Properties

Label 1100.3.f.e.901.1
Level $1100$
Weight $3$
Character 1100.901
Analytic conductor $29.973$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1100,3,Mod(901,1100)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1100.901"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1100, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 1100 = 2^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1100.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(29.9728290796\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 83x^{6} + 1611x^{4} + 7105x^{2} + 400 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 5 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 901.1
Root \(-0.238817i\) of defining polynomial
Character \(\chi\) \(=\) 1100.901
Dual form 1100.3.f.e.901.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.14607 q^{3} -1.70661i q^{7} +8.18991 q^{9} +(-3.98865 - 10.2514i) q^{11} +16.6054i q^{13} -0.512519i q^{17} -19.5435i q^{19} +7.07571i q^{21} -11.2338 q^{23} +3.35868 q^{27} -48.1096i q^{29} +5.40252 q^{31} +(16.5372 + 42.5029i) q^{33} -0.530947 q^{37} -68.8472i q^{39} +28.0481i q^{41} -3.65348i q^{43} +3.58583 q^{47} +46.0875 q^{49} +2.12494i q^{51} -51.9269 q^{53} +81.0288i q^{57} +41.1738 q^{59} +42.3172i q^{61} -13.9770i q^{63} -73.5680 q^{67} +46.5760 q^{69} -13.3915 q^{71} +107.634i q^{73} +(-17.4951 + 6.80706i) q^{77} +15.6655i q^{79} -87.6345 q^{81} -16.3133i q^{83} +199.466i q^{87} -140.699 q^{89} +28.3389 q^{91} -22.3992 q^{93} -97.0976 q^{97} +(-32.6667 - 83.9579i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{3} + 16 q^{9} + 3 q^{11} - 28 q^{23} + 10 q^{27} + 14 q^{31} + 31 q^{33} + 24 q^{37} + 32 q^{47} + 14 q^{49} - 98 q^{53} + 128 q^{59} + 42 q^{67} - 176 q^{69} - 34 q^{71} + 136 q^{77} - 128 q^{81}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1100\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(551\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −4.14607 −1.38202 −0.691012 0.722843i \(-0.742835\pi\)
−0.691012 + 0.722843i \(0.742835\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 1.70661i 0.243801i −0.992542 0.121900i \(-0.961101\pi\)
0.992542 0.121900i \(-0.0388989\pi\)
\(8\) 0 0
\(9\) 8.18991 0.909990
\(10\) 0 0
\(11\) −3.98865 10.2514i −0.362605 0.931943i
\(12\) 0 0
\(13\) 16.6054i 1.27734i 0.769481 + 0.638669i \(0.220515\pi\)
−0.769481 + 0.638669i \(0.779485\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.512519i 0.0301482i −0.999886 0.0150741i \(-0.995202\pi\)
0.999886 0.0150741i \(-0.00479842\pi\)
\(18\) 0 0
\(19\) 19.5435i 1.02861i −0.857609 0.514303i \(-0.828051\pi\)
0.857609 0.514303i \(-0.171949\pi\)
\(20\) 0 0
\(21\) 7.07571i 0.336939i
\(22\) 0 0
\(23\) −11.2338 −0.488424 −0.244212 0.969722i \(-0.578529\pi\)
−0.244212 + 0.969722i \(0.578529\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 3.35868 0.124395
\(28\) 0 0
\(29\) 48.1096i 1.65895i −0.558543 0.829476i \(-0.688639\pi\)
0.558543 0.829476i \(-0.311361\pi\)
\(30\) 0 0
\(31\) 5.40252 0.174275 0.0871374 0.996196i \(-0.472228\pi\)
0.0871374 + 0.996196i \(0.472228\pi\)
\(32\) 0 0
\(33\) 16.5372 + 42.5029i 0.501129 + 1.28797i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −0.530947 −0.0143499 −0.00717495 0.999974i \(-0.502284\pi\)
−0.00717495 + 0.999974i \(0.502284\pi\)
\(38\) 0 0
\(39\) 68.8472i 1.76531i
\(40\) 0 0
\(41\) 28.0481i 0.684101i 0.939682 + 0.342051i \(0.111121\pi\)
−0.939682 + 0.342051i \(0.888879\pi\)
\(42\) 0 0
\(43\) 3.65348i 0.0849646i −0.999097 0.0424823i \(-0.986473\pi\)
0.999097 0.0424823i \(-0.0135266\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.58583 0.0762943 0.0381472 0.999272i \(-0.487854\pi\)
0.0381472 + 0.999272i \(0.487854\pi\)
\(48\) 0 0
\(49\) 46.0875 0.940561
\(50\) 0 0
\(51\) 2.12494i 0.0416655i
\(52\) 0 0
\(53\) −51.9269 −0.979752 −0.489876 0.871792i \(-0.662958\pi\)
−0.489876 + 0.871792i \(0.662958\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 81.0288i 1.42156i
\(58\) 0 0
\(59\) 41.1738 0.697861 0.348931 0.937149i \(-0.386545\pi\)
0.348931 + 0.937149i \(0.386545\pi\)
\(60\) 0 0
\(61\) 42.3172i 0.693725i 0.937916 + 0.346863i \(0.112753\pi\)
−0.937916 + 0.346863i \(0.887247\pi\)
\(62\) 0 0
\(63\) 13.9770i 0.221857i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −73.5680 −1.09803 −0.549015 0.835813i \(-0.684997\pi\)
