Properties

Label 112.10.f.b.111.13
Level $112$
Weight $10$
Character 112.111
Analytic conductor $57.684$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [112,10,Mod(111,112)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(112, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("112.111"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 112 = 2^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 112.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(57.6840136504\)
Analytic rank: \(0\)
Dimension: \(24\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 111.13
Character \(\chi\) \(=\) 112.111
Dual form 112.10.f.b.111.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+52.7793 q^{3} -1902.89i q^{5} +(2477.17 + 5849.55i) q^{7} -16897.3 q^{9} -63301.8i q^{11} +186091. i q^{13} -100433. i q^{15} +216886. i q^{17} -184637. q^{19} +(130744. + 308735. i) q^{21} +1.40080e6i q^{23} -1.66787e6 q^{25} -1.93069e6 q^{27} -36135.1 q^{29} +4.89648e6 q^{31} -3.34103e6i q^{33} +(1.11311e7 - 4.71380e6i) q^{35} +1.90500e7 q^{37} +9.82177e6i q^{39} -1.47387e7i q^{41} +6.75137e6i q^{43} +3.21538e7i q^{45} -3.59822e7 q^{47} +(-2.80808e7 + 2.89807e7i) q^{49} +1.14471e7i q^{51} +4.50817e7 q^{53} -1.20456e8 q^{55} -9.74500e6 q^{57} +1.05991e8 q^{59} +4.47002e6i q^{61} +(-4.18577e7 - 9.88418e7i) q^{63} +3.54112e8 q^{65} +3.11283e8i q^{67} +7.39331e7i q^{69} +4.58231e7i q^{71} +1.23135e8i q^{73} -8.80292e7 q^{75} +(3.70287e8 - 1.56810e8i) q^{77} +2.43378e8i q^{79} +2.30690e8 q^{81} +5.66057e8 q^{83} +4.12710e8 q^{85} -1.90719e6 q^{87} +2.22812e8i q^{89} +(-1.08855e9 + 4.60981e8i) q^{91} +2.58433e8 q^{93} +3.51344e8i q^{95} +1.51339e9i q^{97} +1.06963e9i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 155768 q^{9} + 220672 q^{21} - 9187656 q^{25} + 14881104 q^{29} + 2829456 q^{37} - 214802472 q^{49} + 327087120 q^{53} + 238245440 q^{57} - 495797952 q^{65} + 347010000 q^{77} + 1816013720 q^{81}+ \cdots + 288442240 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/112\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(17\) \(85\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 52.7793 0.376199 0.188100 0.982150i \(-0.439767\pi\)
0.188100 + 0.982150i \(0.439767\pi\)
\(4\) 0 0
\(5\) 1902.89i 1.36160i −0.732470 0.680799i \(-0.761633\pi\)
0.732470 0.680799i \(-0.238367\pi\)
\(6\) 0 0
\(7\) 2477.17 + 5849.55i 0.389956 + 0.920834i
\(8\) 0 0
\(9\) −16897.3 −0.858474
\(10\) 0 0
\(11\) 63301.8i 1.30361i −0.758385 0.651807i \(-0.774011\pi\)
0.758385 0.651807i \(-0.225989\pi\)
\(12\) 0 0
\(13\) 186091.i 1.80709i 0.428488 + 0.903547i \(0.359046\pi\)
−0.428488 + 0.903547i \(0.640954\pi\)
\(14\) 0 0
\(15\) 100433.i 0.512233i
\(16\) 0 0
\(17\) 216886.i 0.629812i 0.949123 + 0.314906i \(0.101973\pi\)
−0.949123 + 0.314906i \(0.898027\pi\)
\(18\) 0 0
\(19\) −184637. −0.325032 −0.162516 0.986706i \(-0.551961\pi\)
−0.162516 + 0.986706i \(0.551961\pi\)
\(20\) 0 0
\(21\) 130744. + 308735.i 0.146701 + 0.346417i
\(22\) 0 0
\(23\) 1.40080e6i 1.04376i 0.853020 + 0.521879i \(0.174769\pi\)
−0.853020 + 0.521879i \(0.825231\pi\)
\(24\) 0 0
\(25\) −1.66787e6 −0.853951
\(26\) 0 0
\(27\) −1.93069e6 −0.699157
\(28\) 0 0
\(29\) −36135.1 −0.00948721 −0.00474361 0.999989i \(-0.501510\pi\)
−0.00474361 + 0.999989i \(0.501510\pi\)
\(30\) 0 0
\(31\) 4.89648e6 0.952262 0.476131 0.879374i \(-0.342039\pi\)
0.476131 + 0.879374i \(0.342039\pi\)
\(32\) 0 0
\(33\) 3.34103e6i 0.490419i
\(34\) 0 0
\(35\) 1.11311e7 4.71380e6i 1.25381 0.530963i
\(36\) 0 0
\(37\) 1.90500e7 1.67104 0.835522 0.549458i \(-0.185166\pi\)
0.835522 + 0.549458i \(0.185166\pi\)
\(38\) 0 0
\(39\) 9.82177e6i 0.679828i
\(40\) 0 0
\(41\) 1.47387e7i 0.814578i −0.913299 0.407289i \(-0.866474\pi\)
0.913299 0.407289i \(-0.133526\pi\)
\(42\) 0 0
\(43\) 6.75137e6i 0.301151i 0.988599 + 0.150575i \(0.0481126\pi\)
−0.988599 + 0.150575i \(0.951887\pi\)
\(44\) 0 0
\(45\) 3.21538e7i 1.16890i
\(46\) 0 0
\(47\) −3.59822e7 −1.07559 −0.537796 0.843075i \(-0.680743\pi\)
−0.537796 + 0.843075i \(0.680743\pi\)
\(48\) 0 0
\(49\) −2.80808e7 + 2.89807e7i −0.695869 + 0.718169i
\(50\) 0 0
\(51\) 1.14471e7i 0.236935i
\(52\) 0 0
\(53\) 4.50817e7 0.784800 0.392400 0.919795i \(-0.371645\pi\)
0.392400 + 0.919795i \(0.371645\pi\)
\(54\) 0 0
\(55\) −1.20456e8 −1.77500
\(56\) 0 0
\(57\) −9.74500e6 −0.122277
\(58\) 0 0
\(59\) 1.05991e8 1.13876 0.569382 0.822073i \(-0.307183\pi\)
0.569382 + 0.822073i \(0.307183\pi\)
\(60\) 0 0
\(61\) 4.47002e6i 0.0413357i 0.999786 + 0.0206678i \(0.00657925\pi\)
−0.999786 + 0.0206678i \(0.993421\pi\)
\(62\) 0 0
\(63\) −4.18577e7 9.88418e7i −0.334767 0.790512i
\(64\) 0 0
\(65\) 3.54112e8 2.46054
\(66\) 0 0
