Properties

Label 1092.2.q.d.625.1
Level $1092$
Weight $2$
Character 1092.625
Analytic conductor $8.720$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1092,2,Mod(625,1092)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1092, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1092.625"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1092 = 2^{2} \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1092.q (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,3,0,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.71966390072\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 625.1
Root \(0.500000 - 0.224437i\) of defining polynomial
Character \(\chi\) \(=\) 1092.625
Dual form 1092.2.q.d.781.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{3} +(-1.84981 + 3.20397i) q^{5} +(1.23855 - 2.33795i) q^{7} +(-0.500000 + 0.866025i) q^{9} +(0.794182 + 1.37556i) q^{11} -1.00000 q^{13} -3.69963 q^{15} +(0.444368 + 0.769668i) q^{17} +(-3.08836 + 5.34920i) q^{19} +(2.64400 - 0.0963576i) q^{21} +(-3.34362 + 5.79133i) q^{23} +(-4.34362 - 7.52338i) q^{25} -1.00000 q^{27} +5.87636 q^{29} +(-0.761450 - 1.31887i) q^{31} +(-0.794182 + 1.37556i) q^{33} +(5.19963 + 8.29305i) q^{35} +(1.55563 - 2.69443i) q^{37} +(-0.500000 - 0.866025i) q^{39} -11.4981 q^{41} -5.06546 q^{43} +(-1.84981 - 3.20397i) q^{45} +(-3.00000 + 5.19615i) q^{47} +(-3.93199 - 5.79133i) q^{49} +(-0.444368 + 0.769668i) q^{51} +(0.382546 + 0.662589i) q^{53} -5.87636 q^{55} -6.17673 q^{57} +(-2.73855 - 4.74331i) q^{59} +(0.0327319 - 0.0566933i) q^{61} +(1.40545 + 2.24159i) q^{63} +(1.84981 - 3.20397i) q^{65} +(-5.30470 - 9.18801i) q^{67} -6.68725 q^{69} -5.09888 q^{71} +(4.52654 + 7.84020i) q^{73} +(4.34362 - 7.52338i) q^{75} +(4.19963 - 0.153051i) q^{77} +(-2.82691 + 4.89636i) q^{79} +(-0.500000 - 0.866025i) q^{81} +13.1643 q^{83} -3.28799 q^{85} +(2.93818 + 5.08907i) q^{87} +(-3.90545 + 6.76443i) q^{89} +(-1.23855 + 2.33795i) q^{91} +(0.761450 - 1.31887i) q^{93} +(-11.4258 - 19.7901i) q^{95} +1.11126 q^{97} -1.58836 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{3} - 5 q^{5} + 2 q^{7} - 3 q^{9} - q^{11} - 6 q^{13} - 10 q^{15} + 3 q^{17} - 7 q^{19} + 4 q^{21} + 4 q^{23} - 2 q^{25} - 6 q^{27} - 10 q^{31} + q^{33} + 19 q^{35} + 9 q^{37} - 3 q^{39} - 8 q^{41}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1092\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(547\) \(925\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i
