Properties

Label 110.4.g.c.91.2
Level $110$
Weight $4$
Character 110.91
Analytic conductor $6.490$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [110,4,Mod(31,110)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("110.31"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(110, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 6])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 110 = 2 \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 110.g (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.49021010063\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(3\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + 80 x^{10} - 71 x^{9} + 3603 x^{8} - 191 x^{7} + 110280 x^{6} + 142285 x^{5} + \cdots + 2085136 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 91.2
Root \(-0.292839 + 0.901266i\) of defining polynomial
Character \(\chi\) \(=\) 110.91
Dual form 110.4.g.c.81.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.61803 - 1.17557i) q^{2} +(0.292839 + 0.901266i) q^{3} +(1.23607 - 3.80423i) q^{4} +(4.04508 + 2.93893i) q^{5} +(1.53333 + 1.11403i) q^{6} +(2.73261 - 8.41010i) q^{7} +(-2.47214 - 7.60845i) q^{8} +(21.1169 - 15.3423i) q^{9} +10.0000 q^{10} +(36.3409 + 3.21519i) q^{11} +3.79059 q^{12} +(2.56155 - 1.86107i) q^{13} +(-5.46521 - 16.8202i) q^{14} +(-1.46420 + 4.50633i) q^{15} +(-12.9443 - 9.40456i) q^{16} +(16.7782 + 12.1901i) q^{17} +(16.1319 - 49.6489i) q^{18} +(-14.3749 - 44.2414i) q^{19} +(16.1803 - 11.7557i) q^{20} +8.37995 q^{21} +(62.5805 - 37.5190i) q^{22} -43.9802 q^{23} +(6.13330 - 4.45611i) q^{24} +(7.72542 + 23.7764i) q^{25} +(1.95685 - 6.02256i) q^{26} +(40.7113 + 29.5785i) q^{27} +(-28.6162 - 20.7909i) q^{28} +(-13.0016 + 40.0149i) q^{29} +(2.92839 + 9.01266i) q^{30} +(-177.910 + 129.259i) q^{31} -32.0000 q^{32} +(7.74430 + 33.6944i) q^{33} +41.4780 q^{34} +(35.7703 - 25.9886i) q^{35} +(-32.2638 - 99.2978i) q^{36} +(-18.4828 + 56.8842i) q^{37} +(-75.2680 - 54.6854i) q^{38} +(2.42744 + 1.76364i) q^{39} +(12.3607 - 38.0423i) q^{40} +(22.2877 + 68.5944i) q^{41} +(13.5590 - 9.85122i) q^{42} -368.628 q^{43} +(57.1512 - 134.275i) q^{44} +130.510 q^{45} +(-71.1615 + 51.7018i) q^{46} +(83.7848 + 257.863i) q^{47} +(4.68543 - 14.4203i) q^{48} +(214.230 + 155.647i) q^{49} +(40.4508 + 29.3893i) q^{50} +(-6.07319 + 18.6914i) q^{51} +(-3.91370 - 12.0451i) q^{52} +(-460.619 + 334.659i) q^{53} +100.644 q^{54} +(137.553 + 119.809i) q^{55} -70.7432 q^{56} +(35.6637 - 25.9112i) q^{57} +(26.0032 + 80.0297i) q^{58} +(41.7199 - 128.401i) q^{59} +(15.3333 + 11.1403i) q^{60} +(-61.3552 - 44.5771i) q^{61} +(-135.911 + 418.291i) q^{62} +(-71.3264 - 219.520i) q^{63} +(-51.7771 + 37.6183i) q^{64} +15.8312 q^{65} +(52.1407 + 45.4147i) q^{66} +113.462 q^{67} +(67.1128 - 48.7603i) q^{68} +(-12.8791 - 39.6379i) q^{69} +(27.3261 - 84.1010i) q^{70} +(-458.437 - 333.074i) q^{71} +(-168.935 - 122.739i) q^{72} +(-215.017 + 661.755i) q^{73} +(36.9656 + 113.768i) q^{74} +(-19.1666 + 13.9253i) q^{75} -186.073 q^{76} +(126.345 - 296.845i) q^{77} +6.00097 q^{78} +(590.328 - 428.898i) q^{79} +(-24.7214 - 76.0845i) q^{80} +(203.044 - 624.907i) q^{81} +(116.700 + 84.7873i) q^{82} +(-924.224 - 671.488i) q^{83} +(10.3582 - 31.8792i) q^{84} +(32.0435 + 98.6198i) q^{85} +(-596.453 + 433.348i) q^{86} -39.8714 q^{87} +(-65.3771 - 284.447i) q^{88} +1086.57 q^{89} +(211.169 - 153.423i) q^{90} +(-8.65211 - 26.6284i) q^{91} +(-54.3625 + 167.311i) q^{92} +(-168.596 - 122.492i) q^{93} +(438.703 + 318.737i) q^{94} +(71.8745 - 221.207i) q^{95} +(-9.37085 - 28.8405i) q^{96} +(186.303 - 135.357i) q^{97} +529.606 q^{98} +(816.737 - 489.660i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{2} - q^{3} - 12 q^{4} + 15 q^{5} + 2 q^{6} + 38 q^{7} + 24 q^{8} - 78 q^{9} + 120 q^{10} + 66 q^{11} + 16 q^{12} + 57 q^{13} - 76 q^{14} + 5 q^{15} - 48 q^{16} - 157 q^{17} - 24 q^{18} + 331 q^{19}+ \cdots + 3455 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/110\mathbb{Z}\right)^\times\).

\(n\) \(67\) \(101\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.61803 1.17557i 0.572061 0.415627i
\(3\) 0.292839 + 0.901266i 0.0563569 + 0.173449i 0.975273 0.221005i \(-0.0709338\pi\)
−0.918916 + 0.394454i \(0.870934\pi\)
\(4\) 1.23607 3.80423i 0.154508 0.475528i
\(5\) 4.04508 + 2.93893i 0.361803 + 0.262866i
\(6\) 1.53333 + 1.11403i 0.104330 + 0.0757999i
\(7\) 2.73261 8.41010i 0.147547 0.454102i −0.849783 0.527133i \(-0.823267\pi\)
0.997330 + 0.0730304i \(0.0232670\pi\)
\(8\) −2.47214 7.60845i −0.109254 0.336249i
\(9\) 21.1169 15.3423i 0.782109 0.568235i
\(10\) 10.0000 0.316228
\(11\) 36.3409 + 3.21519i 0.996109 + 0.0881287i
\(12\) 3.79059 0.0911874
\(13\) 2.56155 1.86107i 0.0546497 0.0397053i −0.560125 0.828408i \(-0.689247\pi\)
0.614775 + 0.788703i \(0.289247\pi\)
\(14\) −5.46521 16.8202i −0.104331 0.321099i
\(15\) −1.46420 + 4.50633i −0.0252036 + 0.0775686i
\(16\) −12.9443 9.40456i −0.202254 0.146946i
\(17\) 16.7782 + 12.1901i 0.239371 + 0.173913i 0.701003 0.713158i \(-0.252736\pi\)
−0.461632 + 0.887072i \(0.652736\pi\)
\(18\) 16.1319 49.6489i 0.211240 0.650131i
\(19\) −14.3749 44.2414i −0.173570 0.534193i 0.825995 0.563677i \(-0.190614\pi\)
−0.999565 + 0.0294837i \(0.990614\pi\)
\(20\) 16.1803 11.7557i 0.180902 0.131433i
\(21\) 8.37995 0.0870788
\(22\) 62.5805 37.5190i 0.606464 0.363595i
\(23\) −43.9802 −0.398718 −0.199359 0.979927i \(-0.563886\pi\)
−0.199359 + 0.979927i \(0.563886\pi\)
\(24\) 6.13330 4.45611i 0.0521648 0.0378999i
\(25\) 7.72542 + 23.7764i 0.0618034 + 0.190211i
\(26\) 1.95685 6.02256i 0.0147604 0.0454277i
\(27\) 40.7113 + 29.5785i 0.290181 + 0.210829i
\(28\) −28.6162 20.7909i −0.193141 0.140325i
\(29\) −13.0016 + 40.0149i −0.0832531 + 0.256227i −0.984015 0.178087i \(-0.943009\pi\)
0.900762 + 0.434314i \(0.143009\pi\)
\(30\) 2.92839 + 9.01266i 0.0178216 + 0.0548493i
\(31\) −177.910 + 129.259i −1.03076 + 0.748890i −0.968460 0.249167i \(-0.919843\pi\)
−0.0622986 + 0.998058i \(0.519843\pi\)
\(32\) −32.0000 −0.176777
\(33\) 7.74430 + 33.6944i 0.0408518 + 0.177741i
\(34\) 41.4780 0.209218
\(35\) 35.7703 25.9886i 0.172751 0.125511i
\(36\) −32.2638 99.2978i −0.149369 0.459712i
\(37\) −18.4828 + 56.8842i −0.0821230 + 0.252749i −0.983684 0.179902i \(-0.942422\pi\)
0.901561 + 0.432651i \(0.142422\pi\)
\(38\) −75.2680 54.6854i −0.321318 0.233451i
\(39\) 2.42744 + 1.76364i 0.00996672 + 0.00724125i
\(40\) 12.3607 38.0423i 0.0488599 0.150375i
\(41\) 22.2877 + 68.5944i 0.0848963 + 0.261284i 0.984489 0.175446i \(-0.0561366\pi\)
−0.899593 + 0.436730i \(0.856137\pi\)
\(42\) 13.5590 9.85122i 0.0498144 0.0361923i
\(43\) −368.628 −1.30733 −0.653666 0.756783i \(-0.726770\pi\)
−0.653666 + 0.756783i \(0.726770\pi\)
\(44\) 57.1512 134.275i 0.195815 0.460061i
\(45\) 130.510 0.432339
\(46\) −71.1615 + 51.7018i −0.228091 + 0.165718i
\(47\) 83.7848 + 257.863i 0.260027 + 0.800281i 0.992797 + 0.119805i \(0.0382270\pi\)
−0.732770 + 0.680476i \(0.761773\pi\)
\(48\) 4.68543 14.4203i 0.0140892 0.0433622i
\(49\) 214.230 + 155.647i 0.624578 + 0.453782i
\(50\) 40.4508 + 29.3893i 0.114412 + 0.0831254i
\(51\) −6.07319 + 18.6914i −0.0166748 + 0.0513199i
\(52\) −3.91370 12.0451i −0.0104372 0.0321223i
\(53\) −460.619 + 334.659i −1.19379 + 0.867339i −0.993660 0.112430i \(-0.964136\pi\)
−0.200130 + 0.979769i \(0.564136\pi\)
\(54\) 100.644 0.253628
\(55\) 137.553 + 119.809i 0.337230 + 0.293728i
\(56\) −70.7432 −0.168812
\(57\) 35.6637 25.9112i 0.0828733 0.0602110i
\(58\) 26.0032 + 80.0297i 0.0588688 + 0.181180i
\(59\) 41.7199 128.401i 0.0920588 0.283328i −0.894417 0.447233i \(-0.852409\pi\)
0.986476 + 0.163906i \(0.0524093\pi\)
