Properties

Label 1100.3.e.c.549.14
Level $1100$
Weight $3$
Character 1100.549
Analytic conductor $29.973$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1100,3,Mod(549,1100)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1100.549"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1100, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 1100 = 2^{2} \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1100.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,0,0,0,0,-32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(29.9728290796\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 174 x^{14} + 10969 x^{12} + 318076 x^{10} + 4442560 x^{8} + 28982576 x^{6} + 77210944 x^{4} + \cdots + 26790976 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{4}\cdot 5^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 549.14
Root \(-0.761183i\) of defining polynomial
Character \(\chi\) \(=\) 1100.549
Dual form 1100.3.e.c.549.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.14607i q^{3} +1.70661 q^{7} -8.18991 q^{9} +(-3.98865 - 10.2514i) q^{11} +16.6054 q^{13} +0.512519 q^{17} +19.5435i q^{19} +7.07571i q^{21} +11.2338i q^{23} +3.35868i q^{27} +48.1096i q^{29} +5.40252 q^{31} +(42.5029 - 16.5372i) q^{33} -0.530947i q^{37} +68.8472i q^{39} +28.0481i q^{41} -3.65348 q^{43} +3.58583i q^{47} -46.0875 q^{49} +2.12494i q^{51} +51.9269i q^{53} -81.0288 q^{57} -41.1738 q^{59} +42.3172i q^{61} -13.9770 q^{63} -73.5680i q^{67} -46.5760 q^{69} -13.3915 q^{71} +107.634 q^{73} +(-6.80706 - 17.4951i) q^{77} -15.6655i q^{79} -87.6345 q^{81} -16.3133 q^{83} -199.466 q^{87} +140.699 q^{89} +28.3389 q^{91} +22.3992i q^{93} -97.0976i q^{97} +(32.6667 + 83.9579i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 32 q^{9} + 6 q^{11} + 28 q^{31} - 28 q^{49} - 256 q^{59} + 352 q^{69} - 68 q^{71} - 256 q^{81} + 292 q^{89} + 228 q^{91} - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1100\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(551\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 4.14607i 1.38202i 0.722843 + 0.691012i \(0.242835\pi\)
−0.722843 + 0.691012i \(0.757165\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 1.70661 0.243801 0.121900 0.992542i \(-0.461101\pi\)
0.121900 + 0.992542i \(0.461101\pi\)
\(8\) 0 0
\(9\) −8.18991 −0.909990
\(10\) 0 0
\(11\) −3.98865 10.2514i −0.362605 0.931943i
\(12\) 0 0
\(13\) 16.6054 1.27734 0.638669 0.769481i \(-0.279485\pi\)
0.638669 + 0.769481i \(0.279485\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0.512519 0.0301482 0.0150741 0.999886i \(-0.495202\pi\)
0.0150741 + 0.999886i \(0.495202\pi\)
\(18\) 0 0
\(19\) 19.5435i 1.02861i 0.857609 + 0.514303i \(0.171949\pi\)
−0.857609 + 0.514303i \(0.828051\pi\)
\(20\) 0 0
\(21\) 7.07571i 0.336939i
\(22\) 0 0
\(23\) 11.2338i 0.488424i 0.969722 + 0.244212i \(0.0785293\pi\)
−0.969722 + 0.244212i \(0.921471\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 3.35868i 0.124395i
\(28\) 0 0
\(29\) 48.1096i 1.65895i 0.558543 + 0.829476i \(0.311361\pi\)
−0.558543 + 0.829476i \(0.688639\pi\)
\(30\) 0 0
\(31\) 5.40252 0.174275 0.0871374 0.996196i \(-0.472228\pi\)
0.0871374 + 0.996196i \(0.472228\pi\)
\(32\) 0 0
\(33\) 42.5029 16.5372i 1.28797 0.501129i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 0.530947i 0.0143499i −0.999974 0.00717495i \(-0.997716\pi\)
0.999974 0.00717495i \(-0.00228388\pi\)
\(38\) 0 0
\(39\) 68.8472i 1.76531i
\(40\) 0 0
\(41\) 28.0481i 0.684101i 0.939682 + 0.342051i \(0.111121\pi\)
−0.939682 + 0.342051i \(0.888879\pi\)
\(42\) 0 0
\(43\) −3.65348 −0.0849646 −0.0424823 0.999097i \(-0.513527\pi\)
−0.0424823 + 0.999097i \(0.513527\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.58583i 0.0762943i 0.999272 + 0.0381472i \(0.0121456\pi\)
−0.999272 + 0.0381472i \(0.987854\pi\)
\(48\) 0 0
\(49\) −46.0875 −0.940561
\(50\) 0 0
\(51\) 2.12494i 0.0416655i
\(52\) 0 0
\(53\) 51.9269i 0.979752i 0.871792 + 0.489876i \(0.162958\pi\)
−0.871792 + 0.489876i \(0.837042\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −81.0288 −1.42156
\(58\) 0 0
\(59\) −41.1738 −0.697861 −0.348931 0.937149i \(-0.613455\pi\)
−0.348931 + 0.937149i \(0.613455\pi\)
\(60\) 0 0
\(61\) 42.3172i 0.693725i 0.937916 + 0.346863i \(0.112753\pi\)
−0.937916 + 0.346863i \(0.887247\pi\)
\(62\) 0 0