\(67\) 3.11283e8i 1.88720i 0.331083 + 0.943602i \(0.392586\pi\)
−0.331083 + 0.943602i \(0.607414\pi\)
\(68\) 0 0
\(69\) 7.39331e7i 0.392661i
\(70\) 0 0
\(71\) 4.58231e7i 0.214004i 0.994259 + 0.107002i \(0.0341251\pi\)
−0.994259 + 0.107002i \(0.965875\pi\)
\(72\) 0 0
\(73\) 1.23135e8i 0.507492i 0.967271 + 0.253746i \(0.0816628\pi\)
−0.967271 + 0.253746i \(0.918337\pi\)
\(74\) 0 0
\(75\) −8.80292e7 −0.321256
\(76\) 0 0
\(77\) 3.70287e8 1.56810e8i 1.20041 0.508352i
\(78\) 0 0
\(79\) 2.43378e8i 0.703005i 0.936187 + 0.351503i \(0.114329\pi\)
−0.936187 + 0.351503i \(0.885671\pi\)
\(80\) 0 0
\(81\) 2.30690e8 0.595451
\(82\) 0 0
\(83\) 5.66057e8 1.30921 0.654604 0.755972i \(-0.272836\pi\)
0.654604 + 0.755972i \(0.272836\pi\)
\(84\) 0 0
\(85\) 4.12710e8 0.857551
\(86\) 0 0
\(87\) −1.90719e6 −0.00356908
\(88\) 0 0
\(89\) 2.22812e8i 0.376429i 0.982128 + 0.188214i \(0.0602700\pi\)
−0.982128 + 0.188214i \(0.939730\pi\)
\(90\) 0 0
\(91\) −1.08855e9 + 4.60981e8i −1.66403 + 0.704687i
\(92\) 0 0
\(93\) 2.58433e8 0.358240
\(94\) 0 0
\(95\) 3.51344e8i 0.442564i
\(96\) 0 0
\(97\) 1.51339e9i 1.73571i 0.496817 + 0.867855i \(0.334502\pi\)
−0.496817 + 0.867855i \(0.665498\pi\)
\(98\) 0 0
\(99\) 1.06963e9i 1.11912i
\(100\) 0 0
\(101\) 1.45991e9i 1.39598i 0.716109 + 0.697989i \(0.245921\pi\)
−0.716109 + 0.697989i \(0.754079\pi\)
\(102\) 0 0
\(103\) −1.39694e9 −1.22295 −0.611477 0.791262i \(-0.709424\pi\)
−0.611477 + 0.791262i \(0.709424\pi\)
\(104\) 0 0
\(105\) 5.87490e8 2.48791e8i 0.471681 0.199748i
\(106\) 0 0
\(107\) 8.12617e8i 0.599320i −0.954046 0.299660i \(-0.903127\pi\)
0.954046 0.299660i \(-0.0968733\pi\)
\(108\) 0 0
\(109\) 1.37236e9 0.931211 0.465605 0.884992i \(-0.345837\pi\)
0.465605 + 0.884992i \(0.345837\pi\)
\(110\) 0 0
\(111\) 1.00545e9 0.628646
\(112\) 0 0
\(113\) 2.84484e9 1.64137 0.820683 0.571384i \(-0.193593\pi\)
0.820683 + 0.571384i \(0.193593\pi\)
\(114\) 0 0
\(115\) 2.66556e9 1.42118
\(116\) 0 0
\(117\) 3.14445e9i 1.55134i
\(118\) 0 0
\(119\) −1.26868e9 + 5.37264e8i −0.579952 + 0.245599i
\(120\) 0 0
\(121\) −1.64917e9 −0.699409
\(122\) 0 0
\(123\) 7.77900e8i 0.306444i
\(124\) 0 0
\(125\) 5.42804e8i 0.198860i
\(126\) 0 0
\(127\) 1.97571e8i 0.0673917i 0.999432 + 0.0336959i \(0.0107278\pi\)
−0.999432 + 0.0336959i \(0.989272\pi\)
\(128\) 0 0
\(129\) 3.56333e8i 0.113293i
\(130\) 0 0
\(131\) −3.98584e9 −1.18250 −0.591248 0.806490i \(-0.701364\pi\)
−0.591248 + 0.806490i \(0.701364\pi\)
\(132\) 0 0
\(133\) −4.57377e8 1.08004e9i −0.126748 0.299301i
\(134\) 0 0
\(135\) 3.67389e9i 0.951971i
\(136\) 0 0
\(137\) −1.47705e9 −0.358223 −0.179112 0.983829i \(-0.557322\pi\)
−0.179112 + 0.983829i \(0.557322\pi\)
\(138\) 0 0
\(139\) −5.94781e9 −1.35142 −0.675710 0.737167i \(-0.736163\pi\)
−0.675710 + 0.737167i \(0.736163\pi\)
\(140\) 0 0
\(141\) −1.89912e9 −0.404637
\(142\) 0 0
\(143\) 1.17799e10 2.35575
\(144\) 0 0
\(145\) 6.87612e7i 0.0129178i
\(146\) 0 0
\(147\) −1.48209e9 + 1.52958e9i −0.261786 + 0.270175i
\(148\) 0 0
\(149\) −1.54686e9 −0.257107 −0.128554 0.991703i \(-0.541033\pi\)
−0.128554 + 0.991703i \(0.541033\pi\)
\(150\) 0 0
\(151\) 9.78072e9i 1.53100i −0.643437 0.765499i \(-0.722492\pi\)
0.643437 0.765499i \(-0.277508\pi\)
\(152\) 0 0
\(153\) 3.66479e9i 0.540677i
\(154\) 0 0
\(155\) 9.31747e9i 1.29660i
\(156\) 0 0
\(157\) 1.20028e10i 1.57665i 0.615259 + 0.788325i \(0.289052\pi\)
−0.615259 + 0.788325i \(0.710948\pi\)
\(158\) 0 0
\(159\) 2.37938e9 0.295241
\(160\) 0 0
\(161\) −8.19402e9 + 3.47002e9i −0.961127 + 0.407019i
\(162\) 0 0
\(163\) 2.18950e9i 0.242941i −0.992595 0.121470i \(-0.961239\pi\)
0.992595 0.121470i \(-0.0387610\pi\)
\(164\) 0 0
\(165\) −6.35761e9 −0.667754
\(166\) 0 0
\(167\) 4.84297e9 0.481823 0.240911 0.970547i \(-0.422554\pi\)
0.240911 + 0.970547i \(0.422554\pi\)
\(168\) 0 0
\(169\) −2.40255e10 −2.26559
\(170\) 0 0
\(171\) 3.11987e9 0.279032
\(172\) 0 0
\(173\) 2.30653e10i 1.95773i −0.204517 0.978863i \(-0.565562\pi\)
0.204517 0.978863i \(-0.434438\pi\)
\(174\) 0 0
\(175\) −4.13161e9 9.75630e9i −0.333003 0.786347i
\(176\) 0 0
\(177\) 5.59412e9 0.428402
\(178\) 0 0
\(179\) 2.06483e10i 1.50330i 0.659563 + 0.751649i \(0.270741\pi\)
−0.659563 + 0.751649i \(0.729259\pi\)
\(180\) 0 0
\(181\) 1.04291e10i 0.722257i 0.932516 + 0.361129i \(0.117608\pi\)
−0.932516 + 0.361129i \(0.882392\pi\)
\(182\) 0 0
\(183\) 2.35925e8i 0.0155505i
\(184\) 0 0
\(185\) 3.62501e10i 2.27529i
\(186\) 0 0
\(187\) 1.37293e10 0.821031
\(188\) 0 0
\(189\) −4.78265e9 1.12936e10i −0.272640 0.643807i
\(190\) 0 0
\(191\) 1.79251e10i 0.974567i −0.873244 0.487283i \(-0.837988\pi\)
0.873244 0.487283i \(-0.162012\pi\)
\(192\) 0 0
\(193\) −9.88334e8 −0.0512738 −0.0256369 0.999671i \(-0.508161\pi\)
