Properties

Label 2-112-28.27-c9-0-9
Degree $2$
Conductor $112$
Sign $0.602 - 0.798i$
Analytic cond. $57.6840$
Root an. cond. $7.59499$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 52.7·3-s − 1.90e3i·5-s + (2.47e3 + 5.84e3i)7-s − 1.68e4·9-s − 6.33e4i·11-s + 1.86e5i·13-s − 1.00e5i·15-s + 2.16e5i·17-s − 1.84e5·19-s + (1.30e5 + 3.08e5i)21-s + 1.40e6i·23-s − 1.66e6·25-s − 1.93e6·27-s − 3.61e4·29-s + 4.89e6·31-s + ⋯
L(s)  = 1  + 0.376·3-s − 1.36i·5-s + (0.389 + 0.920i)7-s − 0.858·9-s − 1.30i·11-s + 1.80i·13-s − 0.512i·15-s + 0.629i·17-s − 0.325·19-s + (0.146 + 0.346i)21-s + 1.04i·23-s − 0.853·25-s − 0.699·27-s − 0.00948·29-s + 0.952·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.602 - 0.798i)\, \overline{\Lambda}(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 112 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & (0.602 - 0.798i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(112\)    =    \(2^{4} \cdot 7\)
Sign: $0.602 - 0.798i$
Analytic conductor: \(57.6840\)
Root analytic conductor: \(7.59499\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: $\chi_{112} (111, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 112,\ (\ :9/2),\ 0.602 - 0.798i)\)

Particular Values

\(L(5)\) \(\approx\) \(1.838008404\)
\(L(\frac12)\) \(\approx\) \(1.838008404\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 + (-2.47e3 - 5.84e3i)T \)
good3 \( 1 - 52.7T + 1.96e4T^{2} \)
5 \( 1 + 1.90e3iT - 1.95e6T^{2} \)
11 \( 1 + 6.33e4iT - 2.35e9T^{2} \)
13 \( 1 - 1.86e5iT - 1.06e10T^{2} \)
17 \( 1 - 2.16e5iT - 1.18e11T^{2} \)
19 \( 1 + 1.84e5T + 3.22e11T^{2} \)
23 \( 1 - 1.40e6iT - 1.80e12T^{2} \)
29 \( 1 + 3.61e4T + 1.45e13T^{2} \)
31 \( 1 - 4.89e6T + 2.64e13T^{2} \)
37 \( 1 - 1.90e7T + 1.29e14T^{2} \)
41 \( 1 + 1.47e7iT - 3.27e14T^{2} \)
43 \( 1 - 6.75e6iT - 5.02e14T^{2} \)
47 \( 1 + 3.59e7T + 1.11e15T^{2} \)
53 \( 1 - 4.50e7T + 3.29e15T^{2} \)
59 \( 1 - 1.05e8T + 8.66e15T^{2} \)
61 \( 1 - 4.47e6iT - 1.16e16T^{2} \)
67 \( 1 - 3.11e8iT - 2.72e16T^{2} \)
71 \( 1 - 4.58e7iT - 4.58e16T^{2} \)
73 \( 1 - 1.23e8iT - 5.88e16T^{2} \)
79 \( 1 - 2.43e8iT - 1.19e17T^{2} \)
83 \( 1 - 5.66e8T + 1.86e17T^{2} \)
89 \( 1 - 2.22e8iT - 3.50e17T^{2} \)
97 \( 1 - 1.51e9iT - 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.81128859096902938737030846112, −11.37235761844110731455220483897, −9.407448473486793044705845474036, −8.719300638097530880358005571127, −8.182810900295899497313183092429, −6.19234701167568880839060058776, −5.25960787411526872942462584360, −3.97445806578680962449546632973, −2.36801450322252349349970720869, −1.12087105986513250840448678538, 0.48331081193657706564051907509, 2.39417858920620940791953738082, 3.24048293638000004402061236135, 4.73415192890849648652746170316, 6.30772094771624628001032817165, 7.41134498441934413481983737644, 8.159359210708308330090529680750, 9.883136952049959596197158562129, 10.54887032666953688872522681618, 11.46410848021769827359284462590

Graph of the $Z$-function along the critical line