\(63\) −13.9770 −0.221857
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 73.5680i 1.09803i −0.835813 0.549015i \(-0.815003\pi\)
0.835813 0.549015i \(-0.184997\pi\)
\(68\) 0 0
\(69\) −46.5760 −0.675014
\(70\) 0 0
\(71\) −13.3915 −0.188612 −0.0943062 0.995543i \(-0.530063\pi\)
−0.0943062 + 0.995543i \(0.530063\pi\)
\(72\) 0 0
\(73\) 107.634 1.47443 0.737216 0.675657i \(-0.236140\pi\)
0.737216 + 0.675657i \(0.236140\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −6.80706 17.4951i −0.0884034 0.227209i
\(78\) 0 0
\(79\) 15.6655i 0.198298i −0.995073 0.0991489i \(-0.968388\pi\)
0.995073 0.0991489i \(-0.0316120\pi\)
\(80\) 0 0
\(81\) −87.6345 −1.08191
\(82\) 0 0
\(83\) −16.3133 −0.196546 −0.0982728 0.995160i \(-0.531332\pi\)
−0.0982728 + 0.995160i \(0.531332\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −199.466 −2.29271
\(88\) 0 0
\(89\) 140.699 1.58088 0.790442 0.612536i \(-0.209851\pi\)
0.790442 + 0.612536i \(0.209851\pi\)
\(90\) 0 0
\(91\) 28.3389 0.311416
\(92\) 0 0
\(93\) 22.3992i 0.240852i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 97.0976i 1.00101i −0.865735 0.500503i \(-0.833148\pi\)
0.865735 0.500503i \(-0.166852\pi\)
\(98\) 0 0
\(99\) 32.6667 + 83.9579i 0.329967 + 0.848059i
\(100\) 0 0
\(101\) 168.940i 1.67268i 0.548214 + 0.836338i \(0.315308\pi\)
−0.548214 + 0.836338i \(0.684692\pi\)
\(102\) 0 0
\(103\) 121.975i 1.18422i −0.805856 0.592112i \(-0.798294\pi\)
0.805856 0.592112i \(-0.201706\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −109.905 −1.02715 −0.513573 0.858046i \(-0.671678\pi\)
−0.513573 + 0.858046i \(0.671678\pi\)
\(108\) 0 0
\(109\) 127.789i 1.17238i −0.810174 0.586189i \(-0.800628\pi\)
0.810174 0.586189i \(-0.199372\pi\)
\(110\) 0 0
\(111\) 2.20134 0.0198319
\(112\) 0 0
\(113\) 100.189i 0.886631i 0.896366 + 0.443316i \(0.146198\pi\)
−0.896366 + 0.443316i \(0.853802\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −135.997 −1.16237
\(118\) 0 0
\(119\) 0.874669 0.00735016
\(120\) 0 0
\(121\) −89.1813 + 81.7783i −0.737035 + 0.675854i
\(122\) 0 0
\(123\) −116.290 −0.945444
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −159.105 −1.25279 −0.626396 0.779505i \(-0.715471\pi\)
−0.626396 + 0.779505i \(0.715471\pi\)
\(128\) 0 0
\(129\) 15.1476i 0.117423i
\(130\) 0 0
\(131\) 103.534i 0.790335i 0.918609 + 0.395167i \(0.129313\pi\)
−0.918609 + 0.395167i \(0.870687\pi\)
\(132\) 0 0
\(133\) 33.3531i 0.250775i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 29.0495i 0.212040i 0.994364 + 0.106020i \(0.0338107\pi\)
−0.994364 + 0.106020i \(0.966189\pi\)
\(138\) 0 0
\(139\) 62.4675i 0.449406i 0.974427 + 0.224703i \(0.0721412\pi\)
−0.974427 + 0.224703i \(0.927859\pi\)
\(140\) 0 0
\(141\) −14.8671 −0.105441
\(142\) 0 0
\(143\) −66.2332 170.228i −0.463169 1.19041i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 191.082i 1.29988i
\(148\) 0 0
\(149\) 48.4621i 0.325249i −0.986688 0.162624i \(-0.948004\pi\)
0.986688 0.162624i \(-0.0519959\pi\)
\(150\) 0 0
\(151\) 134.512i 0.890811i 0.895329 + 0.445405i \(0.146940\pi\)
−0.895329 + 0.445405i \(0.853060\pi\)
\(152\) 0 0
\(153\) −4.19749 −0.0274346
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 215.729i 1.37407i 0.726624 + 0.687036i \(0.241088\pi\)
−0.726624 + 0.687036i \(0.758912\pi\)
\(158\) 0 0
\(159\) −215.293 −1.35404
\(160\) 0 0
\(161\) 19.1716i 0.119078i
\(162\) 0 0
\(163\) 107.030i 0.656629i 0.944569 + 0.328314i \(0.106481\pi\)
−0.944569 + 0.328314i \(0.893519\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −7.69504 −0.0460781 −0.0230391 0.999735i \(-0.507334\pi\)
−0.0230391 + 0.999735i \(0.507334\pi\)
\(168\) 0 0
\(169\) 106.739 0.631593
\(170\) 0 0
\(171\) 160.060i 0.936021i
\(172\) 0 0
\(173\) 83.0910 0.480295 0.240147 0.970736i \(-0.422804\pi\)
0.240147 + 0.970736i \(0.422804\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 170.710i 0.964461i
\(178\) 0 0
\(179\) −304.889 −1.70329 −0.851645 0.524119i \(-0.824395\pi\)
−0.851645 + 0.524119i \(0.824395\pi\)
\(180\) 0 0
\(181\) −19.7418 −0.109071 −0.0545353 0.998512i \(-0.517368\pi\)
−0.0545353 + 0.998512i \(0.517368\pi\)
\(182\) 0 0
\(183\) −175.450 −0.958745
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −2.04426 5.25403i −0.0109319 0.0280964i
\(188\) 0 0
\(189\) 5.73194i 0.0303277i
\(190\) 0 0