−0.549015 + 0.835813i \(0.684997\pi\)
\(68\) 0 0
\(69\) 46.5760 0.675014
\(70\) 0 0
\(71\) −13.3915 −0.188612 −0.0943062 0.995543i \(-0.530063\pi\)
−0.0943062 + 0.995543i \(0.530063\pi\)
\(72\) 0 0
\(73\) 107.634i 1.47443i 0.675657 + 0.737216i \(0.263860\pi\)
−0.675657 + 0.737216i \(0.736140\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −17.4951 + 6.80706i −0.227209 + 0.0884034i
\(78\) 0 0
\(79\) 15.6655i 0.198298i 0.995073 + 0.0991489i \(0.0316120\pi\)
−0.995073 + 0.0991489i \(0.968388\pi\)
\(80\) 0 0
\(81\) −87.6345 −1.08191
\(82\) 0 0
\(83\) 16.3133i 0.196546i −0.995160 0.0982728i \(-0.968668\pi\)
0.995160 0.0982728i \(-0.0313318\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 199.466i 2.29271i
\(88\) 0 0
\(89\) −140.699 −1.58088 −0.790442 0.612536i \(-0.790149\pi\)
−0.790442 + 0.612536i \(0.790149\pi\)
\(90\) 0 0
\(91\) 28.3389 0.311416
\(92\) 0 0
\(93\) −22.3992 −0.240852
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −97.0976 −1.00101 −0.500503 0.865735i \(-0.666852\pi\)
−0.500503 + 0.865735i \(0.666852\pi\)
\(98\) 0 0
\(99\) −32.6667 83.9579i −0.329967 0.848059i
\(100\) 0 0
\(101\) 168.940i 1.67268i 0.548214 + 0.836338i \(0.315308\pi\)
−0.548214 + 0.836338i \(0.684692\pi\)
\(102\) 0 0
\(103\) 121.975 1.18422 0.592112 0.805856i \(-0.298294\pi\)
0.592112 + 0.805856i \(0.298294\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 109.905i 1.02715i 0.858046 + 0.513573i \(0.171678\pi\)
−0.858046 + 0.513573i \(0.828322\pi\)
\(108\) 0 0
\(109\) 127.789i 1.17238i 0.810174 + 0.586189i \(0.199372\pi\)
−0.810174 + 0.586189i \(0.800628\pi\)
\(110\) 0 0
\(111\) 2.20134 0.0198319
\(112\) 0 0
\(113\) −100.189 −0.886631 −0.443316 0.896366i \(-0.646198\pi\)
−0.443316 + 0.896366i \(0.646198\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 135.997i 1.16237i
\(118\) 0 0
\(119\) −0.874669 −0.00735016
\(120\) 0 0
\(121\) −89.1813 + 81.7783i −0.737035 + 0.675854i
\(122\) 0 0
\(123\) 116.290i 0.945444i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 159.105i 1.25279i 0.779505 + 0.626396i \(0.215471\pi\)
−0.779505 + 0.626396i \(0.784529\pi\)
\(128\) 0 0
\(129\) 15.1476i 0.117423i
\(130\) 0 0
\(131\) 103.534i 0.790335i 0.918609 + 0.395167i \(0.129313\pi\)
−0.918609 + 0.395167i \(0.870687\pi\)
\(132\) 0 0
\(133\) −33.3531 −0.250775
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 29.0495 0.212040 0.106020 0.994364i \(-0.466189\pi\)
0.106020 + 0.994364i \(0.466189\pi\)
\(138\) 0 0
\(139\) 62.4675i 0.449406i −0.974427 0.224703i \(-0.927859\pi\)
0.974427 0.224703i \(-0.0721412\pi\)
\(140\) 0 0
\(141\) −14.8671 −0.105441
\(142\) 0 0
\(143\) 170.228 66.2332i 1.19041 0.463169i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −191.082 −1.29988
\(148\) 0 0
\(149\) 48.4621i 0.325249i 0.986688 + 0.162624i \(0.0519959\pi\)
−0.986688 + 0.162624i \(0.948004\pi\)
\(150\) 0 0
\(151\) 134.512i 0.890811i 0.895329 + 0.445405i \(0.146940\pi\)
−0.895329 + 0.445405i \(0.853060\pi\)
\(152\) 0 0
\(153\) 4.19749i 0.0274346i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 215.729 1.37407 0.687036 0.726624i \(-0.258912\pi\)
0.687036 + 0.726624i \(0.258912\pi\)
\(158\) 0 0
\(159\) 215.293 1.35404
\(160\) 0 0
\(161\) 19.1716i 0.119078i
\(162\) 0 0
\(163\) −107.030 −0.656629 −0.328314 0.944569i \(-0.606481\pi\)
−0.328314 + 0.944569i \(0.606481\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 7.69504i 0.0460781i 0.999735 + 0.0230391i \(0.00733421\pi\)
−0.999735 + 0.0230391i \(0.992666\pi\)
\(168\) 0 0
\(169\) −106.739 −0.631593
\(170\) 0 0
\(171\) 160.060i 0.936021i
\(172\) 0 0
\(173\) 83.0910i 0.480295i 0.970736 + 0.240147i \(0.0771958\pi\)
−0.970736 + 0.240147i \(0.922804\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −170.710 −0.964461
\(178\) 0 0
\(179\) 304.889 1.70329 0.851645 0.524119i \(-0.175605\pi\)
0.851645 + 0.524119i \(0.175605\pi\)
\(180\) 0 0
\(181\) −19.7418 −0.109071 −0.0545353 0.998512i \(-0.517368\pi\)
−0.0545353 + 0.998512i \(0.517368\pi\)
\(182\) 0 0
\(183\) 175.450i 0.958745i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −5.25403 + 2.04426i −0.0280964 + 0.0109319i
\(188\) 0 0
\(189\) 5.73194i 0.0303277i
\(190\) 0 0
\(191\) −159.618 −0.835699 −0.417849 0.908516i \(-0.637216\pi\)