\(4\) 0 0
\(5\) −1.84981 + 3.20397i −0.827262 + 1.43286i 0.0729162 + 0.997338i \(0.476769\pi\)
−0.900178 + 0.435522i \(0.856564\pi\)
\(6\) 0 0
\(7\) 1.23855 2.33795i 0.468128 0.883661i
\(8\) 0 0
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) 0 0
\(11\) 0.794182 + 1.37556i 0.239455 + 0.414748i 0.960558 0.278080i \(-0.0896979\pi\)
−0.721103 + 0.692828i \(0.756365\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) −3.69963 −0.955240
\(16\) 0 0
\(17\) 0.444368 + 0.769668i 0.107775 + 0.186672i 0.914869 0.403752i \(-0.132294\pi\)
−0.807094 + 0.590424i \(0.798961\pi\)
\(18\) 0 0
\(19\) −3.08836 + 5.34920i −0.708519 + 1.22719i 0.256887 + 0.966441i \(0.417303\pi\)
−0.965406 + 0.260750i \(0.916030\pi\)
\(20\) 0 0
\(21\) 2.64400 0.0963576i 0.576967 0.0210269i
\(22\) 0 0
\(23\) −3.34362 + 5.79133i −0.697194 + 1.20758i 0.272242 + 0.962229i \(0.412235\pi\)
−0.969436 + 0.245346i \(0.921098\pi\)
\(24\) 0 0
\(25\) −4.34362 7.52338i −0.868725 1.50468i
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 5.87636 1.09121 0.545606 0.838042i \(-0.316300\pi\)
0.545606 + 0.838042i \(0.316300\pi\)
\(30\) 0 0
\(31\) −0.761450 1.31887i −0.136760 0.236876i 0.789508 0.613740i \(-0.210336\pi\)
−0.926269 + 0.376864i \(0.877002\pi\)
\(32\) 0 0
\(33\) −0.794182 + 1.37556i −0.138249 + 0.239455i
\(34\) 0 0
\(35\) 5.19963 + 8.29305i 0.878898 + 1.40178i
\(36\) 0 0
\(37\) 1.55563 2.69443i 0.255744 0.442962i −0.709353 0.704853i \(-0.751013\pi\)
0.965097 + 0.261891i \(0.0843461\pi\)
\(38\) 0 0
\(39\) −0.500000 0.866025i −0.0800641 0.138675i
\(40\) 0 0
\(41\) −11.4981 −1.79571 −0.897854 0.440293i \(-0.854874\pi\)
−0.897854 + 0.440293i \(0.854874\pi\)
\(42\) 0 0
\(43\) −5.06546 −0.772476 −0.386238 0.922399i \(-0.626226\pi\)
−0.386238 + 0.922399i \(0.626226\pi\)
\(44\) 0 0
\(45\) −1.84981 3.20397i −0.275754 0.477620i
\(46\) 0 0
\(47\) −3.00000 + 5.19615i −0.437595 + 0.757937i −0.997503 0.0706177i \(-0.977503\pi\)
0.559908 + 0.828554i \(0.310836\pi\)
\(48\) 0 0
\(49\) −3.93199 5.79133i −0.561713 0.827332i
\(50\) 0 0
\(51\) −0.444368 + 0.769668i −0.0622240 + 0.107775i
\(52\) 0 0
\(53\) 0.382546 + 0.662589i 0.0525467 + 0.0910136i 0.891102 0.453802i \(-0.149933\pi\)
−0.838556 + 0.544816i \(0.816599\pi\)
\(54\) 0 0
\(55\) −5.87636 −0.792368
\(56\) 0 0
\(57\) −6.17673 −0.818128
\(58\) 0 0
\(59\) −2.73855 4.74331i −0.356529 0.617526i 0.630850 0.775905i \(-0.282707\pi\)
−0.987378 + 0.158379i \(0.949373\pi\)
\(60\) 0 0