−0.0256369 + 0.999671i \(0.508161\pi\)
\(194\) 0 0
\(195\) 1.86898e10 0.925653
\(196\) 0 0
\(197\) 7.92082e9 0.374690 0.187345 0.982294i \(-0.440012\pi\)
0.187345 + 0.982294i \(0.440012\pi\)
\(198\) 0 0
\(199\) −3.33132e10 −1.50584 −0.752918 0.658115i \(-0.771354\pi\)
−0.752918 + 0.658115i \(0.771354\pi\)
\(200\) 0 0
\(201\) 1.64293e10i 0.709965i
\(202\) 0 0
\(203\) −8.95130e7 2.11374e8i −0.00369959 0.00873614i
\(204\) 0 0
\(205\) −2.80462e10 −1.10913
\(206\) 0 0
\(207\) 2.36697e10i 0.896039i
\(208\) 0 0
\(209\) 1.16878e10i 0.423717i
\(210\) 0 0
\(211\) 1.55776e10i 0.541041i −0.962714 0.270520i \(-0.912804\pi\)
0.962714 0.270520i \(-0.0871958\pi\)
\(212\) 0 0
\(213\) 2.41851e9i 0.0805082i
\(214\) 0 0
\(215\) 1.28471e10 0.410046
\(216\) 0 0
\(217\) 1.21294e10 + 2.86422e10i 0.371340 + 0.876875i
\(218\) 0 0
\(219\) 6.49900e9i 0.190918i
\(220\) 0 0
\(221\) −4.03605e10 −1.13813
\(222\) 0 0
\(223\) −1.85063e10 −0.501126 −0.250563 0.968100i \(-0.580616\pi\)
−0.250563 + 0.968100i \(0.580616\pi\)
\(224\) 0 0
\(225\) 2.81826e10 0.733095
\(226\) 0 0
\(227\) −4.94686e10 −1.23655 −0.618277 0.785960i \(-0.712169\pi\)
−0.618277 + 0.785960i \(0.712169\pi\)
\(228\) 0 0
\(229\) 8.82275e9i 0.212004i −0.994366 0.106002i \(-0.966195\pi\)
0.994366 0.106002i \(-0.0338050\pi\)
\(230\) 0 0
\(231\) 1.95435e10 8.27630e9i 0.451594 0.191242i
\(232\) 0 0
\(233\) 3.60411e10 0.801117 0.400559 0.916271i \(-0.368816\pi\)
0.400559 + 0.916271i \(0.368816\pi\)
\(234\) 0 0
\(235\) 6.84702e10i 1.46452i
\(236\) 0 0
\(237\) 1.28453e10i 0.264470i
\(238\) 0 0
\(239\) 5.42652e10i 1.07580i 0.843009 + 0.537899i \(0.180782\pi\)
−0.843009 + 0.537899i \(0.819218\pi\)
\(240\) 0 0
\(241\) 3.57024e10i 0.681744i −0.940110 0.340872i \(-0.889278\pi\)
0.940110 0.340872i \(-0.110722\pi\)
\(242\) 0 0
\(243\) 5.01774e10 0.923165
\(244\) 0 0
\(245\) 5.51471e10 + 5.34348e10i 0.977858 + 0.947494i
\(246\) 0 0
\(247\) 3.43593e10i 0.587365i
\(248\) 0 0
\(249\) 2.98761e10 0.492523
\(250\) 0 0
\(251\) −9.24262e10 −1.46982 −0.734909 0.678166i \(-0.762775\pi\)
−0.734909 + 0.678166i \(0.762775\pi\)
\(252\) 0 0
\(253\) 8.86729e10 1.36066
\(254\) 0 0
\(255\) 2.17826e10 0.322610
\(256\) 0 0
\(257\) 3.93789e10i 0.563072i 0.959551 + 0.281536i \(0.0908439\pi\)
−0.959551 + 0.281536i \(0.909156\pi\)
\(258\) 0 0
\(259\) 4.71902e10 + 1.11434e11i 0.651633 + 1.53875i
\(260\) 0 0
\(261\) 6.10588e8 0.00814452
\(262\) 0 0
\(263\) 4.65368e10i 0.599785i −0.953973 0.299892i \(-0.903049\pi\)
0.953973 0.299892i \(-0.0969508\pi\)
\(264\) 0 0
\(265\) 8.57856e10i 1.06858i
\(266\) 0 0
\(267\) 1.17599e10i 0.141612i
\(268\) 0 0
\(269\) 1.52982e10i 0.178137i 0.996025 + 0.0890686i \(0.0283890\pi\)
−0.996025 + 0.0890686i \(0.971611\pi\)
\(270\) 0 0
\(271\) 1.13154e11 1.27441 0.637203 0.770696i \(-0.280091\pi\)
0.637203 + 0.770696i \(0.280091\pi\)
\(272\) 0 0
\(273\) −5.74529e10 + 2.43302e10i −0.626009 + 0.265103i
\(274\) 0 0
\(275\) 1.05579e11i 1.11322i
\(276\) 0 0
\(277\) 1.76178e11 1.79801 0.899004 0.437941i \(-0.144292\pi\)
0.899004 + 0.437941i \(0.144292\pi\)
\(278\) 0 0
\(279\) −8.27375e10 −0.817492
\(280\) 0 0
\(281\) 2.98340e10 0.285452 0.142726 0.989762i \(-0.454413\pi\)
0.142726 + 0.989762i \(0.454413\pi\)
\(282\) 0 0
\(283\) −8.07301e10 −0.748164 −0.374082 0.927396i \(-0.622042\pi\)
−0.374082 + 0.927396i \(0.622042\pi\)
\(284\) 0 0
\(285\) 1.85437e10i 0.166492i
\(286\) 0 0
\(287\) 8.62149e10 3.65104e10i 0.750091 0.317650i
\(288\) 0 0
\(289\) 7.15485e10 0.603337
\(290\) 0 0
\(291\) 7.98756e10i 0.652973i
\(292\) 0 0
\(293\) 1.65409e11i 1.31116i 0.755127 + 0.655578i \(0.227575\pi\)
−0.755127 + 0.655578i \(0.772425\pi\)
\(294\) 0 0
\(295\) 2.01689e11i 1.55054i
\(296\) 0 0
\(297\) 1.22216e11i 0.911431i
\(298\) 0 0
\(299\) −2.60676e11 −1.88617
\(300\) 0 0
\(301\) −3.94924e10 + 1.67243e10i −0.277309 + 0.117435i
\(302\) 0 0
\(303\) 7.70528e10i 0.525166i
\(304\) 0 0
\(305\) 8.50596e9 0.0562826
\(306\) 0 0
\(307\) 3.33460e10 0.214250 0.107125 0.994246i \(-0.465836\pi\)
0.107125 + 0.994246i \(0.465836\pi\)
\(308\) 0 0
\(309\) −7.37295e10 −0.460075
\(310\) 0 0
\(311\) −3.57628e10 −0.216775 −0.108388 0.994109i \(-0.534569\pi\)
−0.108388 + 0.994109i \(0.534569\pi\)
\(312\) 0 0
\(313\) 2.97467e10i 0.175182i 0.996157 + 0.0875911i \(0.0279169\pi\)
−0.996157 + 0.0875911i \(0.972083\pi\)
\(314\) 0 0
\(315\) −1.88085e11 + 7.96506e10i −1.07636 + 0.455818i
\(316\) 0 0
\(317\) 7.86686e10 0.437557 0.218779 0.975775i \(-0.429793\pi\)
0.218779 + 0.975775i \(0.429793\pi\)
\(318\) 0 0
\(319\) 2.28742e9i 0.0123677i
\(320\) 0 0
\(321\) 4.28894e10i 0.225464i
\(322\) 0 0
\(323\) 4.00451e10i 0.204709i
\(324\) 0 0