−0.417849 + 0.908516i \(0.637216\pi\)
\(192\) 0 0
\(193\) 278.288i 1.44191i 0.692983 + 0.720954i \(0.256296\pi\)
−0.692983 + 0.720954i \(0.743704\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 157.345i 0.798704i −0.916798 0.399352i \(-0.869235\pi\)
0.916798 0.399352i \(-0.130765\pi\)
\(198\) 0 0
\(199\) −339.116 −1.70410 −0.852050 0.523460i \(-0.824641\pi\)
−0.852050 + 0.523460i \(0.824641\pi\)
\(200\) 0 0
\(201\) 305.018 1.51750
\(202\) 0 0
\(203\) −82.1042 −0.404454
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −92.0035 −0.444461
\(208\) 0 0
\(209\) −200.348 + 77.9523i −0.958602 + 0.372977i
\(210\) 0 0
\(211\) 156.642i 0.742381i −0.928557 0.371191i \(-0.878950\pi\)
0.928557 0.371191i \(-0.121050\pi\)
\(212\) 0 0
\(213\) 55.5220 0.260667
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 9.21998i 0.0424884i
\(218\) 0 0
\(219\) 446.256i 2.03770i
\(220\) 0 0
\(221\) 8.51059 0.0385095
\(222\) 0 0
\(223\) −247.418 −1.10950 −0.554749 0.832017i \(-0.687186\pi\)
−0.554749 + 0.832017i \(0.687186\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 339.323i 1.49481i −0.664366 0.747407i \(-0.731298\pi\)
0.664366 0.747407i \(-0.268702\pi\)
\(228\) 0 0
\(229\) 152.661 0.666642 0.333321 0.942813i \(-0.391831\pi\)
0.333321 + 0.942813i \(0.391831\pi\)
\(230\) 0 0
\(231\) 72.5358 28.2226i 0.314008 0.122176i
\(232\) 0 0
\(233\) 397.264i 1.70499i 0.522731 + 0.852497i \(0.324913\pi\)
−0.522731 + 0.852497i \(0.675087\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 64.9504i 0.274052i
\(238\) 0 0
\(239\) 99.6838i 0.417087i −0.978013 0.208544i \(-0.933128\pi\)
0.978013 0.208544i \(-0.0668723\pi\)
\(240\) 0 0
\(241\) 247.891i 1.02859i −0.857613 0.514296i \(-0.828053\pi\)
0.857613 0.514296i \(-0.171947\pi\)
\(242\) 0 0
\(243\) 333.111 1.37083
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 324.528 1.31388
\(248\) 0 0
\(249\) 67.6360i 0.271631i
\(250\) 0 0
\(251\) −117.545 −0.468309 −0.234154 0.972199i \(-0.575232\pi\)
−0.234154 + 0.972199i \(0.575232\pi\)
\(252\) 0 0
\(253\) 44.8076 + 115.161i 0.177105 + 0.455183i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −11.4659 −0.0446146 −0.0223073 0.999751i \(-0.507101\pi\)
−0.0223073 + 0.999751i \(0.507101\pi\)
\(258\) 0 0
\(259\) 0.906117i 0.00349852i
\(260\) 0 0
\(261\) 394.013i 1.50963i
\(262\) 0 0
\(263\) 164.627i 0.625960i −0.949760 0.312980i \(-0.898673\pi\)
0.949760 0.312980i \(-0.101327\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 583.347 2.18482
\(268\) 0 0
\(269\) 361.059 1.34223 0.671113 0.741355i \(-0.265817\pi\)
0.671113 + 0.741355i \(0.265817\pi\)
\(270\) 0 0
\(271\) 155.764i 0.574776i 0.957814 + 0.287388i \(0.0927869\pi\)
−0.957814 + 0.287388i \(0.907213\pi\)
\(272\) 0 0
\(273\) −117.495 −0.430385
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 390.963i 1.41142i −0.708502 0.705708i \(-0.750629\pi\)
0.708502 0.705708i \(-0.249371\pi\)
\(278\) 0 0
\(279\) 44.2462 0.158588
\(280\) 0 0
\(281\) 82.7795i 0.294589i 0.989093 + 0.147295i \(0.0470565\pi\)
−0.989093 + 0.147295i \(0.952943\pi\)
\(282\) 0 0
\(283\) 197.972i 0.699549i 0.936834 + 0.349775i \(0.113742\pi\)
−0.936834 + 0.349775i \(0.886258\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 47.8672 0.166785
\(288\) 0 0
\(289\) 288.737 0.999091
\(290\) 0 0
\(291\) 402.574 1.38341
\(292\) 0 0
\(293\) 127.860i 0.436384i −0.975906 0.218192i \(-0.929984\pi\)
0.975906 0.218192i \(-0.0700159\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −13.3966 34.4311i −0.0451064 0.115929i
\(298\) 0 0
\(299\) 186.541i 0.623883i
\(300\) 0 0
\(301\) −6.23505 −0.0207145
\(302\) 0 0
\(303\) 700.438i 2.31168i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 559.530i 1.82257i −0.411772 0.911287i \(-0.635090\pi\)
0.411772 0.911287i \(-0.364910\pi\)
\(308\) 0 0
\(309\) −505.717 −1.63662
\(310\) 0 0
\(311\) 208.493 0.670395 0.335197 0.942148i \(-0.391197\pi\)
0.335197 + 0.942148i \(0.391197\pi\)
\(312\) 0 0
\(313\) −490.115 −1.56586 −0.782931 0.622108i \(-0.786276\pi\)
−0.782931 + 0.622108i \(0.786276\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −178.470 −0.562997 −0.281499 0.959562i \(-0.590832\pi\)
−0.281499 + 0.959562i \(0.590832\pi\)
\(318\) 0 0
\(319\) −493.189 + 191.892i −1.54605 + 0.601544i
\(320\) 0 0
\(321\) 455.672i 1.41954i
\(322\) 0 0