\(61\) 0.0327319 0.0566933i 0.00419089 0.00725884i −0.863922 0.503625i \(-0.831999\pi\)
0.868113 + 0.496366i \(0.165333\pi\)
\(62\) 0 0
\(63\) 1.40545 + 2.24159i 0.177070 + 0.282414i
\(64\) 0 0
\(65\) 1.84981 3.20397i 0.229441 0.397404i
\(66\) 0 0
\(67\) −5.30470 9.18801i −0.648073 1.12249i −0.983583 0.180458i \(-0.942242\pi\)
0.335510 0.942037i \(-0.391091\pi\)
\(68\) 0 0
\(69\) −6.68725 −0.805050
\(70\) 0 0
\(71\) −5.09888 −0.605126 −0.302563 0.953129i \(-0.597842\pi\)
−0.302563 + 0.953129i \(0.597842\pi\)
\(72\) 0 0
\(73\) 4.52654 + 7.84020i 0.529792 + 0.917626i 0.999396 + 0.0347491i \(0.0110632\pi\)
−0.469604 + 0.882877i \(0.655603\pi\)
\(74\) 0 0
\(75\) 4.34362 7.52338i 0.501559 0.868725i
\(76\) 0 0
\(77\) 4.19963 0.153051i 0.478592 0.0174418i
\(78\) 0 0
\(79\) −2.82691 + 4.89636i −0.318053 + 0.550883i −0.980082 0.198595i \(-0.936362\pi\)
0.662029 + 0.749478i \(0.269696\pi\)
\(80\) 0 0
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 0 0
\(83\) 13.1643 1.44497 0.722487 0.691384i \(-0.242999\pi\)
0.722487 + 0.691384i \(0.242999\pi\)
\(84\) 0 0
\(85\) −3.28799 −0.356633
\(86\) 0 0
\(87\) 2.93818 + 5.08907i 0.315006 + 0.545606i
\(88\) 0 0
\(89\) −3.90545 + 6.76443i −0.413976 + 0.717028i −0.995320 0.0966297i \(-0.969194\pi\)
0.581344 + 0.813658i \(0.302527\pi\)
\(90\) 0 0
\(91\) −1.23855 + 2.33795i −0.129835 + 0.245083i
\(92\) 0 0
\(93\) 0.761450 1.31887i 0.0789587 0.136760i
\(94\) 0 0
\(95\) −11.4258 19.7901i −1.17226 2.03042i
\(96\) 0 0
\(97\) 1.11126 0.112832 0.0564159 0.998407i \(-0.482033\pi\)
0.0564159 + 0.998407i \(0.482033\pi\)
\(98\) 0 0
\(99\) −1.58836 −0.159637
\(100\) 0 0
\(101\) 9.24907 + 16.0199i 0.920317 + 1.59404i 0.798925 + 0.601431i \(0.205403\pi\)
0.121392 + 0.992605i \(0.461264\pi\)
\(102\) 0 0
\(103\) −9.48762 + 16.4330i −0.934843 + 1.61920i −0.159929 + 0.987128i \(0.551127\pi\)
−0.774914 + 0.632067i \(0.782207\pi\)
\(104\) 0 0
\(105\) −4.58217 + 8.64953i −0.447174 + 0.844108i
\(106\) 0 0
\(107\) 10.1087 17.5088i 0.977246 1.69264i 0.304933 0.952374i \(-0.401366\pi\)
0.672313 0.740267i \(-0.265301\pi\)
\(108\) 0 0
\(109\) 5.78180 + 10.0144i 0.553796 + 0.959203i 0.997996 + 0.0632755i \(0.0201547\pi\)
−0.444200 + 0.895928i \(0.646512\pi\)
\(110\) 0 0
\(111\) 3.11126 0.295308
\(112\) 0 0
\(113\) 16.8182 1.58212 0.791060 0.611738i \(-0.209529\pi\)
0.791060 + 0.611738i \(0.209529\pi\)
\(114\) 0 0
\(115\) −12.3702 21.4258i −1.15352 1.99796i
\(116\) 0 0