\(191\) −159.618 −0.835699 −0.417849 0.908516i \(-0.637216\pi\)
−0.417849 + 0.908516i \(0.637216\pi\)
\(192\) 0 0
\(193\) 278.288 1.44191 0.720954 0.692983i \(-0.243704\pi\)
0.720954 + 0.692983i \(0.243704\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 157.345 0.798704 0.399352 0.916798i \(-0.369235\pi\)
0.399352 + 0.916798i \(0.369235\pi\)
\(198\) 0 0
\(199\) 339.116 1.70410 0.852050 0.523460i \(-0.175359\pi\)
0.852050 + 0.523460i \(0.175359\pi\)
\(200\) 0 0
\(201\) 305.018 1.51750
\(202\) 0 0
\(203\) 82.1042i 0.404454i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 92.0035i 0.444461i
\(208\) 0 0
\(209\) 200.348 77.9523i 0.958602 0.372977i
\(210\) 0 0
\(211\) 156.642i 0.742381i −0.928557 0.371191i \(-0.878950\pi\)
0.928557 0.371191i \(-0.121050\pi\)
\(212\) 0 0
\(213\) 55.5220i 0.260667i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 9.21998 0.0424884
\(218\) 0 0
\(219\) 446.256i 2.03770i
\(220\) 0 0
\(221\) 8.51059 0.0385095
\(222\) 0 0
\(223\) 247.418i 1.10950i 0.832017 + 0.554749i \(0.187186\pi\)
−0.832017 + 0.554749i \(0.812814\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 339.323 1.49481 0.747407 0.664366i \(-0.231298\pi\)
0.747407 + 0.664366i \(0.231298\pi\)
\(228\) 0 0
\(229\) −152.661 −0.666642 −0.333321 0.942813i \(-0.608169\pi\)
−0.333321 + 0.942813i \(0.608169\pi\)
\(230\) 0 0
\(231\) 72.5358 28.2226i 0.314008 0.122176i
\(232\) 0 0
\(233\) 397.264 1.70499 0.852497 0.522731i \(-0.175087\pi\)
0.852497 + 0.522731i \(0.175087\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 64.9504 0.274052
\(238\) 0 0
\(239\) 99.6838i 0.417087i 0.978013 + 0.208544i \(0.0668723\pi\)
−0.978013 + 0.208544i \(0.933128\pi\)
\(240\) 0 0
\(241\) 247.891i 1.02859i −0.857613 0.514296i \(-0.828053\pi\)
0.857613 0.514296i \(-0.171947\pi\)
\(242\) 0 0
\(243\) 333.111i 1.37083i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 324.528i 1.31388i
\(248\) 0 0
\(249\) 67.6360i 0.271631i
\(250\) 0 0
\(251\) −117.545 −0.468309 −0.234154 0.972199i \(-0.575232\pi\)
−0.234154 + 0.972199i \(0.575232\pi\)
\(252\) 0 0
\(253\) 115.161 44.8076i 0.455183 0.177105i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 11.4659i 0.0446146i −0.999751 0.0223073i \(-0.992899\pi\)
0.999751 0.0223073i \(-0.00710122\pi\)
\(258\) 0 0
\(259\) 0.906117i 0.00349852i
\(260\) 0 0
\(261\) 394.013i 1.50963i
\(262\) 0 0
\(263\) −164.627 −0.625960 −0.312980 0.949760i \(-0.601327\pi\)
−0.312980 + 0.949760i \(0.601327\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 583.347i 2.18482i
\(268\) 0 0
\(269\) −361.059 −1.34223 −0.671113 0.741355i \(-0.734183\pi\)
−0.671113 + 0.741355i \(0.734183\pi\)
\(270\) 0 0
\(271\) 155.764i 0.574776i 0.957814 + 0.287388i \(0.0927869\pi\)
−0.957814 + 0.287388i \(0.907213\pi\)
\(272\) 0 0
\(273\) 117.495i 0.430385i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 390.963 1.41142 0.705708 0.708502i \(-0.250629\pi\)
0.705708 + 0.708502i \(0.250629\pi\)
\(278\) 0 0
\(279\) −44.2462 −0.158588
\(280\) 0 0
\(281\) 82.7795i 0.294589i 0.989093 + 0.147295i \(0.0470565\pi\)
−0.989093 + 0.147295i \(0.952943\pi\)
\(282\) 0 0
\(283\) 197.972 0.699549 0.349775 0.936834i \(-0.386258\pi\)
0.349775 + 0.936834i \(0.386258\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 47.8672i 0.166785i
\(288\) 0 0
\(289\) −288.737 −0.999091
\(290\) 0 0
\(291\) 402.574 1.38341
\(292\) 0 0
\(293\) −127.860 −0.436384 −0.218192 0.975906i \(-0.570016\pi\)
−0.218192 + 0.975906i \(0.570016\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 34.4311 13.3966i 0.115929 0.0451064i
\(298\) 0 0
\(299\) 186.541i 0.623883i
\(300\) 0 0
\(301\) −6.23505 −0.0207145
\(302\) 0 0
\(303\) −700.438 −2.31168
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 559.530 1.82257 0.911287 0.411772i \(-0.135090\pi\)
0.911287 + 0.411772i \(0.135090\pi\)
\(308\) 0 0
\(309\) 505.717 1.63662
\(310\) 0 0
\(311\) 208.493 0.670395 0.335197 0.942148i \(-0.391197\pi\)
0.335197 + 0.942148i \(0.391197\pi\)
\(312\) 0 0
\(313\) 490.115i 1.56586i 0.622108 + 0.782931i \(0.286276\pi\)
−0.622108 + 0.782931i \(0.713724\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 178.470i 0.562997i −0.959562 0.281499i \(-0.909168\pi\)
0.959562 0.281499i \(-0.0908315\pi\)
\(318\) 0 0
\(319\) 493.189 191.892i 1.54605 0.601544i
\(320\) 0 0
\(321\) 455.672i 1.41954i