\(323\) −10.0164 −0.0310106
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 529.823i 1.62025i
\(328\) 0 0
\(329\) 6.11961i 0.0186006i
\(330\) 0 0
\(331\) −424.264 −1.28177 −0.640883 0.767639i \(-0.721431\pi\)
−0.640883 + 0.767639i \(0.721431\pi\)
\(332\) 0 0
\(333\) −4.34841 −0.0130583
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 391.858i 1.16278i 0.813624 + 0.581392i \(0.197492\pi\)
−0.813624 + 0.581392i \(0.802508\pi\)
\(338\) 0 0
\(339\) 415.392 1.22535
\(340\) 0 0
\(341\) −21.5488 55.3832i −0.0631929 0.162414i
\(342\) 0 0
\(343\) 162.277i 0.473111i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 515.467i 1.48550i −0.669571 0.742748i \(-0.733522\pi\)
0.669571 0.742748i \(-0.266478\pi\)
\(348\) 0 0
\(349\) 413.637i 1.18521i 0.805495 + 0.592603i \(0.201900\pi\)
−0.805495 + 0.592603i \(0.798100\pi\)
\(350\) 0 0
\(351\) 55.7722i 0.158895i
\(352\) 0 0
\(353\) 672.441 1.90493 0.952466 0.304646i \(-0.0985381\pi\)
0.952466 + 0.304646i \(0.0985381\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 3.62644 0.0101581
\(358\) 0 0
\(359\) 655.797i 1.82673i 0.407138 + 0.913367i \(0.366527\pi\)
−0.407138 + 0.913367i \(0.633473\pi\)
\(360\) 0 0
\(361\) −20.9485 −0.0580291
\(362\) 0 0
\(363\) 369.752 339.059i 1.01860 0.934047i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −642.013 −1.74935 −0.874677 0.484706i \(-0.838927\pi\)
−0.874677 + 0.484706i \(0.838927\pi\)
\(368\) 0 0
\(369\) 229.712i 0.622526i
\(370\) 0 0
\(371\) 88.6187i 0.238865i
\(372\) 0 0
\(373\) 444.369i 1.19134i 0.803230 + 0.595669i \(0.203113\pi\)
−0.803230 + 0.595669i \(0.796887\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 798.879 2.11904
\(378\) 0 0
\(379\) 93.9534 0.247898 0.123949 0.992289i \(-0.460444\pi\)
0.123949 + 0.992289i \(0.460444\pi\)
\(380\) 0 0
\(381\) 659.659i 1.73139i
\(382\) 0 0
\(383\) 81.6845 0.213275 0.106638 0.994298i \(-0.465992\pi\)
0.106638 + 0.994298i \(0.465992\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 29.9217i 0.0773170i
\(388\) 0 0
\(389\) −648.091 −1.66604 −0.833022 0.553240i \(-0.813391\pi\)
−0.833022 + 0.553240i \(0.813391\pi\)
\(390\) 0 0
\(391\) 5.75752i 0.0147251i
\(392\) 0 0
\(393\) 429.259i 1.09226i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −121.217 −0.305334 −0.152667 0.988278i \(-0.548786\pi\)
−0.152667 + 0.988278i \(0.548786\pi\)
\(398\) 0 0
\(399\) 138.284 0.346577
\(400\) 0 0
\(401\) −46.6180 −0.116254 −0.0581272 0.998309i \(-0.518513\pi\)
−0.0581272 + 0.998309i \(0.518513\pi\)
\(402\) 0 0
\(403\) 89.7110i 0.222608i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 2.11776 + 5.44293i 0.00520335 + 0.0133733i
\(408\) 0 0
\(409\) 434.331i 1.06193i 0.847392 + 0.530967i \(0.178171\pi\)
−0.847392 + 0.530967i \(0.821829\pi\)
\(410\) 0 0
\(411\) −120.441 −0.293044
\(412\) 0 0
\(413\) 70.2675i 0.170139i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 258.995i 0.621090i
\(418\) 0 0
\(419\) −521.101 −1.24368 −0.621839 0.783145i \(-0.713614\pi\)
−0.621839 + 0.783145i \(0.713614\pi\)
\(420\) 0 0
\(421\) 678.997 1.61282 0.806410 0.591357i \(-0.201408\pi\)
0.806410 + 0.591357i \(0.201408\pi\)
\(422\) 0 0
\(423\) 29.3677 0.0694271
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 72.2189 0.169131
\(428\) 0 0
\(429\) −705.778 + 274.608i −1.64517 + 0.640111i
\(430\) 0 0
\(431\) 731.778i 1.69786i 0.528505 + 0.848930i \(0.322753\pi\)
−0.528505 + 0.848930i \(0.677247\pi\)
\(432\) 0 0
\(433\) −434.851 −1.00428 −0.502138 0.864788i \(-0.667453\pi\)
−0.502138 + 0.864788i \(0.667453\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 219.547i 0.502396i
\(438\) 0 0
\(439\) 762.031i 1.73583i 0.496709 + 0.867917i \(0.334542\pi\)
−0.496709 + 0.867917i \(0.665458\pi\)
\(440\) 0 0
\(441\) 377.453 0.855902
\(442\) 0 0
\(443\) −156.276 −0.352768 −0.176384 0.984321i \(-0.556440\pi\)
−0.176384 + 0.984321i \(0.556440\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 200.927i 0.449502i
\(448\) 0 0
\(449\) 545.999 1.21603 0.608017 0.793924i \(-0.291965\pi\)
0.608017 + 0.793924i \(0.291965\pi\)
\(450\) 0 0
\(451\) 287.532 111.874i 0.637543 0.248058i
\(452\) 0 0
\(453\) 557.698i 1.23112i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 310.676i 0.679816i 0.940459 + 0.339908i \(0.110396\pi\)
−0.940459 + 0.339908i \(0.889604\pi\)
\(458\) 0 0
