16561e10i 0.279295i
\(320\) 0 0
\(321\) 1.15196e11i 0.605571i
\(322\) 0 0
\(323\) 6.58759e10i 0.336756i
\(324\) 0 0
\(325\) 1.29256e11i 0.642654i
\(326\) 0 0
\(327\) −4.17793e10 −0.202068
\(328\) 0 0
\(329\) −1.02273e11 + 3.63831e9i −0.481262 + 0.0171206i
\(330\) 0 0
\(331\) 2.54637e9i 0.0116599i −0.999983 0.00582997i \(-0.998144\pi\)
0.999983 0.00582997i \(-0.00185575\pi\)
\(332\) 0 0
\(333\) 7.36305e10 0.328139
\(334\) 0 0
\(335\) −4.57844e10 −0.198617
\(336\) 0 0
\(337\) 1.13465e11 0.479212 0.239606 0.970870i \(-0.422982\pi\)
0.239606 + 0.970870i \(0.422982\pi\)
\(338\) 0 0
\(339\) −5.75722e10 −0.236763
\(340\) 0 0
\(341\) 1.48378e11i 0.594256i
\(342\) 0 0
\(343\) −2.54887e11 + 2.72944e10i −0.994315 + 0.106476i
\(344\) 0 0
\(345\) 3.70861e10 0.140937
\(346\) 0 0
\(347\) 3.94996e11i 1.46255i 0.682083 + 0.731275i \(0.261074\pi\)
−0.682083 + 0.731275i \(0.738926\pi\)
\(348\) 0 0
\(349\) 1.44178e11i 0.520217i 0.965579 + 0.260109i \(0.0837584\pi\)
−0.965579 + 0.260109i \(0.916242\pi\)
\(350\) 0 0
\(351\) 1.56372e11i 0.549891i
\(352\) 0 0
\(353\) 2.69572e11i 0.924035i 0.886871 + 0.462018i \(0.152874\pi\)
−0.886871 + 0.462018i \(0.847126\pi\)
\(354\) 0 0
\(355\) −4.12554e10 −0.137865
\(356\) 0 0
\(357\) 3.58369e9 + 1.00738e11i 0.0116768 + 0.328237i
\(358\) 0 0
\(359\) 1.80651e11i 0.574004i −0.957930 0.287002i \(-0.907341\pi\)
0.957930 0.287002i \(-0.0926586\pi\)
\(360\) 0 0
\(361\) −2.51657e11 −0.779879
\(362\) 0 0
\(363\) 7.68162e10 0.232206
\(364\) 0 0
\(365\) 9.61164e10 0.283452
\(366\) 0 0
\(367\) −2.91586e11 −0.839013 −0.419507 0.907752i \(-0.637797\pi\)
−0.419507 + 0.907752i \(0.637797\pi\)
\(368\) 0 0
\(369\) 3.38248e11i 0.949766i
\(370\) 0 0
\(371\) 4.65559e11 1.65619e10i 1.27583 0.0453866i
\(372\) 0 0
\(373\) 3.13721e11 0.839176 0.419588 0.907715i \(-0.362174\pi\)
0.419588 + 0.907715i \(0.362174\pi\)
\(374\) 0 0
\(375\) 7.06445e10i 0.184475i
\(376\) 0 0
\(377\) 1.04755e11i 0.267078i
\(378\) 0 0
\(379\) 6.63289e11i 1.65130i −0.564182 0.825650i \(-0.690808\pi\)
0.564182 0.825650i \(-0.309192\pi\)
\(380\) 0 0
\(381\) 6.69477e8i 0.00162769i
\(382\) 0 0
\(383\) −7.45087e11 −1.76935 −0.884673 0.466212i \(-0.845618\pi\)
−0.884673 + 0.466212i \(0.845618\pi\)
\(384\) 0 0
\(385\) 6.22675e10 2.21512e9i 0.144440 0.00513836i
\(386\) 0 0
\(387\) 8.22092e10i 0.186304i
\(388\) 0 0
\(389\) −4.14783e11 −0.918434 −0.459217 0.888324i \(-0.651870\pi\)
−0.459217 + 0.888324i \(0.651870\pi\)
\(390\) 0 0
\(391\) −4.96122e11 −1.07348
\(392\) 0 0
\(393\) −4.14836e8 −0.000877223
\(394\) 0 0
\(395\) 1.19633e11 0.247266
\(396\) 0 0
\(397\) 7.63768e11i 1.54314i 0.636147 + 0.771568i \(0.280527\pi\)
−0.636147 + 0.771568i \(0.719473\pi\)
\(398\) 0 0
\(399\) −1.08621e11 + 3.86410e9i −0.214553 + 0.00763256i
\(400\) 0 0
\(401\) 5.31196e11 1.02590 0.512951 0.858418i \(-0.328552\pi\)
0.512951 + 0.858418i \(0.328552\pi\)
\(402\) 0 0
\(403\) 3.00899e11i 0.568261i
\(404\) 0 0
\(405\) 4.63490e10i 0.0856038i