\(322\) 0 0
\(323\) 10.0164i 0.0310106i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 529.823 1.62025
\(328\) 0 0
\(329\) 6.11961i 0.0186006i
\(330\) 0 0
\(331\) −424.264 −1.28177 −0.640883 0.767639i \(-0.721431\pi\)
−0.640883 + 0.767639i \(0.721431\pi\)
\(332\) 0 0
\(333\) 4.34841i 0.0130583i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −391.858 −1.16278 −0.581392 0.813624i \(-0.697492\pi\)
−0.581392 + 0.813624i \(0.697492\pi\)
\(338\) 0 0
\(339\) −415.392 −1.22535
\(340\) 0 0
\(341\) −21.5488 55.3832i −0.0631929 0.162414i
\(342\) 0 0
\(343\) −162.277 −0.473111
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 515.467 1.48550 0.742748 0.669571i \(-0.233522\pi\)
0.742748 + 0.669571i \(0.233522\pi\)
\(348\) 0 0
\(349\) 413.637i 1.18521i −0.805495 0.592603i \(-0.798100\pi\)
0.805495 0.592603i \(-0.201900\pi\)
\(350\) 0 0
\(351\) 55.7722i 0.158895i
\(352\) 0 0
\(353\) 672.441i 1.90493i −0.304646 0.952466i \(-0.598538\pi\)
0.304646 0.952466i \(-0.401462\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 3.62644i 0.0101581i
\(358\) 0 0
\(359\) 655.797i 1.82673i −0.407138 0.913367i \(-0.633473\pi\)
0.407138 0.913367i \(-0.366527\pi\)
\(360\) 0 0
\(361\) −20.9485 −0.0580291
\(362\) 0 0
\(363\) −339.059 369.752i −0.934047 1.01860i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 642.013i 1.74935i −0.484706 0.874677i \(-0.661073\pi\)
0.484706 0.874677i \(-0.338927\pi\)
\(368\) 0 0
\(369\) 229.712i 0.622526i
\(370\) 0 0
\(371\) 88.6187i 0.238865i
\(372\) 0 0
\(373\) 444.369 1.19134 0.595669 0.803230i \(-0.296887\pi\)
0.595669 + 0.803230i \(0.296887\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 798.879i 2.11904i
\(378\) 0 0
\(379\) −93.9534 −0.247898 −0.123949 0.992289i \(-0.539556\pi\)
−0.123949 + 0.992289i \(0.539556\pi\)
\(380\) 0 0
\(381\) 659.659i 1.73139i
\(382\) 0 0
\(383\) 81.6845i 0.213275i −0.994298 0.106638i \(-0.965992\pi\)
0.994298 0.106638i \(-0.0340085\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 29.9217 0.0773170
\(388\) 0 0
\(389\) 648.091 1.66604 0.833022 0.553240i \(-0.186609\pi\)
0.833022 + 0.553240i \(0.186609\pi\)
\(390\) 0 0
\(391\) 5.75752i 0.0147251i
\(392\) 0 0
\(393\) −429.259 −1.09226
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 121.217i 0.305334i −0.988278 0.152667i \(-0.951214\pi\)
0.988278 0.152667i \(-0.0487861\pi\)
\(398\) 0 0
\(399\) −138.284 −0.346577
\(400\) 0 0
\(401\) −46.6180 −0.116254 −0.0581272 0.998309i \(-0.518513\pi\)
−0.0581272 + 0.998309i \(0.518513\pi\)
\(402\) 0 0
\(403\) 89.7110 0.222608
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −5.44293 + 2.11776i −0.0133733 + 0.00520335i
\(408\) 0 0
\(409\) 434.331i 1.06193i −0.847392 0.530967i \(-0.821829\pi\)
0.847392 0.530967i \(-0.178171\pi\)
\(410\) 0 0
\(411\) −120.441 −0.293044
\(412\) 0 0
\(413\) −70.2675 −0.170139
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −258.995 −0.621090
\(418\) 0 0
\(419\) 521.101 1.24368 0.621839 0.783145i \(-0.286386\pi\)
0.621839 + 0.783145i \(0.286386\pi\)
\(420\) 0 0
\(421\) 678.997 1.61282 0.806410 0.591357i \(-0.201408\pi\)
0.806410 + 0.591357i \(0.201408\pi\)
\(422\) 0 0
\(423\) 29.3677i 0.0694271i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 72.2189i 0.169131i
\(428\) 0 0
\(429\) 705.778 274.608i 1.64517 0.640111i
\(430\) 0 0
\(431\) 731.778i 1.69786i 0.528505 + 0.848930i \(0.322753\pi\)
−0.528505 + 0.848930i \(0.677247\pi\)
\(432\) 0 0
\(433\) 434.851i 1.00428i 0.864788 + 0.502138i \(0.167453\pi\)
−0.864788 + 0.502138i \(0.832547\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −219.547 −0.502396
\(438\) 0 0
\(439\) 762.031i 1.73583i −0.496709 0.867917i \(-0.665458\pi\)
0.496709 0.867917i \(-0.334542\pi\)
\(440\) 0 0
\(441\) 377.453 0.855902
\(442\) 0 0
\(443\) 156.276i 0.352768i 0.984321 + 0.176384i \(0.0564400\pi\)
−0.984321 + 0.176384i \(0.943560\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 200.927 0.449502
\(448\) 0 0
\(449\) −545.999 −1.21603 −0.608017 0.793924i \(-0.708035\pi\)
−0.608017 + 0.793924i \(0.708035\pi\)
\(450\) 0 0
\(451\) 287.532 111.874i 0.637543 0.248058i
\(452\) 0 0
\(453\) −557.698 −1.23112
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −310.676 −0.679816 −0.339908 0.940459i \(-0.610396\pi\)
−0.339908 + 0.940459i \(0.610396\pi\)
\(458\) 0 0