\(459\) 1.72139i 0.00375030i
\(460\) 0 0
\(461\) 527.875i 1.14507i −0.819882 0.572533i \(-0.805961\pi\)
0.819882 0.572533i \(-0.194039\pi\)
\(462\) 0 0
\(463\) 573.469 1.23859 0.619297 0.785157i \(-0.287418\pi\)
0.619297 + 0.785157i \(0.287418\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 341.159 0.730533 0.365267 0.930903i \(-0.380978\pi\)
0.365267 + 0.930903i \(0.380978\pi\)
\(468\) 0 0
\(469\) 125.552i 0.267701i
\(470\) 0 0
\(471\) −894.429 −1.89900
\(472\) 0 0
\(473\) −37.4532 + 14.5725i −0.0791822 + 0.0308086i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −425.277 −0.891565
\(478\) 0 0
\(479\) 298.366i 0.622893i 0.950264 + 0.311446i \(0.100813\pi\)
−0.950264 + 0.311446i \(0.899187\pi\)
\(480\) 0 0
\(481\) 8.81658i 0.0183297i
\(482\) 0 0
\(483\) 79.4868i 0.164569i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 459.677 0.943896 0.471948 0.881626i \(-0.343551\pi\)
0.471948 + 0.881626i \(0.343551\pi\)
\(488\) 0 0
\(489\) 443.756 0.907476
\(490\) 0 0
\(491\) 761.166i 1.55024i 0.631816 + 0.775119i \(0.282310\pi\)
−0.631816 + 0.775119i \(0.717690\pi\)
\(492\) 0 0
\(493\) −24.6571 −0.0500144
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 22.8540i 0.0459839i
\(498\) 0 0
\(499\) 155.577 0.311777 0.155889 0.987775i \(-0.450176\pi\)
0.155889 + 0.987775i \(0.450176\pi\)
\(500\) 0 0
\(501\) 31.9042i 0.0636810i
\(502\) 0 0
\(503\) 908.189i 1.80554i −0.430119 0.902772i \(-0.641528\pi\)
0.430119 0.902772i \(-0.358472\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 442.549 0.872877
\(508\) 0 0
\(509\) 99.5660 0.195611 0.0978055 0.995206i \(-0.468818\pi\)
0.0978055 + 0.995206i \(0.468818\pi\)
\(510\) 0 0
\(511\) 183.688 0.359468
\(512\) 0 0
\(513\) 65.6403i 0.127954i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −14.3026 36.7597i −0.0276647 0.0711019i
\(518\) 0 0
\(519\) 344.501i 0.663779i
\(520\) 0 0
\(521\) −285.253 −0.547511 −0.273755 0.961799i \(-0.588266\pi\)
−0.273755 + 0.961799i \(0.588266\pi\)
\(522\) 0 0
\(523\) 788.239i 1.50715i 0.657363 + 0.753574i \(0.271672\pi\)
−0.657363 + 0.753574i \(0.728328\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.76890i 0.00525407i
\(528\) 0 0
\(529\) −402.803 −0.761442
\(530\) 0 0
\(531\) 337.210 0.635047
\(532\) 0 0
\(533\) −465.751 −0.873829
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −1264.09 −2.35399
\(538\) 0 0
\(539\) −183.827 472.460i −0.341052 0.876549i
\(540\) 0 0
\(541\) 656.926i 1.21428i −0.794595 0.607140i \(-0.792317\pi\)
0.794595 0.607140i \(-0.207683\pi\)
\(542\) 0 0
\(543\) 81.8509 0.150738
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 318.855i 0.582916i −0.956584 0.291458i \(-0.905860\pi\)
0.956584 0.291458i \(-0.0941403\pi\)
\(548\) 0 0
\(549\) 346.574i 0.631283i
\(550\) 0 0
\(551\) −940.230 −1.70641
\(552\) 0 0
\(553\) 26.7349 0.0483452
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 643.510i 1.15531i −0.816279 0.577657i \(-0.803967\pi\)
0.816279 0.577657i \(-0.196033\pi\)
\(558\) 0 0
\(559\) 60.6675 0.108529
\(560\) 0 0
\(561\) 21.7836 8.47566i 0.0388299 0.0151081i
\(562\) 0 0
\(563\) 156.186i 0.277417i −0.990333 0.138709i \(-0.955705\pi\)
0.990333 0.138709i \(-0.0442951\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 149.558i 0.263770i
\(568\) 0 0
\(569\) 810.820i 1.42499i −0.701676 0.712496i \(-0.747565\pi\)
0.701676 0.712496i \(-0.252435\pi\)
\(570\) 0 0
\(571\) 293.650i 0.514273i 0.966375 + 0.257136i \(0.0827789\pi\)
−0.966375 + 0.257136i \(0.917221\pi\)
\(572\) 0 0
\(573\) 661.790 1.15496
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −122.633 −0.212536 −0.106268 0.994338i \(-0.533890\pi\)
−0.106268 + 0.994338i \(0.533890\pi\)
\(578\) 0 0
\(579\) 1153.80i 1.99275i
\(580\) 0 0
\(581\) −27.8404 −0.0479180
\(582\) 0 0
\(583\) 207.118 + 532.322i 0.355263 + 0.913073i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −959.478 −1.63455 −0.817273 0.576251i \(-0.804515\pi\)
−0.817273 + 0.576251i \(0.804515\pi\)
\(588\) 0 0
\(589\) 105.584i 0.179260i
\(590\) 0 0
\(591\) 652.362i 1.10383i
\(592\) 0 0
\(593\) 277.185i 0.467428i −0.972305 0.233714i \(-0.924912\pi\)
0.972305 0.233714i \(-0.0750880\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 1406.00 2.35511
\(598\) 0 0
\(599\) 281.461 0.469885 0.234943 0.972009i \(-0.424510\pi\)