\(60\) 15.3333 + 11.1403i 0.0329919 + 0.0239700i
\(61\) −61.3552 44.5771i −0.128782 0.0935659i 0.521529 0.853233i \(-0.325362\pi\)
−0.650312 + 0.759667i \(0.725362\pi\)
\(62\) −135.911 + 418.291i −0.278398 + 0.856822i
\(63\) −71.3264 219.520i −0.142639 0.438999i
\(64\) −51.7771 + 37.6183i −0.101127 + 0.0734732i
\(65\) 15.8312 0.0302096
\(66\) 52.1407 + 45.4147i 0.0972435 + 0.0846994i
\(67\) 113.462 0.206889 0.103445 0.994635i \(-0.467014\pi\)
0.103445 + 0.994635i \(0.467014\pi\)
\(68\) 67.1128 48.7603i 0.119686 0.0869567i
\(69\) −12.8791 39.6379i −0.0224705 0.0691571i
\(70\) 27.3261 84.1010i 0.0466584 0.143600i
\(71\) −458.437 333.074i −0.766288 0.556741i 0.134545 0.990908i \(-0.457043\pi\)
−0.900832 + 0.434167i \(0.857043\pi\)
\(72\) −168.935 122.739i −0.276517 0.200901i
\(73\) −215.017 + 661.755i −0.344738 + 1.06099i 0.616986 + 0.786974i \(0.288353\pi\)
−0.961724 + 0.274020i \(0.911647\pi\)
\(74\) 36.9656 + 113.768i 0.0580697 + 0.178720i
\(75\) −19.1666 + 13.9253i −0.0295089 + 0.0214394i
\(76\) −186.073 −0.280842
\(77\) 126.345 296.845i 0.186992 0.439333i
\(78\) 6.00097 0.00871124
\(79\) 590.328 428.898i 0.840722 0.610821i −0.0818500 0.996645i \(-0.526083\pi\)
0.922572 + 0.385824i \(0.126083\pi\)
\(80\) −24.7214 76.0845i −0.0345492 0.106331i
\(81\) 203.044 624.907i 0.278525 0.857211i
\(82\) 116.700 + 84.7873i 0.157163 + 0.114185i
\(83\) −924.224 671.488i −1.22225 0.888017i −0.225965 0.974135i \(-0.572554\pi\)
−0.996285 + 0.0861189i \(0.972554\pi\)
\(84\) 10.3582 31.8792i 0.0134544 0.0414084i
\(85\) 32.0435 + 98.6198i 0.0408895 + 0.125845i
\(86\) −596.453 + 433.348i −0.747874 + 0.543362i
\(87\) −39.8714 −0.0491341
\(88\) −65.3771 284.447i −0.0791957 0.344569i
\(89\) 1086.57 1.29412 0.647058 0.762441i \(-0.275999\pi\)
0.647058 + 0.762441i \(0.275999\pi\)
\(90\) 211.169 153.423i 0.247324 0.179692i
\(91\) −8.65211 26.6284i −0.00996689 0.0306749i
\(92\) −54.3625 + 167.311i −0.0616053 + 0.189601i
\(93\) −168.596 122.492i −0.187985 0.136579i
\(94\) 438.703 + 318.737i 0.481370 + 0.349736i
\(95\) 71.8745 221.207i 0.0776228 0.238898i
\(96\) −9.37085 28.8405i −0.00996259 0.0306617i
\(97\) 186.303 135.357i 0.195012 0.141685i −0.485994 0.873962i \(-0.661542\pi\)
0.681007 + 0.732277i \(0.261542\pi\)
\(98\) 529.606 0.545901
\(99\) 816.737 489.660i 0.829143 0.497098i
\(100\) 100.000 0.100000
\(101\) 722.831 525.168i 0.712123 0.517387i −0.171735 0.985143i \(-0.554937\pi\)
0.883858 + 0.467756i \(0.154937\pi\)
\(102\) 12.1464 + 37.3827i 0.0117909 + 0.0362886i
\(103\) −272.580 + 838.914i −0.260758 + 0.802531i 0.731882 + 0.681431i \(0.238642\pi\)
−0.992640 + 0.121100i \(0.961358\pi\)
\(104\) −20.4924 14.8886i −0.0193216 0.0140379i
\(105\) 33.8976 + 24.6281i 0.0315054 + 0.0228900i
\(106\) −351.881 + 1082.98i −0.322432 + 0.992342i
\(107\) −495.313 1524.42i −0.447511 1.37730i −0.879706 0.475518i \(-0.842261\pi\)
0.432195 0.901780i \(-0.357739\pi\)
\(108\) 162.845 118.314i 0.145091 0.105415i
\(109\) 1757.55 1.54443 0.772214 0.635362i \(-0.219149\pi\)
0.772214 + 0.635362i \(0.219149\pi\)
\(110\) 363.409 + 32.1519i 0.314997 + 0.0278687i
\(111\) −56.6803 −0.0484671
\(112\) −114.465 + 83.1636i −0.0965707 + 0.0701627i
\(113\) 80.3771 + 247.375i 0.0669136 + 0.205939i 0.978923 0.204231i \(-0.0654694\pi\)
−0.912009 + 0.410170i \(0.865469\pi\)
\(114\) 27.2447 83.8505i 0.0223833 0.0688887i
\(115\) −177.904 129.255i −0.144257 0.104809i
\(116\) 136.155 + 98.9222i 0.108980 + 0.0791784i
\(117\) 25.5388 78.6003i 0.0201800 0.0621077i
\(118\) −83.4398 256.801i −0.0650954 0.200343i
\(119\) 148.368 107.796i 0.114293 0.0830387i
\(120\) 37.9059 0.0288360
\(121\) 1310.33 + 233.686i 0.984467 + 0.175572i
\(122\) −151.678 −0.112560
\(123\) −55.2951 + 40.1742i −0.0405349 + 0.0294503i
\(124\) 271.822 + 836.582i 0.196857 + 0.605865i
\(125\) −38.6271 + 118.882i −0.0276393 + 0.0850651i
\(126\) −373.470 271.342i −0.264058 0.191850i
\(127\) −1696.77 1232.78i −1.18554 0.861349i −0.192759 0.981246i \(-0.561743\pi\)
−0.992786 + 0.119897i \(0.961743\pi\)
\(128\) −39.5542 + 121.735i −0.0273135 + 0.0840623i
\(129\) −107.949 332.232i −0.0736772 0.226755i
\(130\) 25.6155 18.6107i 0.0172817 0.0125559i
\(131\) −335.582 −0.223816 −0.111908 0.993719i \(-0.535696\pi\)
−0.111908 + 0.993719i \(0.535696\pi\)
\(132\) 137.754 + 12.1875i 0.0908326 + 0.00803623i
\(133\) −411.355 −0.268188
\(134\) 183.585 133.382i 0.118353 0.0859887i
\(135\) 77.7517 + 239.295i 0.0495689 + 0.152557i
\(136\) 51.2696 157.792i 0.0323260 0.0994891i
\(137\) −358.500 260.465i −0.223567 0.162431i 0.470364 0.882473i \(-0.344123\pi\)
−0.693931 + 0.720042i \(0.744123\pi\)
\(138\) −67.4360 48.9951i −0.0415981 0.0302228i
\(139\) −668.437 + 2057.24i −0.407886 + 1.25534i 0.510576 + 0.859833i \(0.329432\pi\)
−0.918462 + 0.395510i \(0.870568\pi\)
\(140\) −54.6521 168.202i −0.0329925 0.101540i
\(141\) −207.868 + 151.025i −0.124153 + 0.0902028i
\(142\) −1133.32 −0.669760
\(143\) 99.0727 59.3973i 0.0579362 0.0347346i
\(144\) −417.631 −0.241685
\(145\) −170.193 + 123.653i −0.0974744 + 0.0708193i
\(146\) 430.034 + 1323.51i 0.243766 + 0.750236i
\(147\) −77.5447 + 238.658i −0.0435087 + 0.133906i
\(148\) 193.554 + 140.625i 0.107500 + 0.0781036i
\(149\) −1601.48 1163.54i −0.880526 0.639739i 0.0528647 0.998602i \(-0.483165\pi\)
−0.933391 + 0.358862i \(0.883165\pi\)
\(150\) −14.6420 + 45.0633i −0.00797007 + 0.0245294i
\(151\) 124.274 + 382.475i 0.0669752 + 0.206128i 0.978943 0.204133i \(-0.0654375\pi\)
−0.911968 + 0.410261i \(0.865437\pi\)
\(152\) −301.072 + 218.741i −0.160659 + 0.116726i
\(153\) 541.328 0.286038
\(154\) −144.531 628.833i −0.0756274 0.329044i
\(155\) −1099.54 −0.569790
\(156\) 9.70978 7.05457i 0.00498336 0.00362062i
\(157\) 1116.61 + 3436.59i 0.567615 + 1.74694i 0.660051 + 0.751220i \(0.270534\pi\)
−0.0924366 + 0.995719i \(0.529466\pi\)
\(158\) 450.970 1387.94i 0.227071 0.698854i
\(159\) −436.504 317.139i −0.217717 0.158181i
\(160\) −129.443 94.0456i −0.0639584 0.0464685i
\(161\) −120.181 + 369.878i −0.0588295 + 0.181059i
\(162\) −406.089 1249.81i −0.196947 0.606139i
\(163\) −2974.68 + 2161.23i −1.42942 + 1.03853i −0.439293 + 0.898344i \(0.644771\pi\)
−0.990125 + 0.140189i \(0.955229\pi\)
\(164\) 288.498 0.137365
\(165\) −67.6989 + 159.057i −0.0319415 + 0.0750457i
\(166\) −2284.81 −1.06829
\(167\) 303.415 220.444i 0.140592 0.102146i −0.515266 0.857030i \(-0.672307\pi\)
0.655858 + 0.754884i \(0.272307\pi\)
\(168\) −20.7164 63.7584i −0.00951371 0.0292802i
\(169\) −675.812 + 2079.94i −0.307607 + 0.946717i
\(170\) 167.782 + 121.901i 0.0756958 + 0.0549962i
\(171\) −982.321 713.698i −0.439298 0.319169i
\(172\) −455.649 + 1402.34i −0.201994 + 0.621673i
\(173\) 599.946 + 1846.44i 0.263659 + 0.811459i 0.991999 + 0.126243i \(0.0402921\pi\)
−0.728340 + 0.685216i \(0.759708\pi\)
\(174\) −64.5133 + 46.8717i −0.0281077 + 0.0204215i
\(175\) 221.072 0.0954943
\(176\) −440.169 383.389i −0.188517 0.164199i
\(177\) 127.940 0.0543310
\(178\) 1758.11 1277.34i 0.740314 0.537870i
\(179\) 158.237 + 487.004i 0.0660738 + 0.203354i 0.978643 0.205569i \(-0.0659045\pi\)
−0.912569 + 0.408923i \(0.865904\pi\)
\(180\) 161.319 496.489i 0.0668001 0.205589i
\(181\) −23.0552 16.7506i −0.00946784 0.00687879i 0.583041 0.812443i \(-0.301863\pi\)
−0.592509 + 0.805564i \(0.701863\pi\)
\(182\) −45.3030 32.9146i −0.0184510 0.0134054i
\(183\) 22.2087 68.3513i 0.00897111 0.0276102i
\(184\) 108.725 + 334.621i 0.0435615 + 0.134069i
\(185\) −241.943 + 175.782i −0.0961513 + 0.0698580i
\(186\) −416.791 −0.164304
\(187\) 570.542 + 496.944i 0.223113 + 0.194332i
\(188\) 1084.53 0.420733
\(189\) 360.006 261.560i 0.138553 0.100665i
\(190\) −143.749 442.414i −0.0548876 0.168927i