\(325\) 3.10377e11i 1.54317i
\(326\) 0 0
\(327\) 7.24321e10 0.350321
\(328\) 0 0
\(329\) −8.91342e10 2.10480e11i −0.419433 0.990440i
\(330\) 0 0
\(331\) 2.37508e10i 0.108756i 0.998520 + 0.0543778i \(0.0173175\pi\)
−0.998520 + 0.0543778i \(0.982682\pi\)
\(332\) 0 0
\(333\) −3.21895e11 −1.43455
\(334\) 0 0
\(335\) 5.92338e11 2.56961
\(336\) 0 0
\(337\) −6.52304e10 −0.275496 −0.137748 0.990467i \(-0.543986\pi\)
−0.137748 + 0.990467i \(0.543986\pi\)
\(338\) 0 0
\(339\) 1.50149e11 0.617481
\(340\) 0 0
\(341\) 3.09956e11i 1.24138i
\(342\) 0 0
\(343\) −2.39085e11 9.24698e10i −0.932672 0.360725i
\(344\) 0 0
\(345\) 1.40687e11 0.534647
\(346\) 0 0
\(347\) 8.54588e10i 0.316427i 0.987405 + 0.158214i \(0.0505735\pi\)
−0.987405 + 0.158214i \(0.949426\pi\)
\(348\) 0 0
\(349\) 5.31212e10i 0.191670i −0.995397 0.0958349i \(-0.969448\pi\)
0.995397 0.0958349i \(-0.0305521\pi\)
\(350\) 0 0
\(351\) 3.59284e11i 1.26344i
\(352\) 0 0
\(353\) 3.59942e11i 1.23380i 0.787040 + 0.616902i \(0.211612\pi\)
−0.787040 + 0.616902i \(0.788388\pi\)
\(354\) 0 0
\(355\) 8.71965e10 0.291388
\(356\) 0 0
\(357\) −6.69603e10 + 2.83564e10i −0.218178 + 0.0923941i
\(358\) 0 0
\(359\) 5.55243e11i 1.76424i −0.471024 0.882121i \(-0.656115\pi\)
0.471024 0.882121i \(-0.343885\pi\)
\(360\) 0 0
\(361\) −2.88597e11 −0.894354
\(362\) 0 0
\(363\) −8.70420e10 −0.263117
\(364\) 0 0
\(365\) 2.34313e11 0.691001
\(366\) 0 0
\(367\) 4.62691e11 1.33135 0.665677 0.746240i \(-0.268143\pi\)
0.665677 + 0.746240i \(0.268143\pi\)
\(368\) 0 0
\(369\) 2.49045e11i 0.699294i
\(370\) 0 0
\(371\) 1.11675e11 + 2.63708e11i 0.306037 + 0.722670i
\(372\) 0 0
\(373\) −7.18936e11 −1.92310 −0.961548 0.274639i \(-0.911442\pi\)
−0.961548 + 0.274639i \(0.911442\pi\)
\(374\) 0 0
\(375\) 2.86488e10i 0.0748112i
\(376\) 0 0
\(377\) 6.72443e9i 0.0171443i
\(378\) 0 0
\(379\) 2.29284e11i 0.570817i 0.958406 + 0.285409i \(0.0921293\pi\)
−0.958406 + 0.285409i \(0.907871\pi\)
\(380\) 0 0
\(381\) 1.04277e10i 0.0253527i
\(382\) 0 0
\(383\) −7.80947e11 −1.85450 −0.927250 0.374442i \(-0.877834\pi\)
−0.927250 + 0.374442i \(0.877834\pi\)
\(384\) 0 0
\(385\) −2.98392e11 7.04616e11i −0.692171 1.63448i
\(386\) 0 0
\(387\) 1.14080e11i 0.258530i
\(388\) 0 0
\(389\) −4.75140e11 −1.05208 −0.526040 0.850460i \(-0.676324\pi\)
−0.526040 + 0.850460i \(0.676324\pi\)
\(390\) 0 0
\(391\) −3.03813e11 −0.657371
\(392\) 0 0
\(393\) −2.10370e11 −0.444854
\(394\) 0 0
\(395\) 4.63121e11 0.957211
\(396\) 0 0
\(397\) 4.45947e10i 0.0901002i 0.998985 + 0.0450501i \(0.0143447\pi\)
−0.998985 + 0.0450501i \(0.985655\pi\)
\(398\) 0 0
\(399\) −2.41401e10 5.70038e10i −0.0476827 0.112597i
\(400\) 0 0
\(401\) −3.48907e11 −0.673844 −0.336922 0.941533i \(-0.609386\pi\)
−0.336922 + 0.941533i \(0.609386\pi\)
\(402\) 0 0
\(403\) 9.11192e11i 1.72083i
\(404\) 0 0
\(405\) 4.38978e11i 0.810766i
\(406\) 0 0
\(407\) 1.20590e12i 2.17839i
\(408\) 0 0
\(409\) 7.23232e11i 1.27798i 0.769216 + 0.638988i \(0.220647\pi\)
−0.769216 + 0.638988i \(0.779353\pi\)
\(410\) 0 0
\(411\) −7.79579e10 −0.134763
\(412\) 0 0
\(413\) 2.62557e11 + 6.19998e11i 0.444068 + 1.04861i
\(414\) 0 0
\(415\) 1.07714e12i 1.78261i
\(416\) 0 0
\(417\) −3.13921e11 −0.508404
\(418\) 0 0
\(419\) −1.09706e11 −0.173887 −0.0869436 0.996213i \(-0.527710\pi\)
−0.0869436 + 0.996213i \(0.527710\pi\)
\(420\) 0 0
\(421\) 7.45513e11 1.15661 0.578303 0.815822i \(-0.303715\pi\)
0.578303 + 0.815822i \(0.303715\pi\)
\(422\) 0 0
\(423\) 6.08003e11 0.923367
\(424\) 0 0
\(425\) 3.61738e11i 0.537828i
\(426\) 0 0
\(427\) −2.61476e10 + 1.10730e10i −0.0380633 + 0.0161191i
\(428\) 0 0
\(429\) 6.21736e11 0.886233
\(430\) 0 0
\(431\) 3.52945e11i 0.492673i 0.969184 + 0.246337i \(0.0792268\pi\)
−0.969184 + 0.246337i \(0.920773\pi\)
\(432\) 0 0
\(433\) 8.08524e11i 1.10534i −0.833399 0.552672i \(-0.813608\pi\)
0.833399 0.552672i \(-0.186392\pi\)
\(434\) 0 0
\(435\) 3.62917e9i 0.00485966i
\(436\) 0 0
\(437\) 2.58638e11i 0.339255i
\(438\) 0 0
\(439\) 4.06391e11 0.522220 0.261110 0.965309i \(-0.415912\pi\)
0.261110 + 0.965309i \(0.415912\pi\)
\(440\) 0 0
\(441\) 4.74491e11 4.89697e11i 0.597385 0.616529i
\(442\) 0 0
\(443\) 1.33247e12i 1.64377i 0.569657 + 0.821883i \(0.307076\pi\)
−0.569657 + 0.821883i \(0.692924\pi\)
\(444\) 0 0
\(445\) 4.23987e11 0.512545
\(446\) 0 0
\(447\) −8.16425e10 −0.0967236
\(448\) 0 0
\(449\) 1.06551e12 1.23723 0.618615 0.785694i \(-0.287694\pi\)
0.618615 + 0.785694i \(0.287694\pi\)
\(450\) 0 0
\(451\) −9.32988e11 −1.06190
\(452\) 0 0
\(453\) 5.16220e11i 0.575961i
\(454\) 0 0
\(455\) 8.77196e11 + 2.07139e12i 0.959501 + 2.26575i
\(456\) 0 0
\(457\) 1.47301e11 0.157973 0.0789867 0.996876i \(-0.474832\pi\)
0.0789867 + 0.996876i \(0.474832\pi\)