0.234943 + 0.972009i \(0.424510\pi\)
\(600\) 0 0
\(601\) 626.332i 1.04215i −0.853511 0.521075i \(-0.825531\pi\)
0.853511 0.521075i \(-0.174469\pi\)
\(602\) 0 0
\(603\) −602.516 −0.999197
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 558.941i 0.920825i 0.887705 + 0.460413i \(0.152299\pi\)
−0.887705 + 0.460413i \(0.847701\pi\)
\(608\) 0 0
\(609\) 340.410 0.558965
\(610\) 0 0
\(611\) 59.5442i 0.0974537i
\(612\) 0 0
\(613\) 1035.10i 1.68857i 0.535892 + 0.844286i \(0.319975\pi\)
−0.535892 + 0.844286i \(0.680025\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −291.717 −0.472800 −0.236400 0.971656i \(-0.575968\pi\)
−0.236400 + 0.971656i \(0.575968\pi\)
\(618\) 0 0
\(619\) 269.541 0.435446 0.217723 0.976011i \(-0.430137\pi\)
0.217723 + 0.976011i \(0.430137\pi\)
\(620\) 0 0
\(621\) −37.7306 −0.0607578
\(622\) 0 0
\(623\) 240.117i 0.385421i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 830.656 323.196i 1.32481 0.515464i
\(628\) 0 0
\(629\) 0.272120i 0.000432624i
\(630\) 0 0
\(631\) −172.219 −0.272930 −0.136465 0.990645i \(-0.543574\pi\)
−0.136465 + 0.990645i \(0.543574\pi\)
\(632\) 0 0
\(633\) 649.451i 1.02599i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 765.301i 1.20141i
\(638\) 0 0
\(639\) −109.675 −0.171635
\(640\) 0 0
\(641\) 377.939 0.589608 0.294804 0.955558i \(-0.404746\pi\)
0.294804 + 0.955558i \(0.404746\pi\)
\(642\) 0 0
\(643\) −511.939 −0.796172 −0.398086 0.917348i \(-0.630325\pi\)
−0.398086 + 0.917348i \(0.630325\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −521.728 −0.806381 −0.403190 0.915116i \(-0.632099\pi\)
−0.403190 + 0.915116i \(0.632099\pi\)
\(648\) 0 0
\(649\) −164.228 422.088i −0.253048 0.650367i
\(650\) 0 0
\(651\) 38.2267i 0.0587199i
\(652\) 0 0
\(653\) −314.135 −0.481065 −0.240532 0.970641i \(-0.577322\pi\)
−0.240532 + 0.970641i \(0.577322\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 881.509i 1.34172i
\(658\) 0 0
\(659\) 691.038i 1.04862i −0.851528 0.524308i \(-0.824324\pi\)
0.851528 0.524308i \(-0.175676\pi\)
\(660\) 0 0
\(661\) 1127.61 1.70591 0.852957 0.521981i \(-0.174807\pi\)
0.852957 + 0.521981i \(0.174807\pi\)
\(662\) 0 0
\(663\) −35.2855 −0.0532210
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 540.451i 0.810272i
\(668\) 0 0
\(669\) 1025.81 1.53335
\(670\) 0 0
\(671\) 433.810 168.789i 0.646512 0.251548i
\(672\) 0 0
\(673\) 888.140i 1.31967i 0.751409 + 0.659837i \(0.229375\pi\)
−0.751409 + 0.659837i \(0.770625\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 666.114i 0.983920i −0.870618 0.491960i \(-0.836281\pi\)
0.870618 0.491960i \(-0.163719\pi\)
\(678\) 0 0
\(679\) 165.707i 0.244046i
\(680\) 0 0
\(681\) 1406.86i 2.06587i
\(682\) 0 0
\(683\) −727.901 −1.06574 −0.532871 0.846197i \(-0.678887\pi\)
−0.532871 + 0.846197i \(0.678887\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −632.944 −0.921316
\(688\) 0 0
\(689\) 862.266i 1.25148i
\(690\) 0 0
\(691\) −610.238 −0.883123 −0.441561 0.897231i \(-0.645575\pi\)
−0.441561 + 0.897231i \(0.645575\pi\)
\(692\) 0 0
\(693\) −143.283 + 55.7493i −0.206758 + 0.0804463i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 14.3752 0.0206244
\(698\) 0 0
\(699\) 1647.08i 2.35634i
\(700\) 0 0
\(701\) 669.548i 0.955133i −0.878596 0.477566i \(-0.841519\pi\)
0.878596 0.477566i \(-0.158481\pi\)
\(702\) 0 0
\(703\) 10.3766i 0.0147604i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 288.315 0.407800
\(708\) 0 0
\(709\) 62.5477 0.0882197 0.0441098 0.999027i \(-0.485955\pi\)
0.0441098 + 0.999027i \(0.485955\pi\)
\(710\) 0 0
\(711\) 128.299i 0.180449i
\(712\) 0 0
\(713\) −60.6906 −0.0851200
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 413.296i 0.576424i
\(718\) 0 0
\(719\) 958.637 1.33329 0.666646 0.745374i \(-0.267729\pi\)
0.666646 + 0.745374i \(0.267729\pi\)
\(720\) 0 0
\(721\) 208.163i 0.288715i
\(722\) 0 0
\(723\) 1027.77i 1.42154i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 678.507 0.933297 0.466648 0.884443i \(-0.345461\pi\)
0.466648 + 0.884443i \(0.345461\pi\)
\(728\) 0 0
\(729\) −592.391 −0.812608
\(730\) 0 0
\(731\) −1.87248 −0.00256153
\(732\) 0 0
\(733\) 925.664i 1.26284i 0.775440 + 0.631422i \(0.217528\pi\)
−0.775440 + 0.631422i \(0.782472\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 293.437 + 754.173i 0.398151 + 1.02330i
\(738\) 0 0