\(191\) 427.810 1316.66i 0.162069 0.498799i −0.836739 0.547602i \(-0.815541\pi\)
0.998808 + 0.0488034i \(0.0155408\pi\)
\(192\) −49.0664 35.6488i −0.0184430 0.0133997i
\(193\) −744.435 540.864i −0.277646 0.201721i 0.440244 0.897878i \(-0.354892\pi\)
−0.717890 + 0.696157i \(0.754892\pi\)
\(194\) 142.323 438.024i 0.0526710 0.162105i
\(195\) 4.63601 + 14.2682i 0.00170252 + 0.00523982i
\(196\) 856.921 622.590i 0.312289 0.226891i
\(197\) 3563.23 1.28868 0.644339 0.764740i \(-0.277132\pi\)
0.644339 + 0.764740i \(0.277132\pi\)
\(198\) 745.879 1752.42i 0.267714 0.628985i
\(199\) −1374.07 −0.489474 −0.244737 0.969589i \(-0.578702\pi\)
−0.244737 + 0.969589i \(0.578702\pi\)
\(200\) 161.803 117.557i 0.0572061 0.0415627i
\(201\) 33.2261 + 102.259i 0.0116596 + 0.0358847i
\(202\) 552.194 1699.48i 0.192338 0.591955i
\(203\) 301.001 + 218.690i 0.104069 + 0.0756109i
\(204\) 63.5993 + 46.2076i 0.0218276 + 0.0158587i
\(205\) −111.438 + 342.972i −0.0379668 + 0.116850i
\(206\) 545.159 + 1677.83i 0.184384 + 0.567475i
\(207\) −928.727 + 674.760i −0.311840 + 0.226565i
\(208\) −50.6600 −0.0168877
\(209\) −380.153 1653.99i −0.125817 0.547411i
\(210\) 83.7995 0.0275367
\(211\) 3769.12 2738.43i 1.22975 0.893465i 0.232878 0.972506i \(-0.425186\pi\)
0.996871 + 0.0790410i \(0.0251858\pi\)
\(212\) 703.763 + 2165.96i 0.227994 + 0.701692i
\(213\) 165.940 510.711i 0.0533804 0.164288i
\(214\) −2593.49 1884.28i −0.828446 0.601901i
\(215\) −1491.13 1083.37i −0.472997 0.343652i
\(216\) 124.403 382.872i 0.0391876 0.120607i
\(217\) 600.923 + 1849.45i 0.187988 + 0.578567i
\(218\) 2843.77 2066.12i 0.883508 0.641906i
\(219\) −659.383 −0.203456
\(220\) 625.805 375.190i 0.191781 0.114979i
\(221\) 65.6648 0.0199868
\(222\) −91.7106 + 66.6316i −0.0277262 + 0.0201442i
\(223\) 804.927 + 2477.31i 0.241713 + 0.743915i 0.996160 + 0.0875542i \(0.0279051\pi\)
−0.754447 + 0.656361i \(0.772095\pi\)
\(224\) −87.4434 + 269.123i −0.0260828 + 0.0802747i
\(225\) 527.923 + 383.559i 0.156422 + 0.113647i
\(226\) 420.860 + 305.773i 0.123872 + 0.0899986i
\(227\) 1636.43 5036.43i 0.478476 1.47260i −0.362736 0.931892i \(-0.618157\pi\)
0.841212 0.540705i \(-0.181843\pi\)
\(228\) −54.4893 167.701i −0.0158274 0.0487117i
\(229\) −4104.78 + 2982.30i −1.18450 + 0.860593i −0.992673 0.120835i \(-0.961443\pi\)
−0.191831 + 0.981428i \(0.561443\pi\)
\(230\) −439.802 −0.126086
\(231\) 304.535 + 26.9431i 0.0867400 + 0.00767414i
\(232\) 336.593 0.0952518
\(233\) 3858.93 2803.67i 1.08501 0.788304i 0.106458 0.994317i \(-0.466049\pi\)
0.978549 + 0.206013i \(0.0660491\pi\)
\(234\) −51.0776 157.201i −0.0142694 0.0439168i
\(235\) −418.924 + 1289.32i −0.116288 + 0.357897i
\(236\) −436.896 317.424i −0.120506 0.0875531i
\(237\) 559.423 + 406.444i 0.153327 + 0.111398i
\(238\) 113.343 348.834i 0.0308695 0.0950065i
\(239\) −557.561 1716.00i −0.150902 0.464429i 0.846820 0.531879i \(-0.178514\pi\)
−0.997723 + 0.0674496i \(0.978514\pi\)
\(240\) 61.3330 44.5611i 0.0164960 0.0119850i
\(241\) 5868.14 1.56846 0.784232 0.620467i \(-0.213057\pi\)
0.784232 + 0.620467i \(0.213057\pi\)
\(242\) 2394.86 1162.27i 0.636148 0.308733i
\(243\) 1981.36 0.523063
\(244\) −245.421 + 178.309i −0.0643912 + 0.0467829i
\(245\) 409.143 + 1259.21i 0.106691 + 0.328360i
\(246\) −42.2417 + 130.007i −0.0109481 + 0.0336948i
\(247\) −119.158 86.5737i −0.0306958 0.0223018i
\(248\) 1423.28 + 1034.07i 0.364428 + 0.264773i
\(249\) 334.540 1029.61i 0.0851431 0.262044i
\(250\) 77.2542 + 237.764i 0.0195440 + 0.0601501i
\(251\) 463.933 337.067i 0.116666 0.0847629i −0.527922 0.849293i \(-0.677029\pi\)
0.644588 + 0.764530i \(0.277029\pi\)
\(252\) −923.268 −0.230795
\(253\) −1598.28 141.405i −0.397166 0.0351385i
\(254\) −4194.65 −1.03620
\(255\) −79.4991 + 57.7595i −0.0195232 + 0.0141845i
\(256\) 79.1084 + 243.470i 0.0193136 + 0.0594410i
\(257\) 811.525 2497.62i 0.196971 0.606214i −0.802977 0.596010i \(-0.796752\pi\)
0.999948 0.0102041i \(-0.00324811\pi\)
\(258\) −565.227 410.661i −0.136393 0.0990956i
\(259\) 427.895 + 310.884i 0.102657 + 0.0745845i
\(260\) 19.5685 60.2256i 0.00466764 0.0143655i
\(261\) 339.368 + 1044.47i 0.0804841 + 0.247704i
\(262\) −542.983 + 394.500i −0.128037 + 0.0930240i
\(263\) 1403.11 0.328972 0.164486 0.986379i \(-0.447403\pi\)
0.164486 + 0.986379i \(0.447403\pi\)
\(264\) 237.217 142.219i 0.0553019 0.0331553i
\(265\) −2846.78 −0.659911
\(266\) −665.587 + 483.577i −0.153420 + 0.111466i
\(267\) 318.191 + 979.290i 0.0729324 + 0.224463i
\(268\) 140.247 431.635i 0.0319661 0.0983816i
\(269\) −6577.55 4778.87i −1.49086 1.08317i −0.973851 0.227189i \(-0.927047\pi\)
−0.517006 0.855982i \(-0.672953\pi\)
\(270\) 407.113 + 295.785i 0.0917634 + 0.0666700i
\(271\) 190.126 585.148i 0.0426175 0.131163i −0.927484 0.373863i \(-0.878033\pi\)
0.970101 + 0.242700i \(0.0780330\pi\)
\(272\) −102.539 315.583i −0.0228579 0.0703494i
\(273\) 21.4656 15.5957i 0.00475883 0.00345749i
\(274\) −886.260 −0.195405
\(275\) 204.303 + 888.895i 0.0447999 + 0.194918i
\(276\) −166.711 −0.0363580
\(277\) −2454.03 + 1782.96i −0.532305 + 0.386742i −0.821219 0.570613i \(-0.806706\pi\)
0.288914 + 0.957355i \(0.406706\pi\)
\(278\) 1336.87 + 4114.48i 0.288419 + 0.887661i
\(279\) −1773.77 + 5459.11i −0.380620 + 1.17143i
\(280\) −286.162 207.909i −0.0610767 0.0443748i
\(281\) −5061.51 3677.40i −1.07454 0.780696i −0.0978135 0.995205i \(-0.531185\pi\)
−0.976722 + 0.214509i \(0.931185\pi\)
\(282\) −158.797 + 488.727i −0.0335327 + 0.103203i
\(283\) 322.022 + 991.082i 0.0676404 + 0.208176i 0.979164 0.203073i \(-0.0650928\pi\)
−0.911523 + 0.411249i \(0.865093\pi\)
\(284\) −1833.75 + 1332.30i −0.383144 + 0.278370i
\(285\) 220.414 0.0458112
\(286\) 90.4774 212.574i 0.0187064 0.0439502i
\(287\) 637.789 0.131176
\(288\) −675.742 + 490.955i −0.138259 + 0.100451i
\(289\) −1385.29 4263.49i −0.281964 0.867797i
\(290\) −130.016 + 400.149i −0.0263269 + 0.0810260i
\(291\) 176.549 + 128.271i 0.0355653 + 0.0258397i
\(292\) 2251.69 + 1635.95i 0.451267 + 0.327865i
\(293\) 752.555 2316.13i 0.150050 0.461808i −0.847575 0.530675i \(-0.821939\pi\)
0.997626 + 0.0688673i \(0.0219385\pi\)
\(294\) 155.089 + 477.316i 0.0307653 + 0.0946859i
\(295\) 546.120 396.780i 0.107784 0.0783099i
\(296\) 478.492 0.0939588
\(297\) 1384.39 + 1205.80i 0.270472 + 0.235582i
\(298\) −3959.08 −0.769608
\(299\) −112.657 + 81.8504i −0.0217898 + 0.0158312i
\(300\) 29.2839 + 90.1266i 0.00563569 + 0.0173449i
\(301\) −1007.32 + 3100.20i −0.192893 + 0.593662i
\(302\) 650.706 + 472.766i 0.123986 + 0.0900815i
\(303\) 684.989 + 497.674i 0.129873 + 0.0943585i
\(304\) −229.998 + 707.862i −0.0433925 + 0.133548i
\(305\) −117.178 360.637i −0.0219987 0.0677049i
\(306\) 875.888 636.370i 0.163631 0.118885i
\(307\) 2029.56 0.377306 0.188653 0.982044i \(-0.439588\pi\)
0.188653 + 0.982044i \(0.439588\pi\)
\(308\) −973.093 847.567i −0.180023 0.156801i
\(309\) −835.907 −0.153893
\(310\) −1779.10 + 1292.59i −0.325955 + 0.236820i
\(311\) 940.534 + 2894.67i 0.171488 + 0.527786i 0.999456 0.0329899i \(-0.0105029\pi\)
−0.827968 + 0.560776i \(0.810503\pi\)
\(312\) 7.41761 22.8291i 0.00134596 0.00414244i
\(313\) −1850.98 1344.81i −0.334260 0.242854i 0.407976 0.912993i \(-0.366235\pi\)
−0.742236 + 0.670138i \(0.766235\pi\)
\(314\) 5846.67 + 4247.85i 1.05079 + 0.763440i
\(315\) 356.632 1097.60i 0.0637903 0.196326i
\(316\) −901.941 2775.89i −0.160564 0.494164i
\(317\) −3361.40 + 2442.20i −0.595568 + 0.432706i −0.844303 0.535866i \(-0.819985\pi\)
0.248735 + 0.968572i \(0.419985\pi\)
\(318\) −1079.10 −0.190292
\(319\) −601.146 + 1412.37i −0.105510 + 0.247893i
\(320\) −320.000 −0.0559017
\(321\) 1228.86 892.818i 0.213670 0.155241i
\(322\) 240.361 + 739.755i 0.0415988 + 0.128028i