\(458\) 0 0
\(459\) 4.18738e11i 0.440337i
\(460\) 0 0
\(461\) 1.28370e12i 1.32376i 0.749609 + 0.661881i \(0.230241\pi\)
−0.749609 + 0.661881i \(0.769759\pi\)
\(462\) 0 0
\(463\) 1.55484e12i 1.57243i −0.617954 0.786214i \(-0.712038\pi\)
0.617954 0.786214i \(-0.287962\pi\)
\(464\) 0 0
\(465\) 4.91770e11i 0.487780i
\(466\) 0 0
\(467\) −1.39737e12 −1.35952 −0.679760 0.733435i \(-0.737916\pi\)
−0.679760 + 0.733435i \(0.737916\pi\)
\(468\) 0 0
\(469\) −1.82086e12 + 7.71102e11i −1.73780 + 0.735926i
\(470\) 0 0
\(471\) 6.33502e11i 0.593135i
\(472\) 0 0
\(473\) 4.27374e11 0.392584
\(474\) 0 0
\(475\) 3.07950e11 0.277562
\(476\) 0 0
\(477\) −7.61761e11 −0.673730
\(478\) 0 0
\(479\) −1.87728e12 −1.62937 −0.814685 0.579904i \(-0.803090\pi\)
−0.814685 + 0.579904i \(0.803090\pi\)
\(480\) 0 0
\(481\) 3.54504e12i 3.01973i
\(482\) 0 0
\(483\) −4.32475e11 + 1.83145e11i −0.361575 + 0.153120i
\(484\) 0 0
\(485\) 2.87981e12 2.36334
\(486\) 0 0
\(487\) 1.50389e12i 1.21153i 0.795642 + 0.605767i \(0.207134\pi\)
−0.795642 + 0.605767i \(0.792866\pi\)
\(488\) 0 0
\(489\) 1.15560e11i 0.0913942i
\(490\) 0 0
\(491\) 8.23056e11i 0.639091i −0.947571 0.319545i \(-0.896470\pi\)
0.947571 0.319545i \(-0.103530\pi\)
\(492\) 0 0
\(493\) 7.83719e9i 0.00597516i
\(494\) 0 0
\(495\) 2.03539e12 1.52379
\(496\) 0 0
\(497\) −2.68045e11 + 1.13512e11i −0.197062 + 0.0834522i
\(498\) 0 0
\(499\) 5.33140e11i 0.384936i −0.981303 0.192468i \(-0.938351\pi\)
0.981303 0.192468i \(-0.0616492\pi\)
\(500\) 0 0
\(501\) 2.55609e11 0.181262
\(502\) 0 0
\(503\) 1.52196e12 1.06010 0.530049 0.847967i \(-0.322173\pi\)
0.530049 + 0.847967i \(0.322173\pi\)
\(504\) 0 0
\(505\) 2.77804e12 1.90076
\(506\) 0 0
\(507\) −1.26805e12 −0.852315
\(508\) 0 0
\(509\) 6.36533e11i 0.420330i −0.977666 0.210165i \(-0.932600\pi\)
0.977666 0.210165i \(-0.0674002\pi\)
\(510\) 0 0
\(511\) −7.20286e11 + 3.05028e11i −0.467316 + 0.197900i
\(512\) 0 0
\(513\) 3.56475e11 0.227249
\(514\) 0 0
\(515\) 2.65822e12i 1.66517i
\(516\) 0 0
\(517\) 2.27774e12i 1.40216i
\(518\) 0 0
\(519\) 1.21737e12i 0.736496i
\(520\) 0 0
\(521\) 1.60777e12i 0.955991i −0.878362 0.477996i \(-0.841363\pi\)
0.878362 0.477996i \(-0.158637\pi\)
\(522\) 0 0
\(523\) 2.47269e12 1.44515 0.722575 0.691293i \(-0.242959\pi\)
0.722575 + 0.691293i \(0.242959\pi\)
\(524\) 0 0
\(525\) −2.18064e11 5.14931e11i −0.125276 0.295823i
\(526\) 0 0
\(527\) 1.06198e12i 0.599746i
\(528\) 0 0
\(529\) −1.61076e11 −0.0894296
\(530\) 0 0
\(531\) −1.79096e12 −0.977599
\(532\) 0 0
\(533\) 2.74275e12 1.47202
\(534\) 0 0
\(535\) −1.54632e12 −0.816034
\(536\) 0 0
\(537\) 1.08980e12i 0.565540i
\(538\) 0 0
\(539\) 1.83453e12 + 1.77757e12i 0.936215 + 0.907144i
\(540\) 0 0
\(541\) −1.79418e12 −0.900491 −0.450246 0.892905i \(-0.648664\pi\)
−0.450246 + 0.892905i \(0.648664\pi\)
\(542\) 0 0
\(543\) 5.50439e11i 0.271713i
\(544\) 0 0
\(545\) 2.61145e12i 1.26794i
\(546\) 0 0
\(547\) 3.16569e12i 1.51191i −0.654623 0.755955i \(-0.727173\pi\)
0.654623 0.755955i \(-0.272827\pi\)
\(548\) 0 0
\(549\) 7.55314e10i 0.0354856i
\(550\) 0 0
\(551\) 6.67187e9 0.00308365
\(552\) 0 0
\(553\) −1.42365e12 + 6.02889e11i −0.647351 + 0.274141i
\(554\) 0 0
\(555\) 1.91326e12i 0.855963i
\(556\) 0 0
\(557\) −1.44434e12 −0.635800 −0.317900 0.948124i \(-0.602978\pi\)
−0.317900 + 0.948124i \(0.602978\pi\)
\(558\) 0 0
\(559\) −1.25637e12 −0.544208
\(560\) 0 0
\(561\) 7.24621e11 0.308872
\(562\) 0 0
\(563\) 3.33261e11 0.139797 0.0698984 0.997554i \(-0.477732\pi\)
0.0698984 + 0.997554i \(0.477732\pi\)
\(564\) 0 0
\(565\) 5.41343e12i 2.23488i
\(566\) 0 0
\(567\) 5.71460e11 + 1.34943e12i 0.232200 + 0.548312i
\(568\) 0 0
\(569\) 6.79467e11 0.271746 0.135873 0.990726i \(-0.456616\pi\)
0.135873 + 0.990726i \(0.456616\pi\)
\(570\) 0 0
\(571\) 1.53580e12i 0.604607i 0.953212 + 0.302303i \(0.0977556\pi\)
−0.953212 + 0.302303i \(0.902244\pi\)
\(572\) 0 0
\(573\) 9.46075e11i 0.366632i
\(574\) 0 0
\(575\) 2.33635e12i 0.891318i
\(576\) 0 0
\(577\) 1.06430e12i 0.399735i −0.979823 0.199868i \(-0.935949\pi\)
0.979823 0.199868i \(-0.0640512\pi\)
\(578\) 0 0
\(579\) −5.21636e10 −0.0192892
\(580\) 0 0
\(581\) 1.40222e12 + 3.31117e12i 0.510533 + 1.20556i
\(582\) 0 0
\(583\) 2.85375e12i 1.02308i
\(584\) 0 0
\(585\) −5.98355e12 −2.11231
\(586\) 0 0
\(587\) −2.36920e12 −0.823626 −0.411813 0.911268i \(-0.635104\pi\)
−0.411813 + 0.911268i \(0.635104\pi\)
\(588\) 0 0
\(589\) −9.04070e11 −0.309516
\(590\) 0 0
\(591\) 4.18055e11 0.140958
\(592\) 0 0
\(593\) 3.86798e12i 1.28451i 0.766490 + 0.642256i \(0.222001\pi\)
−0.766490 + 0.642256i \(0.777999\pi\)
\(594\) 0 0
\(595\) 1.02235e12 + 2.41417e12i 0.334407 + 0.789662i
\(596\) 0 0