\(739\) 771.476i 1.04395i 0.852962 + 0.521973i \(0.174804\pi\)
−0.852962 + 0.521973i \(0.825196\pi\)
\(740\) 0 0
\(741\) −1345.52 −1.81581
\(742\) 0 0
\(743\) 816.220i 1.09855i −0.835643 0.549274i \(-0.814905\pi\)
0.835643 0.549274i \(-0.185095\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 133.604i 0.178855i
\(748\) 0 0
\(749\) 187.564 0.250419
\(750\) 0 0
\(751\) 704.308 0.937827 0.468914 0.883244i \(-0.344646\pi\)
0.468914 + 0.883244i \(0.344646\pi\)
\(752\) 0 0
\(753\) 487.352 0.647214
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −1457.18 −1.92495 −0.962473 0.271379i \(-0.912520\pi\)
−0.962473 + 0.271379i \(0.912520\pi\)
\(758\) 0 0
\(759\) −185.775 477.467i −0.244763 0.629074i
\(760\) 0 0
\(761\) 1121.73i 1.47403i 0.675878 + 0.737014i \(0.263765\pi\)
−0.675878 + 0.737014i \(0.736235\pi\)
\(762\) 0 0
\(763\) 218.086 0.285827
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 683.708i 0.891405i
\(768\) 0 0
\(769\) 654.531i 0.851146i −0.904924 0.425573i \(-0.860073\pi\)
0.904924 0.425573i \(-0.139927\pi\)
\(770\) 0 0
\(771\) 47.5386 0.0616584
\(772\) 0 0
\(773\) 682.354 0.882735 0.441367 0.897326i \(-0.354494\pi\)
0.441367 + 0.897326i \(0.354494\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 3.75683i 0.00483504i
\(778\) 0 0
\(779\) 548.159 0.703670
\(780\) 0 0
\(781\) 53.4140 + 137.281i 0.0683917 + 0.175776i
\(782\) 0 0
\(783\) 161.585i 0.206366i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 651.105i 0.827326i 0.910430 + 0.413663i \(0.135751\pi\)
−0.910430 + 0.413663i \(0.864249\pi\)
\(788\) 0 0
\(789\) 682.557i 0.865091i
\(790\) 0 0
\(791\) 170.984i 0.216162i
\(792\) 0 0
\(793\) −702.694 −0.886122
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 288.164 0.361561 0.180780 0.983524i \(-0.442138\pi\)
0.180780 + 0.983524i \(0.442138\pi\)
\(798\) 0 0
\(799\) 1.83781i 0.00230014i
\(800\) 0 0
\(801\) −1152.31 −1.43859
\(802\) 0 0
\(803\) 1103.39 429.313i 1.37409 0.534636i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −1496.98 −1.85499
\(808\) 0 0
\(809\) 37.5190i 0.0463771i 0.999731 + 0.0231885i \(0.00738180\pi\)
−0.999731 + 0.0231885i \(0.992618\pi\)
\(810\) 0 0
\(811\) 879.835i 1.08488i −0.840096 0.542438i \(-0.817501\pi\)
0.840096 0.542438i \(-0.182499\pi\)
\(812\) 0 0
\(813\) 645.810i 0.794354i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −71.4018 −0.0873951
\(818\) 0 0
\(819\) 232.093 0.283386
\(820\) 0 0
\(821\) 901.103i 1.09757i 0.835964 + 0.548784i \(0.184909\pi\)
−0.835964 + 0.548784i \(0.815091\pi\)
\(822\) 0 0
\(823\) −1296.62 −1.57548 −0.787738 0.616010i \(-0.788748\pi\)
−0.787738 + 0.616010i \(0.788748\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 48.1443i 0.0582156i −0.999576 0.0291078i \(-0.990733\pi\)
0.999576 0.0291078i \(-0.00926661\pi\)
\(828\) 0 0
\(829\) −8.95955 −0.0108077 −0.00540383 0.999985i \(-0.501720\pi\)
−0.00540383 + 0.999985i \(0.501720\pi\)
\(830\) 0 0
\(831\) 1620.96i 1.95061i
\(832\) 0 0
\(833\) 23.6207i 0.0283562i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 18.1453 0.0216790
\(838\) 0 0
\(839\) −1504.58 −1.79331 −0.896653 0.442734i \(-0.854009\pi\)
−0.896653 + 0.442734i \(0.854009\pi\)
\(840\) 0 0
\(841\) −1473.53 −1.75212
\(842\) 0 0
\(843\) 343.210i 0.407129i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 139.563 + 152.197i 0.164774 + 0.179690i
\(848\) 0 0
\(849\) 820.808i 0.966794i
\(850\) 0 0
\(851\) 5.96452 0.00700884
\(852\) 0 0
\(853\) 419.571i 0.491877i −0.969285 0.245938i \(-0.920904\pi\)
0.969285 0.245938i \(-0.0790961\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 285.389i 0.333010i 0.986041 + 0.166505i \(0.0532481\pi\)
−0.986041 + 0.166505i \(0.946752\pi\)
\(858\) 0 0
\(859\) −575.894 −0.670423 −0.335212 0.942143i \(-0.608808\pi\)
−0.335212 + 0.942143i \(0.608808\pi\)
\(860\) 0 0
\(861\) −198.461 −0.230500
\(862\) 0 0
\(863\) 1065.79 1.23499 0.617493 0.786576i \(-0.288148\pi\)
0.617493 + 0.786576i \(0.288148\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −1197.13 −1.38077
\(868\) 0 0
\(869\) 160.593 62.4843i 0.184802 0.0719037i
\(870\) 0 0
\(871\) 1221.63i 1.40256i
\(872\) 0 0
\(873\) −795.221 −0.910906
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 120.742i 0.137676i 0.997628 + 0.0688382i \(0.0219292\pi\)
−0.997628 + 0.0688382i \(0.978071\pi\)