\(406\) 0 0
\(407\) 1.61248e11i 0.291286i
\(408\) 0 0
\(409\) 3.93122e11i 0.694660i 0.937743 + 0.347330i \(0.112912\pi\)
−0.937743 + 0.347330i \(0.887088\pi\)
\(410\) 0 0
\(411\) 2.33381e11 0.403439
\(412\) 0 0
\(413\) −3.44338e11 + 1.22496e10i −0.582384 + 0.0207179i
\(414\) 0 0
\(415\) 1.81451e11i 0.300292i
\(416\) 0 0
\(417\) −1.59671e11 −0.258590
\(418\) 0 0
\(419\) 5.50843e11 0.873101 0.436551 0.899680i \(-0.356200\pi\)
0.436551 + 0.899680i \(0.356200\pi\)
\(420\) 0 0
\(421\) −1.66826e11 −0.258817 −0.129409 0.991591i \(-0.541308\pi\)
−0.129409 + 0.991591i \(0.541308\pi\)
\(422\) 0 0
\(423\) −2.50698e11 −0.380731
\(424\) 0 0
\(425\) 4.62289e11i 0.687327i
\(426\) 0 0
\(427\) 3.48790e10 + 9.80454e11i 0.0507736 + 1.42726i
\(428\) 0 0
\(429\) −1.51202e11 −0.215526
\(430\) 0 0
\(431\) 7.48705e11i 1.04511i 0.852605 + 0.522556i \(0.175021\pi\)
−0.852605 + 0.522556i \(0.824979\pi\)
\(432\) 0 0
\(433\) 6.54583e11i 0.894889i −0.894312 0.447444i \(-0.852334\pi\)
0.894312 0.447444i \(-0.147666\pi\)
\(434\) 0 0
\(435\) 2.80064e10i 0.0375021i
\(436\) 0 0
\(437\) 5.34942e11i 0.701681i
\(438\) 0 0
\(439\) 1.27719e11 0.164121 0.0820605 0.996627i \(-0.473850\pi\)
0.0820605 + 0.996627i \(0.473850\pi\)
\(440\) 0 0
\(441\) −6.26379e11 + 4.46224e10i −0.788612 + 0.0561797i
\(442\) 0 0
\(443\) 7.65538e11i 0.944387i −0.881495 0.472193i \(-0.843462\pi\)
0.881495 0.472193i \(-0.156538\pi\)
\(444\) 0 0
\(445\) 1.71433e11 0.207240
\(446\) 0 0
\(447\) −4.33629e11 −0.513730
\(448\) 0 0
\(449\) 1.39923e12 1.62473 0.812367 0.583147i \(-0.198179\pi\)
0.812367 + 0.583147i \(0.198179\pi\)
\(450\) 0 0
\(451\) 7.40751e11 0.843098
\(452\) 0 0
\(453\) 5.56158e10i 0.0620520i
\(454\) 0 0
\(455\) 1.26274e11 4.49210e9i 0.138122 0.00491358i
\(456\) 0 0
\(457\) −8.65465e11 −0.928168 −0.464084 0.885791i \(-0.653616\pi\)
−0.464084 + 0.885791i \(0.653616\pi\)
\(458\) 0 0
\(459\) 5.59268e11i 0.588116i
\(460\) 0 0
\(461\) 9.53906e11i 0.983675i −0.870687 0.491837i \(-0.836325\pi\)
0.870687 0.491837i \(-0.163675\pi\)
\(462\) 0 0
\(463\) 1.91649e12i 1.93817i −0.246731 0.969084i \(-0.579356\pi\)
0.246731 0.969084i \(-0.420644\pi\)
\(464\) 0 0
\(465\) 8.04459e10i 0.0797932i
\(466\) 0 0
\(467\) 5.51891e11 0.536942 0.268471 0.963288i \(-0.413482\pi\)
0.268471 + 0.963288i \(0.413482\pi\)
\(468\) 0 0
\(469\) −3.59266e10 1.00990e12i −0.0342877 0.963834i
\(470\) 0 0
\(471\) 4.87499e11i 0.456436i
\(472\) 0 0
\(473\) −1.80035e11 −0.165380
\(474\) 0 0
\(475\) 4.98461e11 0.449273
\(476\) 0 0
\(477\) 1.14120e12 1.00932
\(478\) 0 0
\(479\) 4.76583e10 0.0413646 0.0206823 0.999786i \(-0.493416\pi\)
0.0206823 + 0.999786i \(0.493416\pi\)
\(480\) 0 0
\(481\) 3.26999e11i 0.278544i
\(482\) 0 0
\(483\) 2.91011e10 + 8.18038e11i 0.0243303 + 0.683930i
\(484\) 0 0
\(485\) 3.07709e11 0.252524
\(486\) 0 0
\(487\) 1.14633e11i 0.0923482i −0.998933 0.0461741i \(-0.985297\pi\)
0.998933 0.0461741i \(-0.0147029\pi\)
\(488\) 0 0