\(597\) −1.75825e12 −0.566495
\(598\) 0 0
\(599\) 3.83243e12i 1.21634i 0.793808 + 0.608168i \(0.208095\pi\)
−0.793808 + 0.608168i \(0.791905\pi\)
\(600\) 0 0
\(601\) 1.13398e12i 0.354545i −0.984162 0.177272i \(-0.943273\pi\)
0.984162 0.177272i \(-0.0567273\pi\)
\(602\) 0 0
\(603\) 5.25985e12i 1.62011i
\(604\) 0 0
\(605\) 3.13819e12i 0.952314i
\(606\) 0 0
\(607\) −2.01649e12 −0.602903 −0.301452 0.953481i \(-0.597471\pi\)
−0.301452 + 0.953481i \(0.597471\pi\)
\(608\) 0 0
\(609\) −4.72444e9 1.11562e10i −0.00139178 0.00328653i
\(610\) 0 0
\(611\) 6.69597e12i 1.94370i
\(612\) 0 0
\(613\) −4.03272e12 −1.15352 −0.576761 0.816913i \(-0.695683\pi\)
−0.576761 + 0.816913i \(0.695683\pi\)
\(614\) 0 0
\(615\) −1.48026e12 −0.417254
\(616\) 0 0
\(617\) 1.73007e12 0.480596 0.240298 0.970699i \(-0.422755\pi\)
0.240298 + 0.970699i \(0.422755\pi\)
\(618\) 0 0
\(619\) 6.04924e12 1.65612 0.828062 0.560637i \(-0.189444\pi\)
0.828062 + 0.560637i \(0.189444\pi\)
\(620\) 0 0
\(621\) 2.70450e12i 0.729750i
\(622\) 0 0
\(623\) −1.30335e12 + 5.51944e11i −0.346628 + 0.146791i
\(624\) 0 0
\(625\) −4.29046e12 −1.12472
\(626\) 0 0
\(627\) 6.16876e11i 0.159402i
\(628\) 0 0
\(629\) 4.13168e12i 1.05244i
\(630\) 0 0
\(631\) 3.02086e12i 0.758575i −0.925279 0.379287i \(-0.876169\pi\)
0.925279 0.379287i \(-0.123831\pi\)
\(632\) 0 0
\(633\) 8.22176e11i 0.203539i
\(634\) 0 0
\(635\) 3.75956e11 0.0917605
\(636\) 0 0
\(637\) −5.39306e12 5.22560e12i −1.29780 1.25750i
\(638\) 0 0
\(639\) 7.74289e11i 0.183717i
\(640\) 0 0
\(641\) −2.03172e12 −0.475338 −0.237669 0.971346i \(-0.576383\pi\)
−0.237669 + 0.971346i \(0.576383\pi\)
\(642\) 0 0
\(643\) 7.02493e12 1.62066 0.810332 0.585971i \(-0.199287\pi\)
0.810332 + 0.585971i \(0.199287\pi\)
\(644\) 0 0
\(645\) 6.78062e11 0.154259
\(646\) 0 0
\(647\) 3.02288e12 0.678190 0.339095 0.940752i \(-0.389879\pi\)
0.339095 + 0.940752i \(0.389879\pi\)
\(648\) 0 0
\(649\) 6.70940e12i 1.48451i
\(650\) 0 0
\(651\) 6.40184e11 + 1.51172e12i 0.139698 + 0.329880i
\(652\) 0 0
\(653\) 4.82107e12 1.03761 0.518805 0.854893i \(-0.326377\pi\)
0.518805 + 0.854893i \(0.326377\pi\)
\(654\) 0 0
\(655\) 7.58463e12i 1.61008i
\(656\) 0 0
\(657\) 2.08066e12i 0.435669i
\(658\) 0 0
\(659\) 8.39092e12i 1.73311i −0.499085 0.866553i \(-0.666330\pi\)
0.499085 0.866553i \(-0.333670\pi\)
\(660\) 0 0
\(661\) 5.46093e12i 1.11265i −0.830964 0.556327i \(-0.812210\pi\)
0.830964 0.556327i \(-0.187790\pi\)
\(662\) 0 0
\(663\) −2.13020e12 −0.428164
\(664\) 0 0
\(665\) −2.05520e12 + 8.70340e11i −0.407528 + 0.172580i
\(666\) 0 0
\(667\) 5.06179e10i 0.00990235i
\(668\) 0 0
\(669\) −9.76748e11 −0.188523
\(670\) 0 0
\(671\) 2.82960e11 0.0538858
\(672\) 0 0
\(673\) 1.43102e12 0.268892 0.134446 0.990921i \(-0.457075\pi\)
0.134446 + 0.990921i \(0.457075\pi\)
\(674\) 0 0
\(675\) 3.22014e12 0.597046
\(676\) 0 0
\(677\) 3.55512e12i 0.650436i −0.945639 0.325218i \(-0.894562\pi\)
0.945639 0.325218i \(-0.105438\pi\)
\(678\) 0 0
\(679\) −8.85263e12 + 3.74892e12i −1.59830 + 0.676850i
\(680\) 0 0
\(681\) −2.61092e12 −0.465191
\(682\) 0 0
\(683\) 8.02521e11i 0.141112i 0.997508 + 0.0705559i \(0.0224773\pi\)
−0.997508 + 0.0705559i \(0.977523\pi\)
\(684\) 0 0
\(685\) 2.81067e12i 0.487756i
\(686\) 0 0
\(687\) 4.65659e11i 0.0797559i
\(688\) 0 0
\(689\) 8.38931e12i 1.41821i
\(690\) 0 0
\(691\) 1.81053e12 0.302103 0.151051 0.988526i \(-0.451734\pi\)
0.151051 + 0.988526i \(0.451734\pi\)
\(692\) 0 0
\(693\) −6.25686e12 + 2.64967e12i −1.03052 + 0.436407i
\(694\) 0 0
\(695\) 1.13180e13i 1.84009i
\(696\) 0 0
\(697\) 3.19662e12 0.513031
\(698\) 0 0
\(699\) 1.90222e12 0.301380
\(700\) 0 0
\(701\) 9.88963e12 1.54685 0.773426 0.633886i \(-0.218541\pi\)
0.773426 + 0.633886i \(0.218541\pi\)
\(702\) 0 0
\(703\) −3.51733e12 −0.543143
\(704\) 0 0
\(705\) 3.61381e12i 0.550953i
\(706\) 0 0
\(707\) −8.53978e12 + 3.61644e12i −1.28546 + 0.544370i
\(708\) 0 0
\(709\) 4.62982e12 0.688107 0.344054 0.938950i \(-0.388200\pi\)
0.344054 + 0.938950i \(0.388200\pi\)
\(710\) 0 0
\(711\) 4.11243e12i 0.603512i
\(712\) 0 0
\(713\) 6.85897e12i 0.993930i
\(714\) 0 0
\(715\) 2.24159e13i 3.20759i
\(716\) 0 0
\(717\) 2.86408e12i 0.404714i
\(718\) 0 0
\(719\) 2.39023e11 0.0333549 0.0166775 0.999861i \(-0.494691\pi\)
0.0166775 + 0.999861i \(0.494691\pi\)
\(720\) 0 0
\(721\) −3.46046e12 8.17146e12i −0.476898 1.12614i
\(722\) 0 0
\(723\) 1.88435e12i 0.256472i
\(724\) 0 0
\(725\) 6.02688e10 0.00810161
\(726\) 0 0
\(727\) 9.72932e12 1.29175 0.645874 0.763444i \(-0.276493\pi\)
0.645874 + 0.763444i \(0.276493\pi\)
\(728\) 0 0
\(729\) −1.89235e12 −0.248157
\(730\) 0 0
\(731\) −1.46427e12 −0.189668
\(732\) 0 0
\(733\) 7.61754e12i 0.974645i 0.873222 + 0.487323i \(0.162026\pi\)