\(117\) 0.500000 0.866025i 0.0462250 0.0800641i
\(118\) 0 0
\(119\) 2.34981 0.0856364i 0.215407 0.00785028i
\(120\) 0 0
\(121\) 4.23855 7.34138i 0.385323 0.667399i
\(122\) 0 0
\(123\) −5.74907 9.95768i −0.518376 0.897854i
\(124\) 0 0
\(125\) 13.6414 1.22013
\(126\) 0 0
\(127\) 7.78613 0.690908 0.345454 0.938436i \(-0.387725\pi\)
0.345454 + 0.938436i \(0.387725\pi\)
\(128\) 0 0
\(129\) −2.53273 4.38682i −0.222995 0.386238i
\(130\) 0 0
\(131\) −1.33310 + 2.30900i −0.116474 + 0.201739i −0.918368 0.395728i \(-0.870492\pi\)
0.801894 + 0.597466i \(0.203826\pi\)
\(132\) 0 0
\(133\) 8.68106 + 13.8457i 0.752743 + 1.20057i
\(134\) 0 0
\(135\) 1.84981 3.20397i 0.159207 0.275754i
\(136\) 0 0
\(137\) 3.04325 + 5.27107i 0.260003 + 0.450338i 0.966242 0.257635i \(-0.0829432\pi\)
−0.706240 + 0.707973i \(0.749610\pi\)
\(138\) 0 0
\(139\) 12.0989 1.02621 0.513107 0.858325i \(-0.328494\pi\)
0.513107 + 0.858325i \(0.328494\pi\)
\(140\) 0 0
\(141\) −6.00000 −0.505291
\(142\) 0 0
\(143\) −0.794182 1.37556i −0.0664128 0.115030i
\(144\) 0 0
\(145\) −10.8702 + 18.8277i −0.902718 + 1.56355i
\(146\) 0 0
\(147\) 3.04944 6.30087i 0.251514 0.519687i
\(148\) 0 0
\(149\) −3.68725 + 6.38650i −0.302071 + 0.523203i −0.976605 0.215041i \(-0.931011\pi\)
0.674534 + 0.738244i \(0.264345\pi\)
\(150\) 0 0
\(151\) 11.9752 + 20.7417i 0.974531 + 1.68794i 0.681473 + 0.731843i \(0.261340\pi\)
0.293058 + 0.956095i \(0.405327\pi\)
\(152\) 0 0
\(153\) −0.888736 −0.0718500
\(154\) 0 0
\(155\) 5.63416 0.452547
\(156\) 0 0
\(157\) −4.24907 7.35961i −0.339113 0.587360i 0.645153 0.764053i \(-0.276793\pi\)
−0.984266 + 0.176693i \(0.943460\pi\)
\(158\) 0 0
\(159\) −0.382546 + 0.662589i −0.0303379 + 0.0525467i
\(160\) 0 0
\(161\) 9.39857 + 14.9901i 0.740711 + 1.18138i
\(162\) 0 0
\(163\) −0.849814 + 1.47192i −0.0665626 + 0.115290i −0.897386 0.441246i \(-0.854537\pi\)
0.830823 + 0.556536i \(0.187870\pi\)
\(164\) 0 0
\(165\) −2.93818 5.08907i −0.228737 0.396184i
\(166\) 0 0
\(167\) 1.82327 0.141089 0.0705445 0.997509i \(-0.477526\pi\)
0.0705445 + 0.997509i \(0.477526\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) −3.08836 5.34920i −0.236173 0.409064i
\(172\) 0 0
\(173\) −3.53342 + 6.12006i −0.268641 + 0.465300i −0.968511 0.248970i \(-0.919908\pi\)
0.699870 + 0.714270i \(0.253241\pi\)
\(174\) 0 0
\(175\) −22.9691 + 0.837082i −1.73630 + 0.0632775i
\(176\) 0 0
\(177\) 2.73855 4.74331i 0.205842 0.356529i
\(178\) 0 0
\(179\) −6.07165 10.5164i −0.453817 0.786034i 0.544803 0.838564i \(-0.316605\pi\)