\(489\) 1.32489e11i 0.104782i
\(490\) 0 0
\(491\) 2.26182e12i 1.75627i −0.478410 0.878137i \(-0.658787\pi\)
0.478410 0.878137i \(-0.341213\pi\)
\(492\) 0 0
\(493\) 3.74658e11i 0.285643i
\(494\) 0 0
\(495\) 1.52633e11 0.114268
\(496\) 0 0
\(497\) −3.23728e10 9.10005e11i −0.0238000 0.669022i
\(498\) 0 0
\(499\) 2.67880e11i 0.193414i −0.995313 0.0967071i \(-0.969169\pi\)
0.995313 0.0967071i \(-0.0308310\pi\)
\(500\) 0 0
\(501\) −4.84235e11 −0.343389
\(502\) 0 0
\(503\) 2.28139e12 1.58907 0.794537 0.607216i \(-0.207714\pi\)
0.794537 + 0.607216i \(0.207714\pi\)
\(504\) 0 0
\(505\) 4.26642e11 0.291912
\(506\) 0 0
\(507\) 3.74164e11 0.251493
\(508\) 0 0
\(509\) 1.54692e12i 1.02150i −0.859729 0.510750i \(-0.829368\pi\)
0.859729 0.510750i \(-0.170632\pi\)
\(510\) 0 0
\(511\) 7.54218e10 + 2.12012e12i 0.0489331 + 1.37552i
\(512\) 0 0
\(513\) −6.03029e11 −0.384423
\(514\) 0 0
\(515\) 4.55740e11i 0.285486i
\(516\) 0 0
\(517\) 5.49019e11i 0.337971i
\(518\) 0 0
\(519\) 1.73627e11i 0.105042i
\(520\) 0 0
\(521\) 3.13568e12i 1.86450i −0.361817 0.932249i \(-0.617844\pi\)
0.361817 0.932249i \(-0.382156\pi\)
\(522\) 0 0
\(523\) −3.78585e11 −0.221261 −0.110631 0.993862i \(-0.535287\pi\)
−0.110631 + 0.993862i \(0.535287\pi\)
\(524\) 0 0
\(525\) −7.62253e11 + 2.71166e10i −0.437907 + 0.0155782i
\(526\) 0 0
\(527\) 1.07617e12i 0.607762i
\(528\) 0 0
\(529\) −2.22758e12 −1.23675
\(530\) 0 0
\(531\) −8.44057e11 −0.460730
\(532\) 0 0
\(533\) 1.50219e12 0.806217
\(534\) 0 0
\(535\) −5.16438e11 −0.272537
\(536\) 0 0
\(537\) 1.71390e11i 0.0889408i
\(538\) 0 0
\(539\) 9.77216e10 + 1.37175e12i 0.0498702 + 0.700043i
\(540\) 0 0
\(541\) 3.00642e12 1.50890 0.754452 0.656355i \(-0.227903\pi\)
0.754452 + 0.656355i \(0.227903\pi\)
\(542\) 0 0
\(543\) 1.55995e12i 0.770037i
\(544\) 0 0
\(545\) 1.87302e11i 0.0909406i
\(546\) 0 0
\(547\) 2.99127e12i 1.42861i −0.699837 0.714303i \(-0.746744\pi\)
0.699837 0.714303i \(-0.253256\pi\)
\(548\) 0 0
\(549\) 2.40334e12i 1.12912i
\(550\) 0 0
\(551\) 4.03974e11 0.186712
\(552\) 0 0
\(553\) 9.38752e10 + 2.63885e12i 0.0426862 + 1.19992i
\(554\) 0 0
\(555\) 8.74240e10i 0.0391122i
\(556\) 0 0
\(557\) −4.99847e11 −0.220033 −0.110017 0.993930i \(-0.535090\pi\)
−0.110017 + 0.993930i \(0.535090\pi\)
\(558\) 0 0
\(559\) −3.65098e11 −0.158145
\(560\) 0 0
\(561\) 5.40777e11 0.230508
\(562\) 0 0
\(563\) 2.04877e12 0.859421 0.429710 0.902967i \(-0.358616\pi\)
0.429710 + 0.902967i \(0.358616\pi\)
\(564\) 0 0
\(565\) 2.58103e11i 0.106555i
\(566\) 0 0
\(567\) −1.02236e12 + 3.63697e10i −0.415413 + 0.0147780i
\(568\) 0 0
\(569\) −5.34800e11 −0.213888 −0.106944 0.994265i \(-0.534107\pi\)
−0.106944 + 0.994265i \(0.534107\pi\)
\(570\) 0 0
\(571\) 4.82904e12i 1.90107i 0.310614 + 0.950536i \(0.399465\pi\)
−0.310614 + 0.950536i \(0.600535\pi\)
\(572\) 0 0
\(573\) 7.59233e9i 0.00294225i
\(574\) 0 0
\(575\) 3.75399e12i 1.43215i
\(576\) 0 0
\(577\) 2.09003e12i 0.784987i 0.919755 + 0.392493i \(0.128387\pi\)
