Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1100,2,Mod(221,1100)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1100, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([0, 6, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1100.221");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1100 = 2^{2} \cdot 5^{2} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1100.q (of order \(5\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(8.78354422234\) |
Analytic rank: | \(0\) |
Dimension: | \(52\) |
Relative dimension: | \(13\) over \(\Q(\zeta_{5})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{5}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
221.1 | 0 | −2.46992 | − | 1.79450i | 0 | −0.932128 | − | 2.03252i | 0 | 4.85051 | 0 | 1.95322 | + | 6.01139i | 0 | ||||||||||||
221.2 | 0 | −1.98827 | − | 1.44456i | 0 | 1.83057 | + | 1.28413i | 0 | 0.715669 | 0 | 0.939404 | + | 2.89119i | 0 | ||||||||||||
221.3 | 0 | −1.84339 | − | 1.33930i | 0 | 0.702061 | + | 2.12300i | 0 | −3.98140 | 0 | 0.677309 | + | 2.08454i | 0 | ||||||||||||
221.4 | 0 | −1.67142 | − | 1.21436i | 0 | −1.73889 | + | 1.40580i | 0 | 1.74835 | 0 | 0.391935 | + | 1.20625i | 0 | ||||||||||||
221.5 | 0 | −1.19952 | − | 0.871501i | 0 | 1.53725 | − | 1.62384i | 0 | 0.464093 | 0 | −0.247722 | − | 0.762409i | 0 | ||||||||||||
221.6 | 0 | −0.463412 | − | 0.336688i | 0 | −1.34725 | − | 1.78463i | 0 | −3.78473 | 0 | −0.825660 | − | 2.54112i | 0 | ||||||||||||
221.7 | 0 | 0.287074 | + | 0.208571i | 0 | 1.90283 | − | 1.17441i | 0 | −3.22759 | 0 | −0.888142 | − | 2.73342i | 0 | ||||||||||||
221.8 | 0 | 0.722709 | + | 0.525079i | 0 | 1.39423 | + | 1.74818i | 0 | 1.78111 | 0 | −0.680451 | − | 2.09421i | 0 | ||||||||||||
221.9 | 0 | 0.921658 | + | 0.669624i | 0 | −1.47725 | + | 1.67861i | 0 | −4.58549 | 0 | −0.525993 | − | 1.61884i | 0 | ||||||||||||
221.10 | 0 | 1.10560 | + | 0.803263i | 0 | 0.235915 | − | 2.22359i | 0 | 3.63293 | 0 | −0.349938 | − | 1.07700i | 0 | ||||||||||||
221.11 | 0 | 1.36589 | + | 0.992379i | 0 | −2.23514 | − | 0.0642463i | 0 | 0.0719347 | 0 | −0.0462056 | − | 0.142206i | 0 | ||||||||||||
221.12 | 0 | 2.51887 | + | 1.83006i | 0 | 1.68514 | + | 1.46980i | 0 | 1.24095 | 0 | 2.06850 | + | 6.36620i | 0 | ||||||||||||
221.13 | 0 | 2.71414 | + | 1.97194i | 0 | −1.74832 | − | 1.39405i | 0 | 1.07366 | 0 | 2.55096 | + | 7.85106i | 0 | ||||||||||||
441.1 | 0 | −0.994170 | − | 3.05974i | 0 | 0.246812 | − | 2.22240i | 0 | 3.71818 | 0 | −5.94659 | + | 4.32045i | 0 | ||||||||||||
441.2 | 0 | −0.885916 | − | 2.72657i | 0 | −2.22917 | − | 0.175548i | 0 | −1.14570 | 0 | −4.22229 | + | 3.06767i | 0 | ||||||||||||
441.3 | 0 | −0.631762 | − | 1.94436i | 0 | 1.75484 | + | 1.38583i | 0 | 1.39297 | 0 | −0.954372 | + | 0.693392i | 0 | ||||||||||||
441.4 | 0 | −0.611345 | − | 1.88153i | 0 | −0.0494719 | + | 2.23552i | 0 | −3.07794 | 0 | −0.739349 | + | 0.537169i | 0 | ||||||||||||
441.5 | 0 | −0.183465 | − | 0.564647i | 0 | −1.90569 | + | 1.16976i | 0 | −0.847663 | 0 | 2.14188 | − | 1.55617i | 0 | ||||||||||||
441.6 | 0 | −0.0542729 | − | 0.167035i | 0 | −1.54766 | − | 1.61392i | 0 | 3.08318 | 0 | 2.40210 | − | 1.74522i | 0 | ||||||||||||
441.7 | 0 | −0.0181419 | − | 0.0558349i | 0 | −0.144597 | − | 2.23139i | 0 | −1.97462 | 0 | 2.42426 | − | 1.76133i | 0 | ||||||||||||
See all 52 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
25.d | even | 5 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1100.2.q.b | ✓ | 52 |
25.d | even | 5 | 1 | inner | 1100.2.q.b | ✓ | 52 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1100.2.q.b | ✓ | 52 | 1.a | even | 1 | 1 | trivial |
1100.2.q.b | ✓ | 52 | 25.d | even | 5 | 1 | inner |