\(459\) 1.72139i 0.00375030i
\(460\) 0 0
\(461\) 527.875i 1.14507i −0.819882 0.572533i \(-0.805961\pi\)
0.819882 0.572533i \(-0.194039\pi\)
\(462\) 0 0
\(463\) 573.469i 1.23859i −0.785157 0.619297i \(-0.787418\pi\)
0.785157 0.619297i \(-0.212582\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 341.159i 0.730533i 0.930903 + 0.365267i \(0.119022\pi\)
−0.930903 + 0.365267i \(0.880978\pi\)
\(468\) 0 0
\(469\) 125.552i 0.267701i
\(470\) 0 0
\(471\) −894.429 −1.89900
\(472\) 0 0
\(473\) 14.5725 + 37.4532i 0.0308086 + 0.0791822i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 425.277i 0.891565i
\(478\) 0 0
\(479\) 298.366i 0.622893i −0.950264 0.311446i \(-0.899187\pi\)
0.950264 0.311446i \(-0.100813\pi\)
\(480\) 0 0
\(481\) 8.81658i 0.0183297i
\(482\) 0 0
\(483\) −79.4868 −0.164569
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 459.677i 0.943896i 0.881626 + 0.471948i \(0.156449\pi\)
−0.881626 + 0.471948i \(0.843551\pi\)
\(488\) 0 0
\(489\) −443.756 −0.907476
\(490\) 0 0
\(491\) 761.166i 1.55024i 0.631816 + 0.775119i \(0.282310\pi\)
−0.631816 + 0.775119i \(0.717690\pi\)
\(492\) 0 0
\(493\) 24.6571i 0.0500144i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −22.8540 −0.0459839
\(498\) 0 0
\(499\) −155.577 −0.311777 −0.155889 0.987775i \(-0.549824\pi\)
−0.155889 + 0.987775i \(0.549824\pi\)
\(500\) 0 0
\(501\) 31.9042i 0.0636810i
\(502\) 0 0
\(503\) −908.189 −1.80554 −0.902772 0.430119i \(-0.858472\pi\)
−0.902772 + 0.430119i \(0.858472\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 442.549i 0.872877i
\(508\) 0 0
\(509\) −99.5660 −0.195611 −0.0978055 0.995206i \(-0.531182\pi\)
−0.0978055 + 0.995206i \(0.531182\pi\)
\(510\) 0 0
\(511\) 183.688 0.359468
\(512\) 0 0
\(513\) −65.6403 −0.127954
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 36.7597 14.3026i 0.0711019 0.0276647i
\(518\) 0 0
\(519\) 344.501i 0.663779i
\(520\) 0 0
\(521\) −285.253 −0.547511 −0.273755 0.961799i \(-0.588266\pi\)
−0.273755 + 0.961799i \(0.588266\pi\)
\(522\) 0 0
\(523\) 788.239 1.50715 0.753574 0.657363i \(-0.228328\pi\)
0.753574 + 0.657363i \(0.228328\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.76890 0.00525407
\(528\) 0 0
\(529\) 402.803 0.761442
\(530\) 0 0
\(531\) 337.210 0.635047
\(532\) 0 0
\(533\) 465.751i 0.873829i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 1264.09i 2.35399i
\(538\) 0 0
\(539\) 183.827 + 472.460i 0.341052 + 0.876549i
\(540\) 0 0
\(541\) 656.926i 1.21428i −0.794595 0.607140i \(-0.792317\pi\)
0.794595 0.607140i \(-0.207683\pi\)
\(542\) 0 0
\(543\) 81.8509i 0.150738i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 318.855 0.582916 0.291458 0.956584i \(-0.405860\pi\)
0.291458 + 0.956584i \(0.405860\pi\)
\(548\) 0 0
\(549\) 346.574i 0.631283i
\(550\) 0 0
\(551\) −940.230 −1.70641
\(552\) 0 0
\(553\) 26.7349i 0.0483452i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 643.510 1.15531 0.577657 0.816279i \(-0.303967\pi\)
0.577657 + 0.816279i \(0.303967\pi\)
\(558\) 0 0
\(559\) −60.6675 −0.108529
\(560\) 0 0
\(561\) 21.7836 8.47566i 0.0388299 0.0151081i
\(562\) 0 0
\(563\) −156.186 −0.277417 −0.138709 0.990333i \(-0.544295\pi\)
−0.138709 + 0.990333i \(0.544295\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −149.558 −0.263770
\(568\) 0 0
\(569\) 810.820i 1.42499i 0.701676 + 0.712496i \(0.252435\pi\)
−0.701676 + 0.712496i \(0.747565\pi\)
\(570\) 0 0
\(571\) 293.650i 0.514273i 0.966375 + 0.257136i \(0.0827789\pi\)
−0.966375 + 0.257136i \(0.917221\pi\)
\(572\) 0 0
\(573\) 661.790i 1.15496i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 122.633i 0.212536i −0.994338 0.106268i \(-0.966110\pi\)
0.994338 0.106268i \(-0.0338902\pi\)
\(578\) 0 0
\(579\) 1153.80i 1.99275i
\(580\) 0 0
\(581\) −27.8404 −0.0479180
\(582\) 0 0
\(583\) 532.322 207.118i 0.913073 0.355263i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 959.478i 1.63455i −0.576251 0.817273i \(-0.695485\pi\)
0.576251 0.817273i \(-0.304515\pi\)
\(588\) 0 0
\(589\) 105.584i 0.179260i
\(590\) 0 0
\(591\) 652.362i 1.10383i
\(592\) 0 0
\(593\) −277.185 −0.467428 −0.233714 0.972305i \(-0.575088\pi\)
−0.233714 + 0.972305i \(0.575088\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 1406.00i 2.35511i
\(598\) 0 0
\(599\) −281.461 −0.469885 −0.234943 0.972009i \(-0.575490\pi\)