−0.873222 + 0.487323i \(0.837974\pi\)
\(734\) 0 0
\(735\) 2.91063e12 + 2.82025e12i 0.367870 + 0.356447i
\(736\) 0 0
\(737\) 1.97048e13 2.46018
\(738\) 0 0
\(739\) 5.41862e12i 0.668327i 0.942515 + 0.334163i \(0.108454\pi\)
−0.942515 + 0.334163i \(0.891546\pi\)
\(740\) 0 0
\(741\) 1.81346e12i 0.220966i
\(742\) 0 0
\(743\) 9.50797e12i 1.14456i 0.820059 + 0.572280i \(0.193941\pi\)
−0.820059 + 0.572280i \(0.806059\pi\)
\(744\) 0 0
\(745\) 2.94352e12i 0.350077i
\(746\) 0 0
\(747\) −9.56485e12 −1.12392
\(748\) 0 0
\(749\) 4.75344e12 2.01299e12i 0.551874 0.233708i
\(750\) 0 0
\(751\) 5.78041e12i 0.663100i −0.943438 0.331550i \(-0.892428\pi\)
0.943438 0.331550i \(-0.107572\pi\)
\(752\) 0 0
\(753\) −4.87819e12 −0.552945
\(754\) 0 0
\(755\) −1.86117e13 −2.08461
\(756\) 0 0
\(757\) 4.62838e12 0.512268 0.256134 0.966641i \(-0.417551\pi\)
0.256134 + 0.966641i \(0.417551\pi\)
\(758\) 0 0
\(759\) 4.68010e12 0.511878
\(760\) 0 0
\(761\) 3.61747e12i 0.390997i −0.980704 0.195499i \(-0.937367\pi\)
0.980704 0.195499i \(-0.0626325\pi\)
\(762\) 0 0
\(763\) 3.39957e12 + 8.02767e12i 0.363131 + 0.857490i
\(764\) 0 0
\(765\) −6.97370e12 −0.736185
\(766\) 0 0
\(767\) 1.97239e13i 2.05785i
\(768\) 0 0
\(769\) 2.43237e12i 0.250820i 0.992105 + 0.125410i \(0.0400246\pi\)
−0.992105 + 0.125410i \(0.959975\pi\)
\(770\) 0 0
\(771\) 2.07839e12i 0.211828i
\(772\) 0 0
\(773\) 1.39891e12i 0.140923i 0.997514 + 0.0704616i \(0.0224472\pi\)
−0.997514 + 0.0704616i \(0.977553\pi\)
\(774\) 0 0
\(775\) −8.16671e12 −0.813185
\(776\) 0 0
\(777\) 2.49067e12 + 5.88141e12i 0.245144 + 0.578878i
\(778\) 0 0
\(779\) 2.72131e12i 0.264764i
\(780\) 0 0
\(781\) 2.90069e12 0.278979
\(782\) 0 0
\(783\) 6.97656e10 0.00663305
\(784\) 0 0
\(785\) 2.28401e13 2.14677
\(786\) 0 0
\(787\) 4.14624e12 0.385273 0.192636 0.981270i \(-0.438296\pi\)
0.192636 + 0.981270i \(0.438296\pi\)
\(788\) 0 0
\(789\) 2.45618e12i 0.225639i
\(790\) 0 0
\(791\) 7.04717e12 + 1.66411e13i 0.640060 + 1.51142i
\(792\) 0 0
\(793\) −8.31832e11 −0.0746975
\(794\) 0 0
\(795\) 4.52771e12i 0.402000i
\(796\) 0 0
\(797\) 1.75123e13i 1.53738i −0.639621 0.768690i \(-0.720909\pi\)
0.639621 0.768690i \(-0.279091\pi\)
\(798\) 0 0
\(799\) 7.80402e12i 0.677420i
\(800\) 0 0
\(801\) 3.76493e12i 0.323154i
\(802\) 0 0
\(803\) 7.79468e12 0.661574
\(804\) 0 0
\(805\) 6.60307e12 + 1.55923e13i 0.554197 + 1.30867i
\(806\) 0 0
\(807\) 8.07428e11i 0.0670151i
\(808\) 0 0
\(809\) 1.90614e13 1.56454 0.782270 0.622940i \(-0.214062\pi\)
0.782270 + 0.622940i \(0.214062\pi\)
\(810\) 0 0
\(811\) 5.76248e12 0.467752 0.233876 0.972266i \(-0.424859\pi\)
0.233876 + 0.972266i \(0.424859\pi\)
\(812\) 0 0
\(813\) 5.97219e12 0.479431
\(814\) 0 0
\(815\) −4.16638e12 −0.330788
\(816\) 0 0
\(817\) 1.24655e12i 0.0978837i
\(818\) 0 0
\(819\) 1.83936e13 7.78935e12i 1.42853 0.604956i
\(820\) 0 0
\(821\) −9.02105e12 −0.692968 −0.346484 0.938056i \(-0.612624\pi\)
−0.346484 + 0.938056i \(0.612624\pi\)
\(822\) 0 0
\(823\) 2.95463e11i 0.0224493i −0.999937 0.0112247i \(-0.996427\pi\)
0.999937 0.0112247i \(-0.00357300\pi\)
\(824\) 0 0
\(825\) 5.57241e12i 0.418794i
\(826\) 0 0
\(827\) 7.67228e12i 0.570361i −0.958474 0.285180i \(-0.907946\pi\)
0.958474 0.285180i \(-0.0920535\pi\)
\(828\) 0 0
\(829\) 6.85909e12i 0.504396i −0.967676 0.252198i \(-0.918847\pi\)
0.967676 0.252198i \(-0.0811534\pi\)
\(830\) 0 0
\(831\) 9.29853e12 0.676410
\(832\) 0 0
\(833\) −6.28550e12 6.09033e12i −0.452311 0.438266i
\(834\) 0 0
\(835\) 9.21564e12i 0.656049i
\(836\) 0 0
\(837\) −9.45357e12 −0.665781
\(838\) 0 0
\(839\) −2.36789e13 −1.64981 −0.824904 0.565272i \(-0.808771\pi\)
−0.824904 + 0.565272i \(0.808771\pi\)
\(840\) 0 0
\(841\) −1.45058e13 −0.999910
\(842\) 0 0
\(843\) 1.57462e12 0.107387
\(844\) 0 0
\(845\) 4.57179e13i 3.08483i
\(846\) 0 0
\(847\) −4.08528e12 9.64689e12i −0.272738 0.644039i
\(848\) 0 0
\(849\) −4.26088e12 −0.281459
\(850\) 0 0
\(851\) 2.66852e13i 1.74416i
\(852\) 0 0
\(853\) 1.80289e12i 0.116600i 0.998299 + 0.0583001i \(0.0185680\pi\)
−0.998299 + 0.0583001i \(0.981432\pi\)
\(854\) 0 0
\(855\) 5.93677e12i 0.379929i
\(856\) 0 0
\(857\) 1.11670e13i 0.707171i 0.935402 + 0.353586i \(0.115038\pi\)
−0.935402 + 0.353586i \(0.884962\pi\)
\(858\) 0 0
\(859\) 2.58811e12 0.162186 0.0810931 0.996707i \(-0.474159\pi\)
0.0810931 + 0.996707i \(0.474159\pi\)
\(860\) 0 0
\(861\) 4.55037e12 1.92700e12i 0.282184 0.119500i
\(862\) 0 0
\(863\) 1.36443e13i 0.837340i −0.908139 0.418670i \(-0.862496\pi\)
0.908139 0.418670i \(-0.137504\pi\)
\(864\) 0 0
\(865\) −4.38908e13 −2.66564
\(866\) 0 0
\(867\) 3.77628e12 0.226975
\(868\) 0 0
\(869\) 1.54062e13 0.916447
\(870\) 0 0
\(871\) −5.79270e13 −3.41036