\(323\) 298.121 917.522i 0.0513557 0.158057i
\(324\) −2126.31 1544.85i −0.364593 0.264893i
\(325\) 64.0387 + 46.5268i 0.0109299 + 0.00794106i
\(326\) −2272.46 + 6993.90i −0.386073 + 1.18821i
\(327\) 514.679 + 1584.02i 0.0870392 + 0.267879i
\(328\) 466.799 339.149i 0.0785813 0.0570926i
\(329\) 2397.61 0.401776
\(330\) 77.4430 + 336.944i 0.0129185 + 0.0562065i
\(331\) 2672.79 0.443837 0.221919 0.975065i \(-0.428768\pi\)
0.221919 + 0.975065i \(0.428768\pi\)
\(332\) −3696.90 + 2685.95i −0.611125 + 0.444008i
\(333\) 482.437 + 1484.79i 0.0793915 + 0.244342i
\(334\) 231.788 713.371i 0.0379727 0.116868i
\(335\) 458.963 + 333.456i 0.0748532 + 0.0543840i
\(336\) −108.472 78.8098i −0.0176121 0.0127959i
\(337\) 1500.33 4617.54i 0.242517 0.746391i −0.753518 0.657427i \(-0.771645\pi\)
0.996035 0.0889633i \(-0.0283554\pi\)
\(338\) 1351.62 + 4159.87i 0.217511 + 0.669430i
\(339\) −199.413 + 144.882i −0.0319488 + 0.0232122i
\(340\) 414.780 0.0661606
\(341\) −6881.00 + 4125.38i −1.09275 + 0.655137i
\(342\) −2428.43 −0.383960
\(343\) 4348.26 3159.19i 0.684501 0.497319i
\(344\) 911.299 + 2804.69i 0.142831 + 0.439589i
\(345\) 64.3956 198.189i 0.0100491 0.0309280i
\(346\) 3141.36 + 2282.33i 0.488093 + 0.354621i
\(347\) −6236.00 4530.72i −0.964743 0.700927i −0.0104957 0.999945i \(-0.503341\pi\)
−0.954247 + 0.299018i \(0.903341\pi\)
\(348\) −49.2838 + 151.680i −0.00759164 + 0.0233647i
\(349\) −1152.36 3546.60i −0.176746 0.543969i 0.822963 0.568095i \(-0.192320\pi\)
−0.999709 + 0.0241265i \(0.992320\pi\)
\(350\) 357.703 259.886i 0.0546286 0.0396900i
\(351\) 159.332 0.0242293
\(352\) −1162.91 102.886i −0.176089 0.0155791i
\(353\) 6438.64 0.970805 0.485403 0.874291i \(-0.338673\pi\)
0.485403 + 0.874291i \(0.338673\pi\)
\(354\) 207.012 150.403i 0.0310807 0.0225814i
\(355\) −875.536 2694.62i −0.130898 0.402861i
\(356\) 1343.08 4133.56i 0.199952 0.615389i
\(357\) 140.600 + 102.152i 0.0208442 + 0.0151442i
\(358\) 828.541 + 601.970i 0.122318 + 0.0888690i
\(359\) 322.358 992.117i 0.0473911 0.145855i −0.924561 0.381035i \(-0.875568\pi\)
0.971952 + 0.235180i \(0.0755679\pi\)
\(360\) −322.638 992.978i −0.0472348 0.145374i
\(361\) 3798.38 2759.69i 0.553781 0.402346i
\(362\) −56.9956 −0.00827520
\(363\) 173.101 + 1249.38i 0.0250288 + 0.180649i
\(364\) −111.995 −0.0161268
\(365\) −2814.61 + 2044.93i −0.403626 + 0.293251i
\(366\) −44.4174 136.703i −0.00634353 0.0195234i
\(367\) 2119.87 6524.29i 0.301516 0.927970i −0.679439 0.733732i \(-0.737777\pi\)
0.980954 0.194238i \(-0.0622234\pi\)
\(368\) 569.292 + 413.615i 0.0806423 + 0.0585901i
\(369\) 1523.05 + 1106.56i 0.214869 + 0.156111i
\(370\) −184.828 + 568.842i −0.0259696 + 0.0799261i
\(371\) 1555.83 + 4788.34i 0.217721 + 0.670076i
\(372\) −674.383 + 489.968i −0.0939923 + 0.0682894i
\(373\) −9922.63 −1.37741 −0.688705 0.725041i \(-0.741821\pi\)
−0.688705 + 0.725041i \(0.741821\pi\)
\(374\) 1507.35 + 133.360i 0.208404 + 0.0184381i
\(375\) −118.456 −0.0163121
\(376\) 1754.81 1274.95i 0.240685 0.174868i
\(377\) 41.1664 + 126.697i 0.00562381 + 0.0173083i
\(378\) 275.020 846.425i 0.0374220 0.115173i
\(379\) 4707.30 + 3420.05i 0.637988 + 0.463526i 0.859158 0.511710i \(-0.170988\pi\)
−0.221170 + 0.975235i \(0.570988\pi\)
\(380\) −752.680 546.854i −0.101610 0.0738237i
\(381\) 614.179 1890.25i 0.0825862 0.254174i
\(382\) −855.621 2633.33i −0.114600 0.352704i
\(383\) −493.792 + 358.761i −0.0658788 + 0.0478637i −0.620237 0.784414i \(-0.712964\pi\)
0.554358 + 0.832278i \(0.312964\pi\)
\(384\) −121.299 −0.0161198
\(385\) 1383.48 829.442i 0.183140 0.109798i
\(386\) −1840.34 −0.242671
\(387\) −7784.29 + 5655.62i −1.02248 + 0.742872i
\(388\) −284.645 876.048i −0.0372440 0.114625i
\(389\) −3717.57 + 11441.5i −0.484546 + 1.49128i 0.348092 + 0.937460i \(0.386830\pi\)
−0.832638 + 0.553818i \(0.813170\pi\)
\(390\) 24.2744 + 17.6364i 0.00315175 + 0.00228988i
\(391\) −737.908 536.122i −0.0954415 0.0693423i
\(392\) 654.629 2014.74i 0.0843464 0.259591i
\(393\) −98.2715 302.449i −0.0126136 0.0388206i
\(394\) 5765.43 4188.83i 0.737203 0.535610i
\(395\) 3648.43 0.464740
\(396\) −853.235 3712.31i −0.108274 0.471087i
\(397\) 610.929 0.0772333 0.0386167 0.999254i \(-0.487705\pi\)
0.0386167 + 0.999254i \(0.487705\pi\)
\(398\) −2223.30 + 1615.32i −0.280009 + 0.203439i
\(399\) −120.461 370.741i −0.0151143 0.0465169i
\(400\) 123.607 380.423i 0.0154508 0.0475528i
\(401\) −5130.18 3727.29i −0.638875 0.464170i 0.220589 0.975367i \(-0.429202\pi\)
−0.859463 + 0.511197i \(0.829202\pi\)
\(402\) 173.974 + 126.400i 0.0215847 + 0.0156822i
\(403\) −215.164 + 662.206i −0.0265957 + 0.0818532i
\(404\) −1104.39 3398.96i −0.136003 0.418575i
\(405\) 2657.89 1931.07i 0.326102 0.236927i
\(406\) 744.114 0.0909600
\(407\) −854.575 + 2007.80i −0.104078 + 0.244528i
\(408\) 157.226 0.0190781
\(409\) 6923.18 5029.98i 0.836990 0.608109i −0.0845379 0.996420i \(-0.526941\pi\)
0.921528 + 0.388311i \(0.126941\pi\)
\(410\) 222.877 + 685.944i 0.0268466 + 0.0826252i
\(411\) 129.766 399.378i 0.0155739 0.0479315i
\(412\) 2854.49 + 2073.91i 0.341337 + 0.247996i
\(413\) −965.857 701.737i −0.115077 0.0836082i
\(414\) −709.484 + 2183.57i −0.0842252 + 0.259219i
\(415\) −1765.11 5432.45i −0.208785 0.642575i
\(416\) −81.9695 + 59.5544i −0.00966079 + 0.00701897i
\(417\) −2049.86 −0.240725
\(418\) −2559.48 2229.32i −0.299494 0.260860i
\(419\) 9840.45 1.14735 0.573673 0.819085i \(-0.305518\pi\)
0.573673 + 0.819085i \(0.305518\pi\)
\(420\) 135.590 98.5122i 0.0157527 0.0114450i
\(421\) −1497.84 4609.88i −0.173397 0.533662i 0.826159 0.563436i \(-0.190521\pi\)
−0.999557 + 0.0297746i \(0.990521\pi\)
\(422\) 2879.35 8861.74i 0.332144 1.02223i
\(423\) 5725.51 + 4159.82i 0.658117 + 0.478150i
\(424\) 3684.95 + 2677.27i 0.422068 + 0.306651i
\(425\) −160.218 + 493.099i −0.0182863 + 0.0562795i
\(426\) −331.880 1021.42i −0.0377456 0.116169i
\(427\) −542.558 + 394.191i −0.0614899 + 0.0446750i
\(428\) −6411.46 −0.724088
\(429\) 82.5451 + 71.8971i 0.00928978 + 0.00809143i
\(430\) −3686.28 −0.413414
\(431\) −8873.74 + 6447.15i −0.991723 + 0.720529i −0.960298 0.278977i \(-0.910005\pi\)
−0.0314256 + 0.999506i \(0.510005\pi\)
\(432\) −248.805 765.744i −0.0277098 0.0852821i
\(433\) 1898.76 5843.77i 0.210735 0.648576i −0.788694 0.614786i \(-0.789242\pi\)
0.999429 0.0337901i \(-0.0107578\pi\)
\(434\) 3146.48 + 2286.05i 0.348008 + 0.252843i
\(435\) −161.283 117.179i −0.0177769 0.0129157i
\(436\) 2172.45 6686.11i 0.238627 0.734419i
\(437\) 632.211 + 1945.75i 0.0692054 + 0.212992i
\(438\) −1066.90 + 775.151i −0.116390 + 0.0845619i
\(439\) 12752.7 1.38646 0.693229 0.720717i \(-0.256187\pi\)
0.693229 + 0.720717i \(0.256187\pi\)
\(440\) 571.512 1342.75i 0.0619221 0.145484i
\(441\) 6911.88 0.746343
\(442\) 106.248 77.1936i 0.0114337 0.00830707i
\(443\) −2316.76 7130.27i −0.248471 0.764716i −0.995046 0.0994147i \(-0.968303\pi\)
0.746575 0.665302i \(-0.231697\pi\)
\(444\) −70.0607 + 215.625i −0.00748858 + 0.0230475i
\(445\) 4395.27 + 3193.35i 0.468216 + 0.340179i
\(446\) 4214.65 + 3062.13i 0.447466 + 0.325103i
\(447\) 579.686 1784.09i 0.0613383 0.188780i
\(448\) 174.887 + 538.246i 0.0184434 + 0.0567628i
\(449\) 11243.9 8169.20i 1.18181 0.858638i 0.189439 0.981892i \(-0.439333\pi\)
0.992375 + 0.123254i \(0.0393331\pi\)
\(450\) 1305.10 0.136718
\(451\) 589.410 + 2564.44i 0.0615394 + 0.267749i
\(452\) 1040.42 0.108269
\(453\) −308.320 + 224.008i −0.0319782 + 0.0232335i
\(454\) −3272.87 10072.9i −0.338333 1.04128i
\(455\) 43.2605 133.142i 0.00445733 0.0137183i
\(456\) −285.310 207.290i −0.0293001 0.0212878i
\(457\) −4591.87 3336.19i −0.470019 0.341489i 0.327430 0.944876i \(-0.393818\pi\)