−0.919755 + 0.392493i \(0.871613\pi\)
\(578\) 0 0
\(579\) −1.52171e12 −0.562700
\(580\) 0 0
\(581\) −4.00242e12 + 1.42383e11i −1.45724 + 0.0518401i
\(582\) 0 0
\(583\) 2.49919e12i 0.895964i
\(584\) 0 0
\(585\) 3.09528e11 0.109270
\(586\) 0 0
\(587\) −3.60556e12 −1.25343 −0.626717 0.779247i \(-0.715602\pi\)
−0.626717 + 0.779247i \(0.715602\pi\)
\(588\) 0 0
\(589\) 1.16038e12 0.397265
\(590\) 0 0
\(591\) −1.89960e11 −0.0640500
\(592\) 0 0
\(593\) 4.18309e11i 0.138916i −0.997585 0.0694579i \(-0.977873\pi\)
0.997585 0.0694579i \(-0.0221269\pi\)
\(594\) 0 0
\(595\) −4.51621e11 + 1.60661e10i −0.147723 + 0.00525514i
\(596\) 0 0
\(597\) −4.43081e11 −0.142757
\(598\) 0 0
\(599\) 5.90002e12i 1.87255i 0.351271 + 0.936274i \(0.385750\pi\)
−0.351271 + 0.936274i \(0.614250\pi\)
\(600\) 0 0
\(601\) 3.83011e12i 1.19750i 0.800935 + 0.598752i \(0.204336\pi\)
−0.800935 + 0.598752i \(0.795664\pi\)
\(602\) 0 0
\(603\) 2.47552e12i 0.762499i
\(604\) 0 0
\(605\) 3.44376e11i 0.104504i
\(606\) 0 0
\(607\) 1.69105e12 0.505600 0.252800 0.967519i \(-0.418649\pi\)
0.252800 + 0.967519i \(0.418649\pi\)
\(608\) 0 0
\(609\) −6.17761e11 + 2.19764e10i −0.181988 + 0.00647410i
\(610\) 0 0
\(611\) 1.11337e12i 0.323187i
\(612\) 0 0
\(613\) −3.90342e12 −1.11654 −0.558269 0.829660i \(-0.688534\pi\)
−0.558269 + 0.829660i \(0.688534\pi\)
\(614\) 0 0
\(615\) 4.01613e11 0.113206
\(616\) 0 0
\(617\) 3.98086e12 1.10584 0.552921 0.833234i \(-0.313513\pi\)
0.552921 + 0.833234i \(0.313513\pi\)
\(618\) 0 0
\(619\) −5.63198e12 −1.54189 −0.770945 0.636902i \(-0.780215\pi\)
−0.770945 + 0.636902i \(0.780215\pi\)
\(620\) 0 0
\(621\) 4.54150e12i 1.22543i
\(622\) 0 0
\(623\) 1.34522e11 + 3.78144e12i 0.0357765 + 1.00568i
\(624\) 0 0
\(625\) 3.33620e12 0.874566
\(626\) 0 0
\(627\) 5.83091e11i 0.150672i
\(628\) 0 0
\(629\) 1.16952e12i 0.297906i
\(630\) 0 0
\(631\) 6.26554e12i 1.57335i −0.617365 0.786677i \(-0.711800\pi\)
0.617365 0.786677i \(-0.288200\pi\)
\(632\) 0 0
\(633\) 2.00592e12i 0.496588i
\(634\) 0 0
\(635\) 3.00134e9 0.000732545
\(636\) 0 0
\(637\) 1.98172e11 + 2.78180e12i 0.0476886 + 0.669420i
\(638\) 0 0
\(639\) 2.23065e12i 0.529270i
\(640\) 0 0
\(641\) −2.49293e12 −0.583243 −0.291622 0.956534i \(-0.594195\pi\)
−0.291622 + 0.956534i \(0.594195\pi\)
\(642\) 0 0
\(643\) −6.89253e12 −1.59012 −0.795058 0.606533i \(-0.792560\pi\)
−0.795058 + 0.606533i \(0.792560\pi\)
\(644\) 0 0
\(645\) −9.76098e10 −0.0222062
\(646\) 0 0
\(647\) 4.30867e12 0.966661 0.483330 0.875438i \(-0.339427\pi\)
0.483330 + 0.875438i \(0.339427\pi\)
\(648\) 0 0
\(649\) 1.84845e12i 0.408985i
\(650\) 0 0
\(651\) −1.77446e12 + 6.31253e10i −0.387215 + 0.0137749i
\(652\) 0 0
\(653\) 5.34169e11 0.114966 0.0574830 0.998346i \(-0.481692\pi\)
0.0574830 + 0.998346i \(0.481692\pi\)
\(654\) 0 0
\(655\) 1.85976e9i 0.000394795i
\(656\) 0 0
\(657\) 5.19694e12i 1.08819i
\(658\) 0 0
\(659\) 5.44371e12i 1.12437i −0.827010 0.562187i \(-0.809960\pi\)