\(872\) 0 0
\(873\) 2.55722e13i 1.49006i
\(874\) 0 0
\(875\) 3.17516e12 1.34462e12i 0.183117 0.0775468i
\(876\) 0 0
\(877\) −6.75602e12 −0.385649 −0.192825 0.981233i \(-0.561765\pi\)
−0.192825 + 0.981233i \(0.561765\pi\)
\(878\) 0 0
\(879\) 8.73017e12i 0.493256i
\(880\) 0 0
\(881\) 1.17764e13i 0.658599i −0.944225 0.329300i \(-0.893187\pi\)
0.944225 0.329300i \(-0.106813\pi\)
\(882\) 0 0
\(883\) 2.52167e13i 1.39594i 0.716129 + 0.697968i \(0.245912\pi\)
−0.716129 + 0.697968i \(0.754088\pi\)
\(884\) 0 0
\(885\) 1.06450e13i 0.583312i
\(886\) 0 0
\(887\) 1.19059e13 0.645810 0.322905 0.946431i \(-0.395341\pi\)
0.322905 + 0.946431i \(0.395341\pi\)
\(888\) 0 0
\(889\) −1.15570e12 + 4.89418e11i −0.0620566 + 0.0262798i
\(890\) 0 0
\(891\) 1.46031e13i 0.776239i
\(892\) 0 0
\(893\) 6.64363e12 0.349602
\(894\) 0 0
\(895\) 3.92915e13 2.04689
\(896\) 0 0
\(897\) −1.37583e13 −0.709576
\(898\) 0 0
\(899\) −1.76935e11 −0.00903431
\(900\) 0 0
\(901\) 9.77758e12i 0.494276i
\(902\) 0 0
\(903\) −2.08438e12 + 8.82698e11i −0.104324 + 0.0441791i
\(904\) 0 0
\(905\) 1.98454e13 0.983424
\(906\) 0 0
\(907\) 3.87772e13i 1.90258i −0.308290 0.951292i \(-0.599757\pi\)
0.308290 0.951292i \(-0.400243\pi\)
\(908\) 0 0
\(909\) 2.46685e13i 1.19841i
\(910\) 0 0
\(911\) 2.82572e13i 1.35924i −0.733563 0.679621i \(-0.762144\pi\)
0.733563 0.679621i \(-0.237856\pi\)
\(912\) 0 0
\(913\) 3.58324e13i 1.70670i
\(914\) 0 0
\(915\) 4.48939e11 0.0211735
\(916\) 0 0
\(917\) −9.87363e12 2.33154e13i −0.461121 1.08888i
\(918\) 0 0
\(919\) 1.46263e13i 0.676415i 0.941072 + 0.338207i \(0.109821\pi\)
−0.941072 + 0.338207i \(0.890179\pi\)
\(920\) 0 0
\(921\) 1.75998e12 0.0806007
\(922\) 0 0
\(923\) −8.52728e12 −0.386726
\(924\) 0 0
\(925\) −3.17730e13 −1.42699
\(926\) 0 0
\(927\) 2.36046e13 1.04987
\(928\) 0 0
\(929\) 4.65419e12i 0.205009i 0.994733 + 0.102505i \(0.0326856\pi\)
−0.994733 + 0.102505i \(0.967314\pi\)
\(930\) 0 0
\(931\) 5.18475e12 5.35090e12i 0.226180 0.233428i
\(932\) 0 0
\(933\) −1.88753e12 −0.0815507
\(934\) 0 0
\(935\) 2.61253e13i 1.11792i
\(936\) 0 0
\(937\) 2.81507e13i 1.19305i 0.802593 + 0.596527i \(0.203453\pi\)
−0.802593 + 0.596527i \(0.796547\pi\)
\(938\) 0 0
\(939\) 1.57001e12i 0.0659034i
\(940\) 0 0
\(941\) 1.13137e13i 0.470381i −0.971949 0.235191i \(-0.924429\pi\)
0.971949 0.235191i \(-0.0755714\pi\)
\(942\) 0 0
\(943\) 2.06460e13 0.850222
\(944\) 0 0
\(945\) −2.14906e13 + 9.10086e12i −0.876607 + 0.371227i
\(946\) 0 0
\(947\) 2.50689e13i 1.01289i 0.862273 + 0.506443i \(0.169040\pi\)
−0.862273 + 0.506443i \(0.830960\pi\)
\(948\) 0 0
\(949\) −2.29144e13 −0.917087
\(950\) 0 0
\(951\) 4.15208e12 0.164609
\(952\) 0 0
\(953\) −1.46333e13 −0.574679 −0.287340 0.957829i \(-0.592771\pi\)
−0.287340 + 0.957829i \(0.592771\pi\)
\(954\) 0 0
\(955\) −3.41095e13 −1.32697
\(956\) 0 0
\(957\) 1.20728e11i 0.00465271i
\(958\) 0 0
\(959\) −3.65892e12 8.64009e12i −0.139691 0.329864i
\(960\) 0 0
\(961\) −2.46410e12 −0.0931973
\(962\) 0 0
\(963\) 1.37311e13i 0.514501i
\(964\) 0 0
\(965\) 1.88069e12i 0.0698144i
\(966\) 0 0
\(967\) 2.57361e13i 0.946506i −0.880926 0.473253i \(-0.843080\pi\)
0.880926 0.473253i \(-0.156920\pi\)
\(968\) 0 0
\(969\) 2.11355e12i 0.0770115i
\(970\) 0 0
\(971\) 9.33583e12 0.337028 0.168514 0.985699i \(-0.446103\pi\)
0.168514 + 0.985699i \(0.446103\pi\)
\(972\) 0 0
\(973\) −1.47338e13 3.47920e13i −0.526994 1.24443i
\(974\) 0 0
\(975\) 1.63815e13i 0.580540i
\(976\) 0 0
\(977\) 4.20622e13 1.47695 0.738477 0.674279i \(-0.235546\pi\)
0.738477 + 0.674279i \(0.235546\pi\)
\(978\) 0 0
\(979\) 1.41044e13 0.490718
\(980\) 0 0
\(981\) −2.31892e13 −0.799420
\(982\) 0 0
\(983\) 3.78927e13 1.29439 0.647194 0.762325i \(-0.275942\pi\)
0.647194 + 0.762325i \(0.275942\pi\)
\(984\) 0 0
\(985\) 1.50725e13i 0.510177i
\(986\) 0 0
\(987\) −4.70444e12 1.11090e13i −0.157791 0.372603i
\(988\) 0 0
\(989\) −9.45729e12 −0.314328
\(990\) 0 0
\(991\) 2.00517e13i 0.660421i −0.943907 0.330210i \(-0.892880\pi\)
0.943907 0.330210i \(-0.107120\pi\)
\(992\) 0 0
\(993\) 1.25355e12i 0.0409138i
\(994\) 0 0
\(995\) 6.33914e13i 2.05034i
\(996\) 0 0
\(997\) 4.29461e13i 1.37656i 0.725444 + 0.688281i \(0.241634\pi\)
−0.725444 + 0.688281i \(0.758366\pi\)
\(998\) 0 0
\(999\) −3.67796e13 −1.16832
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 112.10.f.b.111.13 yes 24
4.3 odd 2 inner 112.10.f.b.111.11 24
7.6 odd 2 inner 112.10.f.b.111.12 yes 24
28.27 even 2 inner 112.10.f.b.111.14 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.10.f.b.111.11 24 4.3 odd 2 inner
112.10.f.b.111.12 yes 24 7.6 odd 2 inner
112.10.f.b.111.13 yes 24 1.1 even 1 trivial
112.10.f.b.111.14 yes 24 28.27 even 2 inner