−0.797449 + 0.603387i \(0.793818\pi\)
\(458\) −3135.77 + 9650.91i −0.319924 + 0.984624i
\(459\) 322.498 + 992.547i 0.0327950 + 0.100933i
\(460\) −711.615 + 517.018i −0.0721287 + 0.0524046i
\(461\) −18025.9 −1.82115 −0.910574 0.413346i \(-0.864360\pi\)
−0.910574 + 0.413346i \(0.864360\pi\)
\(462\) 524.422 314.408i 0.0528102 0.0316614i
\(463\) 3950.70 0.396554 0.198277 0.980146i \(-0.436465\pi\)
0.198277 + 0.980146i \(0.436465\pi\)
\(464\) 544.619 395.689i 0.0544899 0.0395892i
\(465\) −321.989 990.981i −0.0321116 0.0988293i
\(466\) 2947.96 9072.88i 0.293050 0.901916i
\(467\) 9401.50 + 6830.59i 0.931584 + 0.676835i 0.946380 0.323055i \(-0.104710\pi\)
−0.0147961 + 0.999891i \(0.504710\pi\)
\(468\) −267.446 194.311i −0.0264160 0.0191923i
\(469\) 310.047 954.225i 0.0305258 0.0939489i
\(470\) 837.848 + 2578.63i 0.0822278 + 0.253071i
\(471\) −2770.29 + 2012.73i −0.271015 + 0.196904i
\(472\) −1080.07 −0.105327
\(473\) −13396.3 1185.21i −1.30224 0.115213i
\(474\) 1382.97 0.134012
\(475\) 940.849 683.567i 0.0908824 0.0660299i
\(476\) −226.686 697.668i −0.0218280 0.0671797i
\(477\) −4592.40 + 14133.9i −0.440821 + 1.35671i
\(478\) −2919.43 2121.09i −0.279355 0.202963i
\(479\) 13228.5 + 9611.09i 1.26185 + 0.916789i 0.998847 0.0480052i \(-0.0152864\pi\)
0.263005 + 0.964794i \(0.415286\pi\)
\(480\) 46.8543 144.203i 0.00445541 0.0137123i
\(481\) 58.5211 + 180.109i 0.00554747 + 0.0170733i
\(482\) 9494.85 6898.41i 0.897258 0.651896i
\(483\) −368.552 −0.0347199
\(484\) 2508.64 4695.92i 0.235598 0.441014i
\(485\) 1151.41 0.107800
\(486\) 3205.91 2329.23i 0.299224 0.217399i
\(487\) −3168.88 9752.81i −0.294858 0.907479i −0.983269 0.182158i \(-0.941692\pi\)
0.688412 0.725320i \(-0.258308\pi\)
\(488\) −187.485 + 577.019i −0.0173915 + 0.0535254i
\(489\) −2818.95 2048.09i −0.260690 0.189402i
\(490\) 2142.30 + 1556.47i 0.197509 + 0.143499i
\(491\) −3784.06 + 11646.1i −0.347805 + 1.07043i 0.612261 + 0.790656i \(0.290260\pi\)
−0.960065 + 0.279776i \(0.909740\pi\)
\(492\) 84.4834 + 260.013i 0.00774147 + 0.0238258i
\(493\) −705.928 + 512.887i −0.0644896 + 0.0468545i
\(494\) −294.576 −0.0268292
\(495\) 4742.85 + 419.614i 0.430657 + 0.0381015i
\(496\) 3518.54 0.318522
\(497\) −4053.91 + 2945.34i −0.365881 + 0.265828i
\(498\) −669.081 2059.22i −0.0602053 0.185293i
\(499\) −6044.04 + 18601.7i −0.542222 + 1.66879i 0.185284 + 0.982685i \(0.440679\pi\)
−0.727506 + 0.686101i \(0.759321\pi\)
\(500\) 404.508 + 293.893i 0.0361803 + 0.0262866i
\(501\) 287.530 + 208.903i 0.0256405 + 0.0186289i
\(502\) 354.414 1090.77i 0.0315105 0.0969792i
\(503\) 2388.74 + 7351.80i 0.211747 + 0.651691i 0.999369 + 0.0355313i \(0.0113124\pi\)
−0.787621 + 0.616160i \(0.788688\pi\)
\(504\) −1493.88 + 1085.37i −0.132029 + 0.0959248i
\(505\) 4467.34 0.393652
\(506\) −2752.30 + 1650.09i −0.241808 + 0.144972i
\(507\) −2072.48 −0.181543
\(508\) −6787.09 + 4931.11i −0.592772 + 0.430674i
\(509\) −6773.40 20846.4i −0.589835 1.81532i −0.578921 0.815384i \(-0.696526\pi\)
−0.0109136 0.999940i \(-0.503474\pi\)
\(510\) −60.7319 + 186.914i −0.00527304 + 0.0162288i
\(511\) 4977.86 + 3616.63i 0.430935 + 0.313092i
\(512\) 414.217 + 300.946i 0.0357538 + 0.0259767i
\(513\) 723.373 2226.31i 0.0622567 0.191606i
\(514\) −1623.05 4995.23i −0.139279 0.428658i
\(515\) −3568.11 + 2592.39i −0.305301 + 0.221814i
\(516\) −1397.32 −0.119212
\(517\) 2215.74 + 9640.37i 0.188488 + 0.820083i
\(518\) 1057.81 0.0897253
\(519\) −1488.45 + 1081.42i −0.125888 + 0.0914627i
\(520\) −39.1370 120.451i −0.00330052 0.0101580i
\(521\) −4030.20 + 12403.7i −0.338899 + 1.04302i 0.625871 + 0.779927i \(0.284744\pi\)
−0.964770 + 0.263096i \(0.915256\pi\)
\(522\) 1776.95 + 1291.03i 0.148994 + 0.108251i
\(523\) −5374.46 3904.77i −0.449348 0.326470i 0.339991 0.940429i \(-0.389576\pi\)
−0.789338 + 0.613959i \(0.789576\pi\)
\(524\) −414.802 + 1276.63i −0.0345815 + 0.106431i
\(525\) 64.7387 + 199.245i 0.00538177 + 0.0165634i
\(526\) 2270.29 1649.46i 0.188192 0.136730i
\(527\) −4560.68 −0.376976
\(528\) 216.637 508.981i 0.0178559 0.0419518i
\(529\) −10232.7 −0.841024
\(530\) −4606.19 + 3346.59i −0.377509 + 0.274277i
\(531\) −1088.97 3351.51i −0.0889968 0.273904i
\(532\) −508.463 + 1564.89i −0.0414374 + 0.127531i
\(533\) 184.750 + 134.229i 0.0150139 + 0.0109082i
\(534\) 1666.07 + 1210.47i 0.135015 + 0.0980939i
\(535\) 2476.56 7622.08i 0.200133 0.615946i
\(536\) −280.493 863.269i −0.0226035 0.0695663i
\(537\) −392.582 + 285.228i −0.0315478 + 0.0229208i
\(538\) −16260.6 −1.30306
\(539\) 7284.89 + 6345.16i 0.582157 + 0.507060i
\(540\) 1006.44 0.0802041
\(541\) −1336.21 + 970.816i −0.106189 + 0.0771509i −0.639613 0.768697i \(-0.720905\pi\)
0.533423 + 0.845848i \(0.320905\pi\)
\(542\) −380.252 1170.30i −0.0301351 0.0927463i
\(543\) 8.34527 25.6841i 0.000659539 0.00202985i
\(544\) −536.902 390.082i −0.0423152 0.0307438i
\(545\) 7109.44 + 5165.31i 0.558779 + 0.405977i
\(546\) 16.3983 50.4688i 0.00128532 0.00395579i
\(547\) −4701.87 14470.9i −0.367527 1.13113i −0.948383 0.317126i \(-0.897282\pi\)
0.580856 0.814006i \(-0.302718\pi\)
\(548\) −1434.00 + 1041.86i −0.111784 + 0.0812155i
\(549\) −1979.55 −0.153889
\(550\) 1375.53 + 1198.09i 0.106641 + 0.0928850i
\(551\) 1957.21 0.151325
\(552\) −269.744 + 195.980i −0.0207990 + 0.0151114i
\(553\) −1993.94 6136.72i −0.153329 0.471899i
\(554\) −1874.71 + 5769.77i −0.143771 + 0.442480i
\(555\) −229.276 166.579i −0.0175356 0.0127403i
\(556\) 6999.96 + 5085.77i 0.533929 + 0.387922i
\(557\) −4565.52 + 14051.2i −0.347303 + 1.06889i 0.613037 + 0.790054i \(0.289948\pi\)
−0.960340 + 0.278833i \(0.910052\pi\)
\(558\) 3547.54 + 10918.2i 0.269139 + 0.828324i
\(559\) −944.259 + 686.044i −0.0714452 + 0.0519080i
\(560\) −707.432 −0.0533830
\(561\) −280.801 + 659.734i −0.0211327 + 0.0496506i
\(562\) −12512.7 −0.939178
\(563\) 3015.33 2190.77i 0.225722 0.163996i −0.469177 0.883104i \(-0.655449\pi\)
0.694898 + 0.719108i \(0.255449\pi\)
\(564\) 317.594 + 977.454i 0.0237112 + 0.0729756i
\(565\) −401.885 + 1236.88i −0.0299247 + 0.0920987i
\(566\) 1686.13 + 1225.04i 0.125218 + 0.0909761i
\(567\) −4700.68 3415.25i −0.348166 0.252957i
\(568\) −1400.86 + 4311.40i −0.103484 + 0.318490i
\(569\) −3595.21 11064.9i −0.264884 0.815229i −0.991720 0.128418i \(-0.959010\pi\)
0.726836 0.686811i \(-0.240990\pi\)
\(570\) 356.637 259.112i 0.0262068 0.0190404i
\(571\) −16532.2 −1.21165 −0.605823 0.795600i \(-0.707156\pi\)
−0.605823 + 0.795600i \(0.707156\pi\)
\(572\) −103.500 450.314i −0.00756565 0.0329171i
\(573\) 1311.95 0.0956497
\(574\) 1031.96 749.765i 0.0750406 0.0545202i
\(575\) −339.766 1045.69i −0.0246421 0.0758406i
\(576\) −516.221 + 1588.76i −0.0373424 + 0.114928i
\(577\) 19449.1 + 14130.6i 1.40325 + 1.01952i 0.994261 + 0.106983i \(0.0341190\pi\)
0.408990 + 0.912539i \(0.365881\pi\)
\(578\) −7253.48 5269.96i −0.521981 0.379241i
\(579\) 269.462 829.320i 0.0193411 0.0595257i
\(580\) 260.032 + 800.297i 0.0186160 + 0.0572940i
\(581\) −8172.82 + 5937.90i −0.583590 + 0.424003i
\(582\) 436.454 0.0310852
\(583\) −17815.3 + 10680.8i −1.26558 + 0.758757i
\(584\) 5566.48 0.394422
\(585\) 334.307 242.888i 0.0236272 0.0171662i
\(586\) −1505.11 4632.26i −0.106102 0.326547i
\(587\) 7030.68 21638.2i 0.494357 1.52147i −0.323600 0.946194i \(-0.604893\pi\)
0.817957 0.575280i \(-0.195107\pi\)
\(588\) 812.059 + 589.995i 0.0569537 + 0.0413793i
\(589\) 8276.03 + 6012.89i 0.578961 + 0.420640i
\(590\) 417.199 1284.01i 0.0291115 0.0895961i
\(591\) 1043.45 + 3211.42i 0.0726260 + 0.223520i
\(592\) 774.217 562.502i 0.0537502 0.0390518i
\(593\) −12506.8 −0.866094 −0.433047 0.901371i \(-0.642562\pi\)
−0.433047 + 0.901371i \(0.642562\pi\)
\(594\) 3657.49 + 323.589i 0.252641 + 0.0223519i