−0.998619 + 0.0525307i \(0.983271\pi\)
\(180\) 0 0
\(181\) 25.7403 1.91326 0.956632 0.291299i \(-0.0940876\pi\)
0.956632 + 0.291299i \(0.0940876\pi\)
\(182\) 0 0
\(183\) 0.0654638 0.00483923
\(184\) 0 0
\(185\) 5.75526 + 9.96840i 0.423135 + 0.732892i
\(186\) 0 0
\(187\) −0.705818 + 1.22251i −0.0516145 + 0.0893990i
\(188\) 0 0
\(189\) −1.23855 + 2.33795i −0.0900912 + 0.170061i
\(190\) 0 0
\(191\) −4.77197 + 8.26530i −0.345288 + 0.598056i −0.985406 0.170221i \(-0.945552\pi\)
0.640118 + 0.768276i \(0.278885\pi\)
\(192\) 0 0
\(193\) −3.27128 5.66603i −0.235472 0.407849i 0.723938 0.689865i \(-0.242330\pi\)
−0.959410 + 0.282016i \(0.908997\pi\)
\(194\) 0 0
\(195\) 3.69963 0.264936
\(196\) 0 0
\(197\) −5.74543 −0.409345 −0.204672 0.978831i \(-0.565613\pi\)
−0.204672 + 0.978831i \(0.565613\pi\)
\(198\) 0 0
\(199\) −10.2163 17.6952i −0.724217 1.25438i −0.959295 0.282404i \(-0.908868\pi\)
0.235078 0.971976i \(-0.424465\pi\)
\(200\) 0 0
\(201\) 5.30470 9.18801i 0.374165 0.648073i
\(202\) 0 0
\(203\) 7.27816 13.7386i 0.510827 0.964261i
\(204\) 0 0
\(205\) 21.2694 36.8397i 1.48552 2.57300i
\(206\) 0 0
\(207\) −3.34362 5.79133i −0.232398 0.402525i
\(208\) 0 0
\(209\) −9.81089 −0.678634
\(210\) 0 0
\(211\) 4.04580 0.278524 0.139262 0.990256i \(-0.455527\pi\)
0.139262 + 0.990256i \(0.455527\pi\)
\(212\) 0 0
\(213\) −2.54944 4.41576i −0.174685 0.302563i
\(214\) 0 0
\(215\) 9.37017 16.2296i 0.639040 1.10685i
\(216\) 0 0
\(217\) −4.02654 + 0.146743i −0.273339 + 0.00996156i
\(218\) 0 0
\(219\) −4.52654 + 7.84020i −0.305875 + 0.529792i
\(220\) 0 0
\(221\) −0.444368 0.769668i −0.0298914 0.0517735i
\(222\) 0 0
\(223\) −10.2967 −0.689515 −0.344757 0.938692i \(-0.612039\pi\)
−0.344757 + 0.938692i \(0.612039\pi\)
\(224\) 0 0
\(225\) 8.68725 0.579150
\(226\) 0 0
\(227\) 9.16435 + 15.8731i 0.608259 + 1.05354i 0.991527 + 0.129899i \(0.0414652\pi\)
−0.383268 + 0.923637i \(0.625201\pi\)
\(228\) 0 0
\(229\) −7.91164 + 13.7034i −0.522816 + 0.905543i 0.476832 + 0.878995i \(0.341785\pi\)
−0.999648 + 0.0265487i \(0.991548\pi\)
\(230\) 0 0
\(231\) 2.23236 + 3.56046i 0.146879 + 0.234261i
\(232\) 0 0
\(233\) −0.843624 + 1.46120i −0.0552677 + 0.0957264i −0.892336 0.451373i \(-0.850935\pi\)
0.837068 + 0.547099i \(0.184268\pi\)
\(234\) 0 0
\(235\) −11.0989 19.2238i −0.724011 1.25402i
\(236\) 0 0
\(237\) −5.65383 −0.367256
\(238\) 0 0
\(239\) −9.46472 −0.612222 −0.306111 0.951996i \(-0.599028\pi\)