−0.234943 + 0.972009i \(0.575490\pi\)
\(600\) 0 0
\(601\) 626.332i 1.04215i −0.853511 0.521075i \(-0.825531\pi\)
0.853511 0.521075i \(-0.174469\pi\)
\(602\) 0 0
\(603\) 602.516i 0.999197i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −558.941 −0.920825 −0.460413 0.887705i \(-0.652299\pi\)
−0.460413 + 0.887705i \(0.652299\pi\)
\(608\) 0 0
\(609\) −340.410 −0.558965
\(610\) 0 0
\(611\) 59.5442i 0.0974537i
\(612\) 0 0
\(613\) 1035.10 1.68857 0.844286 0.535892i \(-0.180025\pi\)
0.844286 + 0.535892i \(0.180025\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 291.717i 0.472800i −0.971656 0.236400i \(-0.924032\pi\)
0.971656 0.236400i \(-0.0759675\pi\)
\(618\) 0 0
\(619\) −269.541 −0.435446 −0.217723 0.976011i \(-0.569863\pi\)
−0.217723 + 0.976011i \(0.569863\pi\)
\(620\) 0 0
\(621\) −37.7306 −0.0607578
\(622\) 0 0
\(623\) 240.117 0.385421
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 323.196 + 830.656i 0.515464 + 1.32481i
\(628\) 0 0
\(629\) 0.272120i 0.000432624i
\(630\) 0 0
\(631\) −172.219 −0.272930 −0.136465 0.990645i \(-0.543574\pi\)
−0.136465 + 0.990645i \(0.543574\pi\)
\(632\) 0 0
\(633\) 649.451 1.02599
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −765.301 −1.20141
\(638\) 0 0
\(639\) 109.675 0.171635
\(640\) 0 0
\(641\) 377.939 0.589608 0.294804 0.955558i \(-0.404746\pi\)
0.294804 + 0.955558i \(0.404746\pi\)
\(642\) 0 0
\(643\) 511.939i 0.796172i 0.917348 + 0.398086i \(0.130325\pi\)
−0.917348 + 0.398086i \(0.869675\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 521.728i 0.806381i −0.915116 0.403190i \(-0.867901\pi\)
0.915116 0.403190i \(-0.132099\pi\)
\(648\) 0 0
\(649\) 164.228 + 422.088i 0.253048 + 0.650367i
\(650\) 0 0
\(651\) 38.2267i 0.0587199i
\(652\) 0 0
\(653\) 314.135i 0.481065i 0.970641 + 0.240532i \(0.0773221\pi\)
−0.970641 + 0.240532i \(0.922678\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −881.509 −1.34172
\(658\) 0 0
\(659\) 691.038i 1.04862i 0.851528 + 0.524308i \(0.175676\pi\)
−0.851528 + 0.524308i \(0.824324\pi\)
\(660\) 0 0
\(661\) 1127.61 1.70591 0.852957 0.521981i \(-0.174807\pi\)
0.852957 + 0.521981i \(0.174807\pi\)
\(662\) 0 0
\(663\) 35.2855i 0.0532210i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −540.451 −0.810272
\(668\) 0 0
\(669\) −1025.81 −1.53335
\(670\) 0 0
\(671\) 433.810 168.789i 0.646512 0.251548i
\(672\) 0 0
\(673\) 888.140 1.31967 0.659837 0.751409i \(-0.270625\pi\)
0.659837 + 0.751409i \(0.270625\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 666.114 0.983920 0.491960 0.870618i \(-0.336281\pi\)
0.491960 + 0.870618i \(0.336281\pi\)
\(678\) 0 0
\(679\) 165.707i 0.244046i
\(680\) 0 0
\(681\) 1406.86i 2.06587i
\(682\) 0 0
\(683\) 727.901i 1.06574i 0.846197 + 0.532871i \(0.178887\pi\)
−0.846197 + 0.532871i \(0.821113\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 632.944i 0.921316i
\(688\) 0 0
\(689\) 862.266i 1.25148i
\(690\) 0 0
\(691\) −610.238 −0.883123 −0.441561 0.897231i \(-0.645575\pi\)
−0.441561 + 0.897231i \(0.645575\pi\)
\(692\) 0 0
\(693\) 55.7493 + 143.283i 0.0804463 + 0.206758i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 14.3752i 0.0206244i
\(698\) 0 0
\(699\) 1647.08i 2.35634i
\(700\) 0 0
\(701\) 669.548i 0.955133i −0.878596 0.477566i \(-0.841519\pi\)
0.878596 0.477566i \(-0.158481\pi\)
\(702\) 0 0
\(703\) 10.3766 0.0147604
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 288.315i 0.407800i
\(708\) 0 0
\(709\) −62.5477 −0.0882197 −0.0441098 0.999027i \(-0.514045\pi\)
−0.0441098 + 0.999027i \(0.514045\pi\)
\(710\) 0 0
\(711\) 128.299i 0.180449i
\(712\) 0 0
\(713\) 60.6906i 0.0851200i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −413.296 −0.576424
\(718\) 0 0
\(719\) −958.637 −1.33329 −0.666646 0.745374i \(-0.732271\pi\)
−0.666646 + 0.745374i \(0.732271\pi\)
\(720\) 0 0
\(721\) 208.163i 0.288715i
\(722\) 0 0
\(723\) 1027.77 1.42154
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 678.507i 0.933297i 0.884443 + 0.466648i \(0.154539\pi\)
−0.884443 + 0.466648i \(0.845461\pi\)
\(728\) 0 0
\(729\) 592.391 0.812608
\(730\) 0 0
\(731\) −1.87248 −0.00256153
\(732\) 0 0
\(733\) 925.664 1.26284 0.631422 0.775440i \(-0.282472\pi\)
0.631422 + 0.775440i \(0.282472\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −754.173 + 293.437i −1.02330 + 0.398151i
\(738\) 0 0