\(595\) 916.964 0.0631796
\(596\) −6405.92 + 4654.17i −0.440263 + 0.319870i
\(597\) −402.382 1238.40i −0.0275853 0.0848987i
\(598\) −86.0626 + 264.873i −0.00588522 + 0.0181128i
\(599\) −7388.22 5367.85i −0.503964 0.366151i 0.306565 0.951850i \(-0.400820\pi\)
−0.810529 + 0.585699i \(0.800820\pi\)
\(600\) 153.333 + 111.403i 0.0104330 + 0.00757999i
\(601\) 5751.92 17702.6i 0.390392 1.20150i −0.542101 0.840314i \(-0.682371\pi\)
0.932493 0.361189i \(-0.117629\pi\)
\(602\) 2014.63 + 6200.39i 0.136396 + 0.419783i
\(603\) 2395.97 1740.77i 0.161810 0.117562i
\(604\) 1608.63 0.108368
\(605\) 4613.59 + 4796.23i 0.310032 + 0.322305i
\(606\) 1693.39 0.113513
\(607\) −13119.1 + 9531.56i −0.877243 + 0.637354i −0.932521 0.361117i \(-0.882396\pi\)
0.0552775 + 0.998471i \(0.482396\pi\)
\(608\) 459.997 + 1415.72i 0.0306831 + 0.0944329i
\(609\) −108.953 + 335.323i −0.00724958 + 0.0223119i
\(610\) −613.552 445.771i −0.0407246 0.0295881i
\(611\) 694.522 + 504.599i 0.0459858 + 0.0334106i
\(612\) 669.119 2059.34i 0.0441953 0.136019i
\(613\) 532.206 + 1637.96i 0.0350663 + 0.107923i 0.967058 0.254558i \(-0.0819299\pi\)
−0.931991 + 0.362481i \(0.881930\pi\)
\(614\) 3283.89 2385.89i 0.215842 0.156819i
\(615\) −341.742 −0.0224071
\(616\) −2570.87 227.453i −0.168155 0.0148772i
\(617\) 21657.0 1.41309 0.706547 0.707666i \(-0.250252\pi\)
0.706547 + 0.707666i \(0.250252\pi\)
\(618\) −1352.53 + 982.668i −0.0880365 + 0.0639623i
\(619\) −4699.18 14462.6i −0.305131 0.939097i −0.979628 0.200819i \(-0.935640\pi\)
0.674497 0.738277i \(-0.264360\pi\)
\(620\) −1359.11 + 4182.91i −0.0880373 + 0.270951i
\(621\) −1790.49 1300.87i −0.115700 0.0840613i
\(622\) 4924.70 + 3578.00i 0.317464 + 0.230651i
\(623\) 2969.17 9138.17i 0.190943 0.587661i
\(624\) −14.8352 45.6581i −0.000951737 0.00292915i
\(625\) −505.636 + 367.366i −0.0323607 + 0.0235114i
\(626\) −4575.87 −0.292154
\(627\) 1379.36 826.972i 0.0878572 0.0526732i
\(628\) 14453.8 0.918420
\(629\) −1003.53 + 729.107i −0.0636142 + 0.0462184i
\(630\) −713.264 2195.20i −0.0451065 0.138824i
\(631\) 7357.85 22645.1i 0.464202 1.42867i −0.395782 0.918344i \(-0.629526\pi\)
0.859984 0.510321i \(-0.170474\pi\)
\(632\) −4722.62 3431.19i −0.297240 0.215958i
\(633\) 3571.80 + 2595.06i 0.224275 + 0.162946i
\(634\) −2567.88 + 7903.13i −0.160857 + 0.495068i
\(635\) −3240.55 9973.38i −0.202515 0.623278i
\(636\) −1746.02 + 1268.56i −0.108859 + 0.0790904i
\(637\) 838.432 0.0521506
\(638\) 687.671 + 2991.96i 0.0426727 + 0.185663i
\(639\) −14790.9 −0.915680
\(640\) −517.771 + 376.183i −0.0319792 + 0.0232343i
\(641\) −1980.78 6096.23i −0.122053 0.375642i 0.871299 0.490752i \(-0.163278\pi\)
−0.993353 + 0.115110i \(0.963278\pi\)
\(642\) 938.764 2889.22i 0.0577104 0.177614i
\(643\) 15209.2 + 11050.2i 0.932805 + 0.677722i 0.946678 0.322182i \(-0.104416\pi\)
−0.0138733 + 0.999904i \(0.504416\pi\)
\(644\) 1258.55 + 914.388i 0.0770089 + 0.0559502i
\(645\) 539.744 1661.16i 0.0329494 0.101408i
\(646\) −596.242 1835.04i −0.0363140 0.111763i
\(647\) 22016.7 15996.1i 1.33782 0.971981i 0.338296 0.941040i \(-0.390150\pi\)
0.999521 0.0309413i \(-0.00985049\pi\)
\(648\) −5256.52 −0.318666
\(649\) 1928.97 4532.06i 0.116670 0.274112i
\(650\) 158.312 0.00955311
\(651\) −1490.87 + 1083.18i −0.0897573 + 0.0652125i
\(652\) 4544.91 + 13987.8i 0.272995 + 0.840191i
\(653\) 8559.40 26343.1i 0.512948 1.57869i −0.274036 0.961719i \(-0.588359\pi\)
0.786984 0.616973i \(-0.211641\pi\)
\(654\) 2694.90 + 1957.96i 0.161130 + 0.117067i
\(655\) −1357.46 986.250i −0.0809775 0.0588336i
\(656\) 356.603 1097.51i 0.0212241 0.0653210i
\(657\) 5612.37 + 17273.1i 0.333271 + 1.02570i
\(658\) 3879.41 2818.55i 0.229840 0.166989i
\(659\) 20157.8 1.19156 0.595778 0.803149i \(-0.296844\pi\)
0.595778 + 0.803149i \(0.296844\pi\)
\(660\) 521.407 + 454.147i 0.0307511 + 0.0267843i
\(661\) 19540.5 1.14983 0.574916 0.818213i \(-0.305035\pi\)
0.574916 + 0.818213i \(0.305035\pi\)
\(662\) 4324.67 3142.06i 0.253902 0.184471i
\(663\) 19.2292 + 59.1815i 0.00112640 + 0.00346669i
\(664\) −2824.18 + 8691.92i −0.165059 + 0.508000i
\(665\) −1663.97 1208.94i −0.0970314 0.0704974i
\(666\) 2526.07 + 1835.30i 0.146972 + 0.106781i
\(667\) 571.814 1759.86i 0.0331945 0.102162i
\(668\) −463.577 1426.74i −0.0268508 0.0826382i
\(669\) −1997.00 + 1450.91i −0.115409 + 0.0838495i
\(670\) 1134.62 0.0654241
\(671\) −2086.38 1817.24i −0.120035 0.104551i
\(672\) −268.158 −0.0153935
\(673\) 20412.0 14830.2i 1.16913 0.849421i 0.178224 0.983990i \(-0.442965\pi\)
0.990904 + 0.134569i \(0.0429648\pi\)
\(674\) −3000.66 9235.09i −0.171485 0.527778i
\(675\) −388.758 + 1196.48i −0.0221679 + 0.0682257i
\(676\) 7077.20 + 5141.89i 0.402663 + 0.292552i
\(677\) 1134.09 + 823.966i 0.0643821 + 0.0467764i 0.619511 0.784988i \(-0.287331\pi\)
−0.555129 + 0.831764i \(0.687331\pi\)
\(678\) −152.338 + 468.849i −0.00862908 + 0.0265576i
\(679\) −629.272 1936.70i −0.0355659 0.109461i
\(680\) 671.128 487.603i 0.0378479 0.0274981i
\(681\) 5018.38 0.282386
\(682\) −6284.01 + 14764.1i −0.352826 + 0.828954i
\(683\) 24332.9 1.36321 0.681605 0.731721i \(-0.261282\pi\)
0.681605 + 0.731721i \(0.261282\pi\)
\(684\) −3929.28 + 2854.79i −0.219649 + 0.159584i
\(685\) −684.673 2107.21i −0.0381898 0.117536i
\(686\) 3321.77 10223.4i 0.184877 0.568994i
\(687\) −3889.88 2826.17i −0.216024 0.156950i
\(688\) 4771.62 + 3466.79i 0.264413 + 0.192108i
\(689\) −557.072 + 1714.49i −0.0308023 + 0.0947996i
\(690\) −128.791 396.379i −0.00710580 0.0218694i
\(691\) −3194.79 + 2321.15i −0.175884 + 0.127787i −0.672244 0.740330i \(-0.734669\pi\)
0.496360 + 0.868117i \(0.334669\pi\)
\(692\) 7765.86 0.426609
\(693\) −1886.27 8206.89i −0.103396 0.449861i
\(694\) −15416.2 −0.843216
\(695\) −8749.96 + 6357.21i −0.477561 + 0.346968i
\(696\) 98.5676 + 303.360i 0.00536810 + 0.0165213i
\(697\) −462.224 + 1422.58i −0.0251190 + 0.0773084i
\(698\) −6033.84 4383.84i −0.327198 0.237723i
\(699\) 3656.90 + 2656.89i 0.197878 + 0.143767i
\(700\) 273.261 841.010i 0.0147547 0.0454102i
\(701\) 6533.11 + 20106.9i 0.352000 + 1.08335i 0.957728 + 0.287674i \(0.0928819\pi\)
−0.605728 + 0.795672i \(0.707118\pi\)
\(702\) 257.804 187.306i 0.0138607 0.0100704i
\(703\) 2782.32 0.149271
\(704\) −2002.58 + 1200.61i −0.107209 + 0.0642751i
\(705\) −1284.69 −0.0686304
\(706\) 10417.9 7569.08i 0.555360 0.403493i
\(707\) −2441.50 7514.16i −0.129875 0.399716i
\(708\) 158.143 486.714i 0.00839460 0.0258359i
\(709\) −9818.78 7133.76i −0.520101 0.377876i 0.296541 0.955020i \(-0.404167\pi\)
−0.816642 + 0.577144i \(0.804167\pi\)
\(710\) −4584.37 3330.74i −0.242321 0.176057i
\(711\) 5885.61 18114.0i 0.310446 0.955456i
\(712\) −2686.15 8267.13i −0.141387 0.435146i
\(713\) 7824.51 5684.84i 0.410982 0.298596i
\(714\) 347.583 0.0182185
\(715\) 575.322 + 50.9004i 0.0300921 + 0.00266233i
\(716\) 2048.26 0.106910
\(717\) 1383.29 1005.02i 0.0720503 0.0523476i
\(718\) −644.716 1984.23i −0.0335106 0.103135i
\(719\) −5079.11 + 15631.9i −0.263447 + 0.810808i 0.728600 + 0.684940i \(0.240172\pi\)
−0.992047 + 0.125868i \(0.959828\pi\)
\(720\) −1689.35 1227.39i −0.0874424 0.0635306i
\(721\) 6310.49 + 4584.84i 0.325957 + 0.236822i
\(722\) 2901.71 8930.54i 0.149571 0.460333i
\(723\) 1718.42 + 5288.75i 0.0883938 + 0.272048i
\(724\) −92.2208 + 67.0023i −0.00473392 + 0.00343939i
\(725\) −1051.85 −0.0538825
\(726\) 1748.82 + 1818.05i 0.0894007 + 0.0929398i
\(727\) −25394.7 −1.29551 −0.647757 0.761847i \(-0.724293\pi\)
−0.647757 + 0.761847i \(0.724293\pi\)
\(728\) −181.212 + 131.658i −0.00922550 + 0.00670272i
\(729\) −4901.98 15086.7i −0.249046 0.766486i
\(730\) −2150.17 + 6617.55i −0.109016 + 0.335516i