0.827010 0.562187i \(-0.190040\pi\)
\(660\) 0 0
\(661\) 2.00297e12i 0.408102i 0.978960 + 0.204051i \(0.0654108\pi\)
−0.978960 + 0.204051i \(0.934589\pi\)
\(662\) 0 0
\(663\) 1.09666e12 0.220424
\(664\) 0 0
\(665\) −1.73232e10 4.86959e11i −0.00343504 0.0965595i
\(666\) 0 0
\(667\) 3.04239e12i 0.595181i
\(668\) 0 0
\(669\) −9.80247e11 −0.189199
\(670\) 0 0
\(671\) 5.26322e12 1.00231
\(672\) 0 0
\(673\) 7.56935e12 1.42230 0.711149 0.703041i \(-0.248175\pi\)
0.711149 + 0.703041i \(0.248175\pi\)
\(674\) 0 0
\(675\) −4.23180e12 −0.784617
\(676\) 0 0
\(677\) 9.06404e12i 1.65834i −0.558999 0.829169i \(-0.688814\pi\)
0.558999 0.829169i \(-0.311186\pi\)
\(678\) 0 0
\(679\) 2.41457e11 + 6.78739e12i 0.0435939 + 1.22543i
\(680\) 0 0
\(681\) 1.79711e12 0.320194
\(682\) 0 0
\(683\) 1.56867e12i 0.275829i 0.990444 + 0.137914i \(0.0440399\pi\)
−0.990444 + 0.137914i \(0.955960\pi\)
\(684\) 0 0
\(685\) 1.04628e12i 0.181568i
\(686\) 0 0
\(687\) 3.97634e12i 0.681048i
\(688\) 0 0
\(689\) 5.06817e12i 0.856770i
\(690\) 0 0
\(691\) −3.57705e12 −0.596862 −0.298431 0.954431i \(-0.596463\pi\)
−0.298431 + 0.954431i \(0.596463\pi\)
\(692\) 0 0
\(693\) 1.19770e11 + 3.36675e12i 0.0197264 + 0.554513i
\(694\) 0 0
\(695\) 7.15822e11i 0.116379i
\(696\) 0 0
\(697\) −5.37261e12 −0.862260
\(698\) 0 0
\(699\) 1.35722e12 0.215032
\(700\) 0 0
\(701\) 1.48104e12 0.231652 0.115826 0.993270i \(-0.463048\pi\)
0.115826 + 0.993270i \(0.463048\pi\)
\(702\) 0 0
\(703\) −1.26103e12 −0.194727
\(704\) 0 0
\(705\) 2.97662e11i 0.0453808i
\(706\) 0 0
\(707\) 3.34782e11 + 9.41079e12i 0.0503935 + 1.41657i
\(708\) 0 0
\(709\) −5.10442e12 −0.758644 −0.379322 0.925265i \(-0.623843\pi\)
−0.379322 + 0.925265i \(0.623843\pi\)
\(710\) 0 0
\(711\) 6.46848e12i 0.949268i
\(712\) 0 0
\(713\) 8.73899e12i 1.26636i
\(714\) 0 0
\(715\) 6.77856e11i 0.0969975i
\(716\) 0 0
\(717\) 3.93860e12i 0.556552i
\(718\) 0 0
\(719\) 9.65335e12 1.34709 0.673547 0.739144i \(-0.264770\pi\)
0.673547 + 0.739144i \(0.264770\pi\)
\(720\) 0 0
\(721\) −1.00526e13 + 3.57616e11i −1.38539 + 0.0492842i
\(722\) 0 0
\(723\) 2.12874e12i 0.289734i
\(724\) 0 0
\(725\) 2.83492e12 0.381083
\(726\) 0 0
\(727\) 8.02535e12 1.06551 0.532757 0.846268i \(-0.321156\pi\)
0.532757 + 0.846268i \(0.321156\pi\)
\(728\) 0 0
\(729\) 3.53048e11 0.0462978
\(730\) 0 0
\(731\) 1.30578e12 0.169139
\(732\) 0 0
\(733\) 5.83361e12i 0.746396i 0.927752 + 0.373198i \(0.121739\pi\)
−0.927752 + 0.373198i \(0.878261\pi\)
\(734\) 0 0
\(735\) 5.29817e10 + 7.43721e11i 0.00669627 + 0.0939976i
\(736\) 0 0
\(737\) −5.42131e12 −0.676863
\(738\) 0 0
\(739\) 4.02467e12i 0.496399i 0.968709 + 0.248199i \(0.0798388\pi\)
−0.968709 + 0.248199i \(0.920161\pi\)
\(740\) 0 0
\(741\) 1.18247e12i 0.144081i
\(742\) 0 0
\(743\) 1.35541e13i 1.63162i −0.578319 0.815811i \(-0.696291\pi\)
0.578319 0.815811i \(-0.303709\pi\)
\(744\) 0 0
\(745\) 1.94401e12i 0.231204i
\(746\) 0 0
\(747\) −9.81092e12 −1.15283
\(748\) 0 0