\(878\) 0 0
\(879\) 530.119i 0.603093i
\(880\) 0 0
\(881\) 1206.22 1.36914 0.684572 0.728946i \(-0.259989\pi\)
0.684572 + 0.728946i \(0.259989\pi\)
\(882\) 0 0
\(883\) 306.072 0.346627 0.173314 0.984867i \(-0.444553\pi\)
0.173314 + 0.984867i \(0.444553\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 1125.95i 1.26939i 0.772764 + 0.634694i \(0.218874\pi\)
−0.772764 + 0.634694i \(0.781126\pi\)
\(888\) 0 0
\(889\) 271.529 0.305432
\(890\) 0 0
\(891\) 349.544 + 898.374i 0.392305 + 1.00828i
\(892\) 0 0
\(893\) 70.0797i 0.0784767i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 773.412i 0.862221i
\(898\) 0 0
\(899\) 259.913i 0.289113i
\(900\) 0 0
\(901\) 26.6135i 0.0295378i
\(902\) 0 0
\(903\) 25.8510 0.0286279
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −874.007 −0.963624 −0.481812 0.876275i \(-0.660021\pi\)
−0.481812 + 0.876275i \(0.660021\pi\)
\(908\) 0 0
\(909\) 1383.61i 1.52212i
\(910\) 0 0
\(911\) −234.753 −0.257687 −0.128844 0.991665i \(-0.541127\pi\)
−0.128844 + 0.991665i \(0.541127\pi\)
\(912\) 0 0
\(913\) −167.234 + 65.0680i −0.183169 + 0.0712684i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 176.692 0.192684
\(918\) 0 0
\(919\) 1421.78i 1.54710i 0.633736 + 0.773550i \(0.281521\pi\)
−0.633736 + 0.773550i \(0.718479\pi\)
\(920\) 0 0
\(921\) 2319.85i 2.51884i
\(922\) 0 0
\(923\) 222.371i 0.240922i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 998.964 1.07763
\(928\) 0 0
\(929\) −455.451 −0.490259 −0.245130 0.969490i \(-0.578831\pi\)
−0.245130 + 0.969490i \(0.578831\pi\)
\(930\) 0 0
\(931\) 900.711i 0.967466i
\(932\) 0 0
\(933\) −864.426 −0.926502
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 1512.60i 1.61430i 0.590343 + 0.807152i \(0.298992\pi\)
−0.590343 + 0.807152i \(0.701008\pi\)
\(938\) 0 0
\(939\) 2032.05 2.16406
\(940\) 0 0
\(941\) 419.883i 0.446209i −0.974795 0.223105i \(-0.928381\pi\)
0.974795 0.223105i \(-0.0716191\pi\)
\(942\) 0 0
\(943\) 315.086i 0.334132i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1110.89 1.17307 0.586533 0.809925i \(-0.300492\pi\)
0.586533 + 0.809925i \(0.300492\pi\)
\(948\) 0 0
\(949\) −1787.30 −1.88335
\(950\) 0 0
\(951\) 739.950 0.778076
\(952\) 0 0
\(953\) 810.140i 0.850095i −0.905171 0.425047i \(-0.860257\pi\)
0.905171 0.425047i \(-0.139743\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 2044.80 795.600i 2.13668 0.831348i
\(958\) 0 0
\(959\) 49.5760i 0.0516955i
\(960\) 0 0
\(961\) −931.813 −0.969628
\(962\) 0 0
\(963\) 900.109i 0.934692i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 1345.29i 1.39120i 0.718428 + 0.695601i \(0.244862\pi\)
−0.718428 + 0.695601i \(0.755138\pi\)
\(968\) 0 0
\(969\) 41.5288 0.0428574
\(970\) 0 0
\(971\) 560.812 0.577561 0.288781 0.957395i \(-0.406750\pi\)
0.288781 + 0.957395i \(0.406750\pi\)
\(972\) 0 0
\(973\) −106.607 −0.109566
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −1447.74 −1.48182 −0.740912 0.671603i \(-0.765606\pi\)
−0.740912 + 0.671603i \(0.765606\pi\)
\(978\) 0 0
\(979\) 561.199 + 1442.36i 0.573236 + 1.47329i
\(980\) 0 0
\(981\) 1046.58i 1.06685i
\(982\) 0 0
\(983\) 543.853 0.553259 0.276629 0.960977i \(-0.410783\pi\)
0.276629 + 0.960977i \(0.410783\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 25.3723i 0.0257065i
\(988\) 0 0
\(989\) 41.0423i 0.0414988i
\(990\) 0 0
\(991\) −398.772 −0.402394 −0.201197 0.979551i \(-0.564483\pi\)
−0.201197 + 0.979551i \(0.564483\pi\)
\(992\) 0 0
\(993\) 1759.03 1.77143
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 264.448i 0.265244i −0.991167 0.132622i \(-0.957660\pi\)
0.991167 0.132622i \(-0.0423396\pi\)
\(998\) 0 0
\(999\) −1.78328 −0.00178506
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1100.3.f.e.901.1 yes 8
5.2 odd 4 1100.3.e.c.549.14 16
5.3 odd 4 1100.3.e.c.549.3 16
5.4 even 2 1100.3.f.c.901.8 yes 8
11.10 odd 2 inner 1100.3.f.e.901.2 yes 8
55.32 even 4 1100.3.e.c.549.13 16
55.43 even 4 1100.3.e.c.549.4 16
55.54 odd 2 1100.3.f.c.901.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1100.3.e.c.549.3 16 5.3 odd 4
1100.3.e.c.549.4 16 55.43 even 4
1100.3.e.c.549.13 16 55.32 even 4
1100.3.e.c.549.14 16 5.2 odd 4
1100.3.f.c.901.7 8 55.54 odd 2
1100.3.f.c.901.8 yes 8 5.4 even 2
1100.3.f.e.901.1 yes 8 1.1 even 1 trivial
1100.3.f.e.901.2 yes 8 11.10 odd 2 inner