\(731\) −6184.91 4493.60i −0.312937 0.227362i
\(732\) −232.572 168.974i −0.0117433 0.00853203i
\(733\) −4872.60 + 14996.3i −0.245530 + 0.755664i 0.750019 + 0.661417i \(0.230044\pi\)
−0.995549 + 0.0942474i \(0.969956\pi\)
\(734\) −4239.74 13048.6i −0.213204 0.656174i
\(735\) −1015.07 + 737.494i −0.0509409 + 0.0370107i
\(736\) 1407.37 0.0704840
\(737\) 4123.31 + 364.801i 0.206084 + 0.0182329i
\(738\) 3765.18 0.187802
\(739\) −30681.4 + 22291.3i −1.52724 + 1.10961i −0.569497 + 0.821993i \(0.692862\pi\)
−0.957746 + 0.287614i \(0.907138\pi\)
\(740\) 369.656 + 1137.68i 0.0183633 + 0.0565163i
\(741\) 43.1317 132.746i 0.00213830 0.00658102i
\(742\) 8146.41 + 5918.71i 0.403051 + 0.292834i
\(743\) −10591.5 7695.18i −0.522967 0.379958i 0.294753 0.955573i \(-0.404763\pi\)
−0.817721 + 0.575615i \(0.804763\pi\)
\(744\) −515.183 + 1585.57i −0.0253864 + 0.0781314i
\(745\) −3058.55 9413.26i −0.150412 0.462920i
\(746\) −16055.1 + 11664.7i −0.787963 + 0.572489i
\(747\) −29819.0 −1.46053
\(748\) 2595.71 1556.21i 0.126883 0.0760706i
\(749\) −14174.0 −0.691463
\(750\) −191.666 + 139.253i −0.00933152 + 0.00677975i
\(751\) 9043.08 + 27831.8i 0.439397 + 1.35232i 0.888513 + 0.458851i \(0.151739\pi\)
−0.449117 + 0.893473i \(0.648261\pi\)
\(752\) 1340.56 4125.81i 0.0650068 0.200070i
\(753\) 439.645 + 319.421i 0.0212770 + 0.0154586i
\(754\) 215.550 + 156.606i 0.0104110 + 0.00756400i
\(755\) −621.369 + 1912.38i −0.0299522 + 0.0921835i
\(756\) −550.040 1692.85i −0.0264613 0.0814396i
\(757\) −4453.65 + 3235.77i −0.213832 + 0.155358i −0.689546 0.724242i \(-0.742190\pi\)
0.475714 + 0.879600i \(0.342190\pi\)
\(758\) 11637.1 0.557622
\(759\) −340.596 1481.89i −0.0162883 0.0708683i
\(760\) −1860.73 −0.0888100
\(761\) −6583.24 + 4783.00i −0.313590 + 0.227837i −0.733436 0.679759i \(-0.762084\pi\)
0.419845 + 0.907596i \(0.362084\pi\)
\(762\) −1228.36 3780.50i −0.0583973 0.179728i
\(763\) 4802.69 14781.2i 0.227876 0.701329i
\(764\) −4480.09 3254.97i −0.212152 0.154137i
\(765\) 2189.72 + 1590.92i 0.103489 + 0.0751895i
\(766\) −377.223 + 1160.97i −0.0177932 + 0.0547620i
\(767\) −132.096 406.548i −0.00621863 0.0191390i
\(768\) −196.266 + 142.595i −0.00922152 + 0.00669983i
\(769\) 16999.2 0.797150 0.398575 0.917136i \(-0.369505\pi\)
0.398575 + 0.917136i \(0.369505\pi\)
\(770\) 1263.45 2968.45i 0.0591321 0.138929i
\(771\) 2488.66 0.116248
\(772\) −2977.74 + 2163.45i −0.138823 + 0.100861i
\(773\) 7916.96 + 24365.9i 0.368374 + 1.13374i 0.947841 + 0.318743i \(0.103261\pi\)
−0.579467 + 0.814996i \(0.696739\pi\)
\(774\) −5946.67 + 18302.0i −0.276161 + 0.849936i
\(775\) −4447.74 3231.47i −0.206152 0.149778i
\(776\) −1490.42 1082.86i −0.0689472 0.0500931i
\(777\) −154.885 + 476.686i −0.00715117 + 0.0220090i
\(778\) 7435.14 + 22883.0i 0.342625 + 1.05449i
\(779\) 2714.33 1972.07i 0.124841 0.0907020i
\(780\) 60.0097 0.00275473
\(781\) −15589.1 13578.2i −0.714241 0.622106i
\(782\) −1824.21 −0.0834189
\(783\) −1712.89 + 1244.49i −0.0781785 + 0.0568000i
\(784\) −1309.26 4029.48i −0.0596419 0.183559i
\(785\) −5583.07 + 17182.9i −0.253845 + 0.781255i
\(786\) −514.556 373.847i −0.0233507 0.0169652i
\(787\) −9255.32 6724.38i −0.419208 0.304572i 0.358111 0.933679i \(-0.383421\pi\)
−0.777319 + 0.629107i \(0.783421\pi\)
\(788\) 4404.40 13555.3i 0.199112 0.612803i
\(789\) 410.887 + 1264.58i 0.0185399 + 0.0570598i
\(790\) 5903.28 4288.98i 0.265860 0.193158i
\(791\) 2300.09 0.103390
\(792\) −5744.64 5003.60i −0.257736 0.224489i
\(793\) −240.126 −0.0107530
\(794\) 988.503 718.190i 0.0441822 0.0321003i
\(795\) −833.649 2565.71i −0.0371905 0.114461i
\(796\) −1698.45 + 5227.28i −0.0756279 + 0.232759i
\(797\) −14158.6 10286.8i −0.629263 0.457186i 0.226882 0.973922i \(-0.427147\pi\)
−0.856145 + 0.516736i \(0.827147\pi\)
\(798\) −630.742 458.261i −0.0279800 0.0203286i
\(799\) −1737.61 + 5347.82i −0.0769366 + 0.236786i
\(800\) −247.214 760.845i −0.0109254 0.0336249i
\(801\) 22945.1 16670.6i 1.01214 0.735362i
\(802\) −12682.5 −0.558397
\(803\) −9941.59 + 23357.5i −0.436900 + 1.02648i
\(804\) 430.087 0.0188657
\(805\) −1573.18 + 1142.98i −0.0688788 + 0.0500434i
\(806\) 430.328 + 1324.41i 0.0188060 + 0.0578790i
\(807\) 2380.87 7327.57i 0.103855 0.319631i
\(808\) −5782.65 4201.34i −0.251773 0.182924i
\(809\) 9687.92 + 7038.68i 0.421025 + 0.305892i 0.778050 0.628202i \(-0.216209\pi\)
−0.357025 + 0.934095i \(0.616209\pi\)
\(810\) 2030.44 6249.07i 0.0880772 0.271074i
\(811\) 860.778 + 2649.20i 0.0372700 + 0.114705i 0.967961 0.251102i \(-0.0807929\pi\)
−0.930691 + 0.365807i \(0.880793\pi\)
\(812\) 1204.00 874.759i 0.0520347 0.0378054i
\(813\) 583.051 0.0251519
\(814\) 977.576 + 4253.30i 0.0420934 + 0.183142i
\(815\) −18384.6 −0.790163
\(816\) 254.397 184.830i 0.0109138 0.00792935i
\(817\) 5298.99 + 16308.6i 0.226913 + 0.698368i
\(818\) 5288.84 16277.4i 0.226063 0.695752i
\(819\) −591.249 429.568i −0.0252258 0.0183276i
\(820\) 1167.00 + 847.873i 0.0496992 + 0.0361085i
\(821\) −9464.20 + 29127.8i −0.402318 + 1.23821i 0.520797 + 0.853681i \(0.325635\pi\)
−0.923114 + 0.384526i \(0.874365\pi\)
\(822\) −259.531 798.756i −0.0110124 0.0338927i
\(823\) −23238.3 + 16883.6i −0.984248 + 0.715098i −0.958654 0.284574i \(-0.908148\pi\)
−0.0255942 + 0.999672i \(0.508148\pi\)
\(824\) 7056.69 0.298339
\(825\) −741.303 + 444.435i −0.0312835 + 0.0187554i
\(826\) −2387.73 −0.100581
\(827\) 5232.96 3801.97i 0.220034 0.159864i −0.472308 0.881433i \(-0.656579\pi\)
0.692342 + 0.721570i \(0.256579\pi\)
\(828\) 1418.97 + 4367.14i 0.0595562 + 0.183295i
\(829\) −13587.2 + 41817.2i −0.569245 + 1.75196i 0.0857437 + 0.996317i \(0.472673\pi\)
−0.654989 + 0.755639i \(0.727327\pi\)
\(830\) −9242.24 6714.88i −0.386509 0.280815i
\(831\) −2325.56 1689.62i −0.0970790 0.0705320i
\(832\) −62.6192 + 192.722i −0.00260929 + 0.00803057i
\(833\) 1697.04 + 5222.96i 0.0705871 + 0.217245i
\(834\) −3316.75 + 2409.76i −0.137709 + 0.100052i
\(835\) 1875.21 0.0777176
\(836\) −6762.05 598.259i −0.279749 0.0247502i
\(837\) −11066.2 −0.456995
\(838\) 15922.2 11568.1i 0.656352 0.476868i
\(839\) 1811.48 + 5575.18i 0.0745404 + 0.229412i 0.981384 0.192055i \(-0.0615153\pi\)
−0.906844 + 0.421467i \(0.861515\pi\)
\(840\) 103.582 318.792i 0.00425466 0.0130945i
\(841\) 18299.0 + 13295.0i 0.750296 + 0.545122i
\(842\) −7842.79 5698.12i −0.320998 0.233219i
\(843\) 1832.11 5638.66i 0.0748532 0.230374i
\(844\) −5758.71 17723.5i −0.234861 0.722828i
\(845\) −8846.50 + 6427.36i −0.360152 + 0.261666i
\(846\) 14154.2 0.575216
\(847\) 5545.92 10381.4i 0.224982 0.421144i
\(848\) 9109.70 0.368901
\(849\) −798.928 + 580.455i −0.0322958 + 0.0234643i
\(850\) 320.435 + 986.198i 0.0129304 + 0.0397956i
\(851\) 812.877 2501.78i 0.0327439 0.100775i
\(852\) −1737.75 1262.55i −0.0698758 0.0507677i
\(853\) 25040.7 + 18193.2i 1.00513 + 0.730272i 0.963183 0.268848i \(-0.0866429\pi\)
0.0419502 + 0.999120i \(0.486643\pi\)
\(854\) −414.477 + 1275.63i −0.0166079 + 0.0511137i
\(855\) −1876.07 5773.94i −0.0750410 0.230953i
\(856\) −10374.0 + 7537.13i −0.414223 + 0.300951i
\(857\) 26330.4 1.04951 0.524754 0.851254i \(-0.324157\pi\)
0.524754 + 0.851254i \(0.324157\pi\)
\(858\) 218.081 + 19.2943i 0.00867734 + 0.000767710i
\(859\) −48579.7 −1.92959 −0.964796 0.263000i \(-0.915288\pi\)
−0.964796 + 0.263000i \(0.915288\pi\)
\(860\) −5964.53 + 4333.48i −0.236498 + 0.171826i
\(861\) 186.769 + 574.817i 0.00739267 + 0.0227523i
\(862\) −6778.93 + 20863.4i −0.267855 + 0.824374i
\(863\) 9185.20 + 6673.44i 0.362304 + 0.263229i 0.754012 0.656860i \(-0.228116\pi\)
−0.391709 + 0.920089i \(0.628116\pi\)
\(864\) −1302.76 946.512i −0.0512973 0.0372697i
\(865\) −2999.73 + 9232.21i −0.117912 + 0.362896i