\(749\) −4.05245e11 1.13915e13i −0.0470489 1.32255i
\(750\) 0 0
\(751\) 8.57077e12i 0.983196i 0.870822 + 0.491598i \(0.163587\pi\)
−0.870822 + 0.491598i \(0.836413\pi\)
\(752\) 0 0
\(753\) 4.05562e12 0.459706
\(754\) 0 0
\(755\) 2.49332e11 0.0279265
\(756\) 0 0
\(757\) 1.65330e13 1.82987 0.914933 0.403605i \(-0.132243\pi\)
0.914933 + 0.403605i \(0.132243\pi\)
\(758\) 0 0
\(759\) 4.39135e12 0.480297
\(760\) 0 0
\(761\) 1.17954e13i 1.27492i −0.770483 0.637461i \(-0.779985\pi\)
0.770483 0.637461i \(-0.220015\pi\)
\(762\) 0 0
\(763\) 4.13147e12 1.46974e11i 0.441311 0.0156993i
\(764\) 0 0
\(765\) −1.10704e12 −0.116865
\(766\) 0 0
\(767\) 3.74853e12i 0.391094i
\(768\) 0 0
\(769\) 6.20355e12i 0.639694i −0.947469 0.319847i \(-0.896369\pi\)
0.947469 0.319847i \(-0.103631\pi\)
\(770\) 0 0
\(771\) 6.82048e12i 0.695137i
\(772\) 0 0
\(773\) 1.14032e13i 1.14873i −0.818600 0.574364i \(-0.805249\pi\)
0.818600 0.574364i \(-0.194751\pi\)
\(774\) 0 0
\(775\) 8.14304e12 0.810828
\(776\) 0 0
\(777\) 1.92838e12 6.86009e10i 0.189801 0.00675204i
\(778\) 0 0
\(779\) 5.79300e12i 0.563619i
\(780\) 0 0
\(781\) −4.88504e12 −0.469828
\(782\) 0 0
\(783\) −3.42962e12 −0.326076
\(784\) 0 0
\(785\) −2.18552e12 −0.205419
\(786\) 0 0
\(787\) 9.61146e12 0.893106 0.446553 0.894757i \(-0.352651\pi\)
0.446553 + 0.894757i \(0.352651\pi\)
\(788\) 0 0
\(789\) 6.30709e11i 0.0579406i
\(790\) 0 0
\(791\) 5.69320e12 2.02532e11i 0.517085 0.0183950i
\(792\) 0 0
\(793\) 1.06734e13 0.958461
\(794\) 0 0
\(795\) 1.35499e12i 0.120305i
\(796\) 0 0
\(797\) 1.75710e13i 1.54253i −0.636512 0.771267i \(-0.719623\pi\)
0.636512 0.771267i \(-0.280377\pi\)
\(798\) 0 0
\(799\) 3.98199e12i 0.345653i
\(800\) 0 0
\(801\) 9.26925e12i 0.795607i
\(802\) 0 0
\(803\) 1.13811e13 0.965973
\(804\) 0 0
\(805\) −3.66737e12 + 1.30464e11i −0.307803 + 0.0109499i
\(806\) 0 0
\(807\) 3.91950e12i 0.325311i
\(808\) 0 0
\(809\) −7.36795e12 −0.604753 −0.302377 0.953189i \(-0.597780\pi\)
−0.302377 + 0.953189i \(0.597780\pi\)
\(810\) 0 0
\(811\) −1.66690e13 −1.35306 −0.676529 0.736416i \(-0.736517\pi\)
−0.676529 + 0.736416i \(0.736517\pi\)
\(812\) 0 0
\(813\) −4.39639e12 −0.352930
\(814\) 0 0
\(815\) 5.93962e11 0.0471574
\(816\) 0 0
\(817\) 1.40796e12i 0.110558i
\(818\) 0 0
\(819\) 2.42884e11 + 6.82753e12i 0.0188635 + 0.530256i
\(820\) 0 0
\(821\) 1.60784e13 1.23509 0.617545 0.786535i \(-0.288127\pi\)
0.617545 + 0.786535i \(0.288127\pi\)
\(822\) 0 0
\(823\) 8.77883e12i 0.667017i 0.942747 + 0.333509i \(0.108233\pi\)
−0.942747 + 0.333509i \(0.891767\pi\)
\(824\) 0 0
\(825\) 4.09189e12i 0.307525i
\(826\) 0 0
\(827\) 1.57071e12i 0.116767i −0.998294 0.0583836i \(-0.981405\pi\)
0.998294 0.0583836i \(-0.0185947\pi\)
\(828\) 0 0
\(829\) 5.52683e12i 0.406425i 0.979135 + 0.203213i \(0.0651383\pi\)
−0.979135 + 0.203213i \(0.934862\pi\)
\(830\) 0 0
\(831\) −6.94607e12 −0.505283
\(832\) 0 0
\(833\) −7.08767e11 9.94918e12i −0.0510036 0.715953i
\(834\) 0 0