\(739\) 771.476i 1.04395i −0.852962 0.521973i \(-0.825196\pi\)
0.852962 0.521973i \(-0.174804\pi\)
\(740\) 0 0
\(741\) −1345.52 −1.81581
\(742\) 0 0
\(743\) −816.220 −1.09855 −0.549274 0.835643i \(-0.685095\pi\)
−0.549274 + 0.835643i \(0.685095\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 133.604 0.178855
\(748\) 0 0
\(749\) −187.564 −0.250419
\(750\) 0 0
\(751\) 704.308 0.937827 0.468914 0.883244i \(-0.344646\pi\)
0.468914 + 0.883244i \(0.344646\pi\)
\(752\) 0 0
\(753\) 487.352i 0.647214i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 1457.18i 1.92495i −0.271379 0.962473i \(-0.587480\pi\)
0.271379 0.962473i \(-0.412520\pi\)
\(758\) 0 0
\(759\) 185.775 + 477.467i 0.244763 + 0.629074i
\(760\) 0 0
\(761\) 1121.73i 1.47403i 0.675878 + 0.737014i \(0.263765\pi\)
−0.675878 + 0.737014i \(0.736235\pi\)
\(762\) 0 0
\(763\) 218.086i 0.285827i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −683.708 −0.891405
\(768\) 0 0
\(769\) 654.531i 0.851146i 0.904924 + 0.425573i \(0.139927\pi\)
−0.904924 + 0.425573i \(0.860073\pi\)
\(770\) 0 0
\(771\) 47.5386 0.0616584
\(772\) 0 0
\(773\) 682.354i 0.882735i −0.897326 0.441367i \(-0.854494\pi\)
0.897326 0.441367i \(-0.145506\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 3.75683 0.00483504
\(778\) 0 0
\(779\) −548.159 −0.703670
\(780\) 0 0
\(781\) 53.4140 + 137.281i 0.0683917 + 0.175776i
\(782\) 0 0
\(783\) −161.585 −0.206366
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −651.105 −0.827326 −0.413663 0.910430i \(-0.635751\pi\)
−0.413663 + 0.910430i \(0.635751\pi\)
\(788\) 0 0
\(789\) 682.557i 0.865091i
\(790\) 0 0
\(791\) 170.984i 0.216162i
\(792\) 0 0
\(793\) 702.694i 0.886122i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 288.164i 0.361561i 0.983524 + 0.180780i \(0.0578623\pi\)
−0.983524 + 0.180780i \(0.942138\pi\)
\(798\) 0 0
\(799\) 1.83781i 0.00230014i
\(800\) 0 0
\(801\) −1152.31 −1.43859
\(802\) 0 0
\(803\) −429.313 1103.39i −0.534636 1.37409i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 1496.98i 1.85499i
\(808\) 0 0
\(809\) 37.5190i 0.0463771i −0.999731 0.0231885i \(-0.992618\pi\)
0.999731 0.0231885i \(-0.00738180\pi\)
\(810\) 0 0
\(811\) 879.835i 1.08488i −0.840096 0.542438i \(-0.817501\pi\)
0.840096 0.542438i \(-0.182499\pi\)
\(812\) 0 0
\(813\) −645.810 −0.794354
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 71.4018i 0.0873951i
\(818\) 0 0
\(819\) −232.093 −0.283386
\(820\) 0 0
\(821\) 901.103i 1.09757i 0.835964 + 0.548784i \(0.184909\pi\)
−0.835964 + 0.548784i \(0.815091\pi\)
\(822\) 0 0
\(823\) 1296.62i 1.57548i 0.616010 + 0.787738i \(0.288748\pi\)
−0.616010 + 0.787738i \(0.711252\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 48.1443 0.0582156 0.0291078 0.999576i \(-0.490733\pi\)
0.0291078 + 0.999576i \(0.490733\pi\)
\(828\) 0 0
\(829\) 8.95955 0.0108077 0.00540383 0.999985i \(-0.498280\pi\)
0.00540383 + 0.999985i \(0.498280\pi\)
\(830\) 0 0
\(831\) 1620.96i 1.95061i
\(832\) 0 0
\(833\) −23.6207 −0.0283562
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 18.1453i 0.0216790i
\(838\) 0 0
\(839\) 1504.58 1.79331 0.896653 0.442734i \(-0.145991\pi\)
0.896653 + 0.442734i \(0.145991\pi\)
\(840\) 0 0
\(841\) −1473.53 −1.75212
\(842\) 0 0
\(843\) −343.210 −0.407129
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −152.197 + 139.563i −0.179690 + 0.164774i
\(848\) 0 0
\(849\) 820.808i 0.966794i
\(850\) 0 0
\(851\) 5.96452 0.00700884
\(852\) 0 0
\(853\) −419.571 −0.491877 −0.245938 0.969285i \(-0.579096\pi\)
−0.245938 + 0.969285i \(0.579096\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −285.389 −0.333010 −0.166505 0.986041i \(-0.553248\pi\)
−0.166505 + 0.986041i \(0.553248\pi\)
\(858\) 0 0
\(859\) 575.894 0.670423 0.335212 0.942143i \(-0.391192\pi\)
0.335212 + 0.942143i \(0.391192\pi\)
\(860\) 0 0
\(861\) −198.461 −0.230500
\(862\) 0 0
\(863\) 1065.79i 1.23499i −0.786576 0.617493i \(-0.788148\pi\)
0.786576 0.617493i \(-0.211852\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 1197.13i 1.38077i
\(868\) 0 0
\(869\) −160.593 + 62.4843i −0.184802 + 0.0719037i
\(870\) 0 0
\(871\) 1221.63i 1.40256i
\(872\) 0 0
\(873\) 795.221i 0.910906i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −120.742 −0.137676 −0.0688382 0.997628i \(-0.521929\pi\)
−0.0688382 + 0.997628i \(0.521929\pi\)