\(866\) −3797.51 11687.5i −0.149012 0.458613i
\(867\) 3436.87 2497.03i 0.134628 0.0978127i
\(868\) 7778.51 0.304170
\(869\) 22832.0 13688.5i 0.891282 0.534352i
\(870\) −398.714 −0.0155376
\(871\) 290.638 211.161i 0.0113064 0.00821460i
\(872\) −4344.90 13372.2i −0.168735 0.519313i
\(873\) 1857.45 5716.64i 0.0720105 0.221626i
\(874\) 3310.30 + 2405.07i 0.128115 + 0.0930810i
\(875\) 894.257 + 649.716i 0.0345502 + 0.0251022i
\(876\) −815.042 + 2508.44i −0.0314357 + 0.0967492i
\(877\) 6716.63 + 20671.7i 0.258614 + 0.795932i 0.993096 + 0.117304i \(0.0374252\pi\)
−0.734482 + 0.678628i \(0.762575\pi\)
\(878\) 20634.4 14991.7i 0.793139 0.576249i
\(879\) 2307.83 0.0885563
\(880\) −653.771 2844.47i −0.0250439 0.108962i
\(881\) 20102.9 0.768769 0.384384 0.923173i \(-0.374414\pi\)
0.384384 + 0.923173i \(0.374414\pi\)
\(882\) 11183.7 8125.41i 0.426954 0.310200i
\(883\) 13265.2 + 40826.2i 0.505562 + 1.55596i 0.799825 + 0.600234i \(0.204926\pi\)
−0.294263 + 0.955724i \(0.595074\pi\)
\(884\) 81.1661 249.804i 0.00308814 0.00950431i
\(885\) 517.530 + 376.007i 0.0196571 + 0.0142817i
\(886\) −12130.7 8813.50i −0.459978 0.334193i
\(887\) 5201.22 16007.7i 0.196888 0.605960i −0.803061 0.595897i \(-0.796797\pi\)
0.999949 0.0100633i \(-0.00320330\pi\)
\(888\) 140.121 + 431.249i 0.00529523 + 0.0162970i
\(889\) −15004.4 + 10901.3i −0.566064 + 0.411270i
\(890\) 10865.7 0.409236
\(891\) 9388.01 22056.9i 0.352986 0.829329i
\(892\) 10419.2 0.391099
\(893\) 10203.8 7413.52i 0.382372 0.277809i
\(894\) −1159.37 3568.18i −0.0433727 0.133488i
\(895\) −791.186 + 2435.02i −0.0295491 + 0.0909427i
\(896\) 915.719 + 665.309i 0.0341429 + 0.0248063i
\(897\) −106.760 77.5653i −0.00397391 0.00288721i
\(898\) 8589.61 26436.1i 0.319197 0.982388i
\(899\) −2859.17 8799.61i −0.106072 0.326455i
\(900\) 2111.69 1534.23i 0.0782109 0.0568235i
\(901\) −11807.9 −0.436601
\(902\) 3968.37 + 3456.46i 0.146488 + 0.127592i
\(903\) −3089.08 −0.113841
\(904\) 1683.44 1223.09i 0.0619362 0.0449993i
\(905\) −44.0315 135.515i −0.00161730 0.00497754i
\(906\) −235.535 + 724.904i −0.00863702 + 0.0265820i
\(907\) −17973.7 13058.7i −0.658001 0.478066i 0.207986 0.978132i \(-0.433309\pi\)
−0.865987 + 0.500066i \(0.833309\pi\)
\(908\) −17137.0 12450.7i −0.626333 0.455057i
\(909\) 7206.67 22179.9i 0.262960 0.809306i
\(910\) −86.5211 266.284i −0.00315181 0.00970027i
\(911\) 33409.8 24273.7i 1.21506 0.882791i 0.219377 0.975640i \(-0.429597\pi\)
0.995680 + 0.0928491i \(0.0295974\pi\)
\(912\) −705.325 −0.0256093
\(913\) −31428.2 27374.0i −1.13923 0.992277i
\(914\) −11351.7 −0.410812
\(915\) 290.715 211.217i 0.0105036 0.00763128i
\(916\) 6271.54 + 19301.8i 0.226220 + 0.696234i
\(917\) −917.013 + 2822.28i −0.0330234 + 0.101635i
\(918\) 1688.62 + 1226.86i 0.0607112 + 0.0441092i
\(919\) 12281.7 + 8923.19i 0.440845 + 0.320293i 0.785971 0.618264i \(-0.212164\pi\)
−0.345126 + 0.938557i \(0.612164\pi\)
\(920\) −543.625 + 1673.11i −0.0194813 + 0.0599573i
\(921\) 594.334 + 1829.17i 0.0212638 + 0.0654433i
\(922\) −29166.5 + 21190.7i −1.04181 + 0.756918i
\(923\) −1794.18 −0.0639829
\(924\) 478.924 1125.22i 0.0170513 0.0400616i
\(925\) −1495.29 −0.0531511
\(926\) 6392.36 4644.32i 0.226853 0.164818i
\(927\) 7114.87 + 21897.3i 0.252085 + 0.775838i
\(928\) 416.052 1280.48i 0.0147172 0.0452949i
\(929\) −38956.8 28303.8i −1.37581 0.999587i −0.997258 0.0740084i \(-0.976421\pi\)
−0.378556 0.925579i \(-0.623579\pi\)
\(930\) −1685.96 1224.92i −0.0594459 0.0431900i
\(931\) 3806.52 11715.3i 0.134000 0.412408i
\(932\) −5895.91 18145.8i −0.207218 0.637751i
\(933\) −2333.44 + 1695.34i −0.0818793 + 0.0594888i
\(934\) 23241.8 0.814234
\(935\) 847.409 + 3686.96i 0.0296398 + 0.128959i
\(936\) −661.162 −0.0230884
\(937\) 34360.7 24964.5i 1.19799 0.870391i 0.203905 0.978991i \(-0.434637\pi\)
0.994086 + 0.108600i \(0.0346368\pi\)
\(938\) −620.093 1908.45i −0.0215850 0.0664319i
\(939\) 669.997 2062.04i 0.0232849 0.0716635i
\(940\) 4387.03 + 3187.37i 0.152223 + 0.110596i
\(941\) −18047.4 13112.2i −0.625215 0.454245i 0.229524 0.973303i \(-0.426283\pi\)
−0.854739 + 0.519058i \(0.826283\pi\)
\(942\) −2116.31 + 6513.34i −0.0731988 + 0.225283i
\(943\) −980.216 3016.79i −0.0338496 0.104179i
\(944\) −1747.59 + 1269.70i −0.0602532 + 0.0437765i
\(945\) 2224.96 0.0765904
\(946\) −23068.9 + 13830.6i −0.792850 + 0.475339i
\(947\) 11025.1 0.378319 0.189160 0.981946i \(-0.439424\pi\)
0.189160 + 0.981946i \(0.439424\pi\)
\(948\) 2237.69 1625.78i 0.0766633 0.0556991i
\(949\) 680.798 + 2095.28i 0.0232873 + 0.0716709i
\(950\) 718.745 2212.07i 0.0245465 0.0755463i
\(951\) −3185.42 2314.35i −0.108617 0.0789146i
\(952\) −1186.94 862.365i −0.0404087 0.0293586i
\(953\) −15810.9 + 48661.0i −0.537425 + 1.65402i 0.200925 + 0.979607i \(0.435605\pi\)
−0.738350 + 0.674418i \(0.764395\pi\)
\(954\) 9184.80 + 28267.9i 0.311707 + 0.959336i
\(955\) 5600.11 4068.72i 0.189754 0.137865i
\(956\) −7217.22 −0.244165
\(957\) −1448.96 128.194i −0.0489429 0.00433012i
\(958\) 32702.7 1.10290
\(959\) −3170.17 + 2303.27i −0.106747 + 0.0775562i
\(960\) −93.7085 288.405i −0.00315045 0.00969608i
\(961\) 5738.06 17659.9i 0.192611 0.592794i
\(962\) 306.420 + 222.627i 0.0102696 + 0.00746133i
\(963\) −33847.6 24591.7i −1.13263 0.822905i
\(964\) 7253.42 22323.7i 0.242341 0.745849i
\(965\) −1421.74 4375.68i −0.0474275 0.145967i
\(966\) −596.329 + 433.259i −0.0198619 + 0.0144305i
\(967\) −5302.68 −0.176342 −0.0881710 0.996105i \(-0.528102\pi\)
−0.0881710 + 0.996105i \(0.528102\pi\)
\(968\) −1461.31 10547.2i −0.0485211 0.350208i
\(969\) 914.233 0.0303090
\(970\) 1863.03 1353.57i 0.0616683 0.0448046i
\(971\) 15769.3 + 48532.9i 0.521175 + 1.60401i 0.771757 + 0.635917i \(0.219378\pi\)
−0.250582 + 0.968095i \(0.580622\pi\)
\(972\) 2449.09 7537.54i 0.0808176 0.248731i
\(973\) 15475.0 + 11243.2i 0.509872 + 0.370444i
\(974\) −16592.5 12055.1i −0.545849 0.396583i
\(975\) −23.1800 + 71.3408i −0.000761390 + 0.00234332i
\(976\) 374.969 + 1154.04i 0.0122976 + 0.0378482i
\(977\) −4157.57 + 3020.65i −0.136144 + 0.0989141i −0.653773 0.756691i \(-0.726815\pi\)
0.517629 + 0.855605i \(0.326815\pi\)
\(978\) −6968.83 −0.227851
\(979\) 39487.0 + 3493.53i 1.28908 + 0.114049i
\(980\) 5296.06 0.172629
\(981\) 37114.0 26964.9i 1.20791 0.877598i
\(982\) 7568.11 + 23292.2i 0.245935 + 0.756910i
\(983\) 16459.2 50656.1i 0.534045 1.64362i −0.211659 0.977344i \(-0.567887\pi\)
0.745704 0.666277i \(-0.232113\pi\)
\(984\) 442.361 + 321.394i 0.0143312 + 0.0104123i
\(985\) 14413.6 + 10472.1i 0.466248 + 0.338749i
\(986\) −539.281 + 1659.74i −0.0174181 + 0.0536073i
\(987\) 702.113 + 2160.88i 0.0226429 + 0.0696875i
\(988\) −476.634 + 346.295i −0.0153479 + 0.0111509i
\(989\) 16212.3 0.521256
\(990\) 8167.37 4896.60i 0.262198 0.157196i
\(991\) −26857.5 −0.860904 −0.430452 0.902613i \(-0.641646\pi\)
−0.430452 + 0.902613i \(0.641646\pi\)
\(992\) 5693.11 4136.29i 0.182214 0.132386i
\(993\) 782.699 + 2408.90i 0.0250133 + 0.0769830i
\(994\) −3096.91 + 9531.31i −0.0988210 + 0.304140i
\(995\) −5558.24 4038.30i −0.177093 0.128666i
\(996\) −3503.35 2545.34i −0.111454 0.0809759i
\(997\) 2090.10 6432.66i 0.0663932 0.204337i −0.912356 0.409397i \(-0.865739\pi\)
0.978749 + 0.205060i \(0.0657390\pi\)
\(998\) 12088.1 + 37203.3i 0.383409 + 1.18001i
\(999\) −2435.01 + 1769.14i −0.0771173 + 0.0560290i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 110.4.g.c.91.2 yes 12
11.2 odd 10 1210.4.a.bg.1.4 6
11.4 even 5 inner 110.4.g.c.81.2 12
11.9 even 5 1210.4.a.bd.1.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
110.4.g.c.81.2 12 11.4 even 5 inner
110.4.g.c.91.2 yes 12 1.1 even 1 trivial
1210.4.a.bd.1.4 6 11.9 even 5
1210.4.a.bg.1.4 6 11.2 odd 10