\(835\) 2.17088e12i 0.154542i
\(836\) 0 0
\(837\) −9.85128e12 −0.693790
\(838\) 0 0
\(839\) 2.39028e13 1.66540 0.832702 0.553721i \(-0.186793\pi\)
0.832702 + 0.553721i \(0.186793\pi\)
\(840\) 0 0
\(841\) −1.22096e13 −0.841627
\(842\) 0 0
\(843\) −1.82920e12 −0.124749
\(844\) 0 0
\(845\) 1.67742e12i 0.113185i
\(846\) 0 0
\(847\) −7.59620e12 + 2.70229e11i −0.507132 + 0.0180409i
\(848\) 0 0
\(849\) 1.26773e13 0.837416
\(850\) 0 0
\(851\) 9.49703e12i 0.620733i
\(852\) 0 0
\(853\) 1.07468e13i 0.695038i 0.937673 + 0.347519i \(0.112976\pi\)
−0.937673 + 0.347519i \(0.887024\pi\)
\(854\) 0 0
\(855\) 1.19366e12i 0.0763893i
\(856\) 0 0
\(857\) 1.91474e12i 0.121254i 0.998160 + 0.0606270i \(0.0193100\pi\)
−0.998160 + 0.0606270i \(0.980690\pi\)
\(858\) 0 0
\(859\) −2.48486e13 −1.55716 −0.778578 0.627548i \(-0.784059\pi\)
−0.778578 + 0.627548i \(0.784059\pi\)
\(860\) 0 0
\(861\) 3.15143e11 + 8.85872e12i 0.0195431 + 0.549360i
\(862\) 0 0
\(863\) 6.46899e12i 0.396997i −0.980101 0.198499i \(-0.936393\pi\)
0.980101 0.198499i \(-0.0636066\pi\)
\(864\) 0 0
\(865\) −7.78389e11 −0.0472742
\(866\) 0 0
\(867\) 3.69092e12 0.221844
\(868\) 0 0
\(869\) 1.41657e13 0.842656
\(870\) 0 0
\(871\) −1.09940e13 −0.647254
\(872\) 0 0
\(873\) 1.66376e13i 0.969452i
\(874\) 0 0
\(875\) −2.48518e11 6.98589e12i −0.0143325 0.402889i
\(876\) 0 0
\(877\) −2.20170e13 −1.25678 −0.628392 0.777897i \(-0.716286\pi\)
−0.628392 + 0.777897i \(0.716286\pi\)
\(878\) 0 0
\(879\) 7.16884e12i 0.405041i
\(880\) 0 0
\(881\) 1.93564e13i 1.08251i −0.840858 0.541256i \(-0.817949\pi\)
0.840858 0.541256i \(-0.182051\pi\)
\(882\) 0 0
\(883\) 1.42982e13i 0.791514i −0.918355 0.395757i \(-0.870482\pi\)
0.918355 0.395757i \(-0.129518\pi\)
\(884\) 0 0
\(885\) 1.00218e12i 0.0549161i
\(886\) 0 0
\(887\) −2.49671e12 −0.135429 −0.0677144 0.997705i \(-0.521571\pi\)
−0.0677144 + 0.997705i \(0.521571\pi\)
\(888\) 0 0
\(889\) 2.35513e9 + 6.62032e10i 0.000126461 + 0.00355485i
\(890\) 0 0
\(891\) 5.48817e12i 0.291728i
\(892\) 0 0
\(893\) 4.29357e12 0.225937
\(894\) 0 0
\(895\) 7.68362e11 0.0400278
\(896\) 0 0
\(897\) 8.90533e12 0.459287
\(898\) 0 0
\(899\) 6.59946e12 0.336969
\(900\) 0 0
\(901\) 1.81264e13i 0.916327i
\(902\) 0 0
\(903\) −7.65936e10 2.15306e12i −0.00383352 0.107761i
\(904\) 0 0
\(905\) −6.99344e12 −0.346555
\(906\) 0 0
\(907\) 2.22910e13i 1.09369i 0.837232 + 0.546847i \(0.184172\pi\)
−0.837232 + 0.546847i \(0.815828\pi\)
\(908\) 0 0
\(909\) 2.30682e13i 1.12066i
\(910\) 0 0
\(911\) 2.49419e13i 1.19977i 0.800087 + 0.599884i \(0.204787\pi\)
−0.800087 + 0.599884i \(0.795213\pi\)
\(912\) 0 0
\(913\) 2.14856e13i 1.02336i
\(914\) 0 0
\(915\) 2.85356e12 0.134584
\(916\) 0 0
\(917\) 4.10223e10 1.45934e9i 0.00191583 6.81545e-5i
\(918\) 0 0
\(919\) 1.42887e13i 0.660803i −0.943841 0.330401i \(-0.892816\pi\)
0.943841 0.330401i \(-0.107184\pi\)
\(920\) 0 0
\(921\) 5.42312e12 0.248360
\(922\) 0 0
\(923\) −9.90650e12 −0.449275
\(924\) 0 0