\(878\) 0 0
\(879\) 530.119i 0.603093i
\(880\) 0 0
\(881\) 1206.22 1.36914 0.684572 0.728946i \(-0.259989\pi\)
0.684572 + 0.728946i \(0.259989\pi\)
\(882\) 0 0
\(883\) 306.072i 0.346627i −0.984867 0.173314i \(-0.944553\pi\)
0.984867 0.173314i \(-0.0554475\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −1125.95 −1.26939 −0.634694 0.772764i \(-0.718874\pi\)
−0.634694 + 0.772764i \(0.718874\pi\)
\(888\) 0 0
\(889\) −271.529 −0.305432
\(890\) 0 0
\(891\) 349.544 + 898.374i 0.392305 + 1.00828i
\(892\) 0 0
\(893\) −70.0797 −0.0784767
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −773.412 −0.862221
\(898\) 0 0
\(899\) 259.913i 0.289113i
\(900\) 0 0
\(901\) 26.6135i 0.0295378i
\(902\) 0 0
\(903\) 25.8510i 0.0286279i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 874.007i 0.963624i −0.876275 0.481812i \(-0.839979\pi\)
0.876275 0.481812i \(-0.160021\pi\)
\(908\) 0 0
\(909\) 1383.61i 1.52212i
\(910\) 0 0
\(911\) −234.753 −0.257687 −0.128844 0.991665i \(-0.541127\pi\)
−0.128844 + 0.991665i \(0.541127\pi\)
\(912\) 0 0
\(913\) 65.0680 + 167.234i 0.0712684 + 0.183169i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 176.692i 0.192684i
\(918\) 0 0
\(919\) 1421.78i 1.54710i −0.633736 0.773550i \(-0.718479\pi\)
0.633736 0.773550i \(-0.281521\pi\)
\(920\) 0 0
\(921\) 2319.85i 2.51884i
\(922\) 0 0
\(923\) −222.371 −0.240922
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 998.964i 1.07763i
\(928\) 0 0
\(929\) 455.451 0.490259 0.245130 0.969490i \(-0.421169\pi\)
0.245130 + 0.969490i \(0.421169\pi\)
\(930\) 0 0
\(931\) 900.711i 0.967466i
\(932\) 0 0
\(933\) 864.426i 0.926502i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −1512.60 −1.61430 −0.807152 0.590343i \(-0.798992\pi\)
−0.807152 + 0.590343i \(0.798992\pi\)
\(938\) 0 0
\(939\) −2032.05 −2.16406
\(940\) 0 0
\(941\) 419.883i 0.446209i −0.974795 0.223105i \(-0.928381\pi\)
0.974795 0.223105i \(-0.0716191\pi\)
\(942\) 0 0
\(943\) −315.086 −0.334132
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1110.89i 1.17307i 0.809925 + 0.586533i \(0.199508\pi\)
−0.809925 + 0.586533i \(0.800492\pi\)
\(948\) 0 0
\(949\) 1787.30 1.88335
\(950\) 0 0
\(951\) 739.950 0.778076
\(952\) 0 0
\(953\) −810.140 −0.850095 −0.425047 0.905171i \(-0.639743\pi\)
−0.425047 + 0.905171i \(0.639743\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 795.600 + 2044.80i 0.831348 + 2.13668i
\(958\) 0 0
\(959\) 49.5760i 0.0516955i
\(960\) 0 0
\(961\) −931.813 −0.969628
\(962\) 0 0
\(963\) 900.109 0.934692
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −1345.29 −1.39120 −0.695601 0.718428i \(-0.744862\pi\)
−0.695601 + 0.718428i \(0.744862\pi\)
\(968\) 0 0
\(969\) −41.5288 −0.0428574
\(970\) 0 0
\(971\) 560.812 0.577561 0.288781 0.957395i \(-0.406750\pi\)
0.288781 + 0.957395i \(0.406750\pi\)
\(972\) 0 0
\(973\) 106.607i 0.109566i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1447.74i 1.48182i −0.671603 0.740912i \(-0.734394\pi\)
0.671603 0.740912i \(-0.265606\pi\)
\(978\) 0 0
\(979\) −561.199 1442.36i −0.573236 1.47329i
\(980\) 0 0
\(981\) 1046.58i 1.06685i
\(982\) 0 0
\(983\) 543.853i 0.553259i −0.960977 0.276629i \(-0.910783\pi\)
0.960977 0.276629i \(-0.0892174\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −25.3723 −0.0257065
\(988\) 0 0
\(989\) 41.0423i 0.0414988i
\(990\) 0 0
\(991\) −398.772 −0.402394 −0.201197 0.979551i \(-0.564483\pi\)
−0.201197 + 0.979551i \(0.564483\pi\)
\(992\) 0 0
\(993\) 1759.03i 1.77143i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 264.448 0.265244 0.132622 0.991167i \(-0.457660\pi\)
0.132622 + 0.991167i \(0.457660\pi\)
\(998\) 0 0
\(999\) 1.78328 0.00178506
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1100.3.e.c.549.14 16
5.2 odd 4 1100.3.f.c.901.8 yes 8
5.3 odd 4 1100.3.f.e.901.1 yes 8
5.4 even 2 inner 1100.3.e.c.549.3 16
11.10 odd 2 inner 1100.3.e.c.549.13 16
55.32 even 4 1100.3.f.c.901.7 8
55.43 even 4 1100.3.f.e.901.2 yes 8
55.54 odd 2 inner 1100.3.e.c.549.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1100.3.e.c.549.3 16 5.4 even 2 inner
1100.3.e.c.549.4 16 55.54 odd 2 inner
1100.3.e.c.549.13 16 11.10 odd 2 inner
1100.3.e.c.549.14 16 1.1 even 1 trivial
1100.3.f.c.901.7 8 55.32 even 4
1100.3.f.c.901.8 yes 8 5.2 odd 4
1100.3.f.e.901.1 yes 8 5.3 odd 4
1100.3.f.e.901.2 yes 8 55.43 even 4