\(925\) −8.84938e12 −0.397443
\(926\) 0 0
\(927\) −2.46415e13 −1.09599
\(928\) 0 0
\(929\) 1.57456e13i 0.693568i 0.937945 + 0.346784i \(0.112726\pi\)
−0.937945 + 0.346784i \(0.887274\pi\)
\(930\) 0 0
\(931\) 1.07277e13 7.64226e11i 0.467985 0.0333387i
\(932\) 0 0
\(933\) −1.53647e13 −0.663829
\(934\) 0 0
\(935\) 2.42437e12i 0.103740i
\(936\) 0 0
\(937\) 3.54742e13i 1.50344i 0.659485 + 0.751718i \(0.270774\pi\)
−0.659485 + 0.751718i \(0.729226\pi\)
\(938\) 0 0
\(939\) 3.63360e12i 0.152525i
\(940\) 0 0
\(941\) 6.19787e11i 0.0257685i −0.999917 0.0128843i \(-0.995899\pi\)
0.999917 0.0128843i \(-0.00410130\pi\)
\(942\) 0 0
\(943\) −4.36280e13 −1.79665
\(944\) 0 0
\(945\) 1.47069e11 + 4.13415e12i 0.00599900 + 0.168633i
\(946\) 0 0
\(947\) 2.04685e13i 0.827010i 0.910502 + 0.413505i \(0.135696\pi\)
−0.910502 + 0.413505i \(0.864304\pi\)
\(948\) 0 0
\(949\) 2.30801e13 0.923717
\(950\) 0 0
\(951\) −1.35313e13 −0.536449
\(952\) 0 0
\(953\) −9.58358e12 −0.376366 −0.188183 0.982134i \(-0.560260\pi\)
−0.188183 + 0.982134i \(0.560260\pi\)
\(954\) 0 0
\(955\) −3.40373e10 −0.00132416
\(956\) 0 0
\(957\) 3.31623e12i 0.127803i
\(958\) 0 0
\(959\) −2.30786e13 + 8.21005e11i −0.881101 + 0.0313446i
\(960\) 0 0
\(961\) −7.48328e12 −0.283033
\(962\) 0 0
\(963\) 2.79234e13i 1.04629i
\(964\) 0 0
\(965\) 6.82199e12i 0.253244i
\(966\) 0 0
\(967\) 1.42925e13i 0.525641i 0.964845 + 0.262820i \(0.0846526\pi\)
−0.964845 + 0.262820i \(0.915347\pi\)
\(968\) 0 0
\(969\) 4.22912e12i 0.154096i
\(970\) 0 0
\(971\) 3.25124e13 1.17371 0.586856 0.809691i \(-0.300365\pi\)
0.586856 + 0.809691i \(0.300365\pi\)
\(972\) 0 0
\(973\) 1.57895e13 5.61700e11i 0.564755 0.0200908i
\(974\) 0 0
\(975\) 8.29804e12i 0.294073i
\(976\) 0 0
\(977\) −2.86797e13 −1.00704 −0.503522 0.863982i \(-0.667963\pi\)
−0.503522 + 0.863982i \(0.667963\pi\)
\(978\) 0 0
\(979\) 2.02993e13 0.706252
\(980\) 0 0
\(981\) 1.01273e13 0.349125
\(982\) 0 0
\(983\) 4.65199e12 0.158909 0.0794545 0.996838i \(-0.474682\pi\)
0.0794545 + 0.996838i \(0.474682\pi\)
\(984\) 0 0
\(985\) 8.51615e11i 0.0288257i
\(986\) 0 0
\(987\) −6.56578e12 + 2.33573e11i −0.220221 + 0.00783421i
\(988\) 0 0
\(989\) 1.06035e13 0.352426
\(990\) 0 0
\(991\) 5.56778e13i 1.83380i −0.399122 0.916898i \(-0.630685\pi\)
0.399122 0.916898i \(-0.369315\pi\)
\(992\) 0 0
\(993\) 1.63473e11i 0.00533548i
\(994\) 0 0
\(995\) 1.98639e12i 0.0642480i
\(996\) 0 0
\(997\) 4.00732e13i 1.28448i 0.766505 + 0.642238i \(0.221994\pi\)
−0.766505 + 0.642238i \(0.778006\pi\)
\(998\) 0 0
\(999\) 1.07058e13 0.340075
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 112.10.f.b.111.15 yes 24
4.3 odd 2 inner 112.10.f.b.111.9 24
7.6 odd 2 inner 112.10.f.b.111.10 yes 24
28.27 even 2 inner 112.10.f.b.111.16 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.10.f.b.111.9 24 4.3 odd 2 inner
112.10.f.b.111.10 yes 24 7.6 odd 2 inner
112.10.f.b.111.15 yes 24 1.1 even 1 trivial
112.10.f.b.111.16 yes 24 28.27 even 2 inner