−0.306111 + 0.951996i \(0.599028\pi\)
\(240\) 0 0
\(241\) −7.10439 12.3052i −0.457634 0.792645i 0.541202 0.840893i \(-0.317970\pi\)
−0.998835 + 0.0482480i \(0.984636\pi\)
\(242\) 0 0
\(243\) 0.500000 0.866025i 0.0320750 0.0555556i
\(244\) 0 0
\(245\) 25.8287 1.88510i 1.65013 0.120435i
\(246\) 0 0
\(247\) 3.08836 5.34920i 0.196508 0.340362i
\(248\) 0 0
\(249\) 6.58217 + 11.4007i 0.417128 + 0.722487i
\(250\) 0 0
\(251\) 19.1657 1.20973 0.604865 0.796328i \(-0.293227\pi\)
0.604865 + 0.796328i \(0.293227\pi\)
\(252\) 0 0
\(253\) −10.6218 −0.667786
\(254\) 0 0
\(255\) −1.64400 2.84748i −0.102951 0.178316i
\(256\) 0 0
\(257\) 1.88255 3.26067i 0.117430 0.203395i −0.801319 0.598238i \(-0.795868\pi\)
0.918749 + 0.394843i \(0.129201\pi\)
\(258\) 0 0
\(259\) −4.37271 6.97418i −0.271707 0.433354i
\(260\) 0 0
\(261\) −2.93818 + 5.08907i −0.181869 + 0.315006i
\(262\) 0 0
\(263\) 0.954888 + 1.65392i 0.0588809 + 0.101985i 0.893963 0.448140i \(-0.147913\pi\)
−0.835082 + 0.550125i \(0.814580\pi\)
\(264\) 0 0
\(265\) −2.83056 −0.173880
\(266\) 0 0
\(267\) −7.81089 −0.478019
\(268\) 0 0
\(269\) 9.52723 + 16.5016i 0.580886 + 1.00612i 0.995375 + 0.0960690i \(0.0306269\pi\)
−0.414489 + 0.910054i \(0.636040\pi\)
\(270\) 0 0
\(271\) 11.2040 19.4058i 0.680592 1.17882i −0.294208 0.955741i \(-0.595056\pi\)
0.974800 0.223079i \(-0.0716107\pi\)
\(272\) 0 0
\(273\) −2.64400 + 0.0963576i −0.160022 + 0.00583183i
\(274\) 0 0
\(275\) 6.89926 11.9499i 0.416041 0.720604i
\(276\) 0 0
\(277\) 14.0767 + 24.3815i 0.845785 + 1.46494i 0.884937 + 0.465710i \(0.154201\pi\)
−0.0391522 + 0.999233i \(0.512466\pi\)
\(278\) 0 0
\(279\) 1.52290 0.0911736
\(280\) 0 0
\(281\) −12.0865 −0.721020 −0.360510 0.932755i \(-0.617397\pi\)
−0.360510 + 0.932755i \(0.617397\pi\)
\(282\) 0 0
\(283\) 7.71634 + 13.3651i 0.458689 + 0.794472i 0.998892 0.0470624i \(-0.0149860\pi\)
−0.540203 + 0.841535i \(0.681653\pi\)
\(284\) 0 0
\(285\) 11.4258 19.7901i 0.676806 1.17226i
\(286\) 0 0
\(287\) −14.2410 + 26.8820i −0.840621 + 1.58680i
\(288\) 0 0
\(289\) 8.10507 14.0384i 0.476769 0.825788i
\(290\) 0 0
\(291\) 0.555632 + 0.962383i 0.0325717 + 0.0564159i
\(292\) 0 0
\(293\) 13.4313 0.784665 0.392332 0.919823i \(-0.371668\pi\)
0.392332 + 0.919823i \(0.371668\pi\)
\(294\) 0 0
\(295\) 20.2632 1.17977
\(296\) 0 0
\(297\) −0.794182 1.37556i −0.0460831 0.0798183i
\(298\) 0 0
\(299\) 3.34362 5.79133i 0.193367 0.334921i
\(300\) 0 0
\(301\) −6.27383 + 11.8428i −0.361618 + 0.682607i
\(302\) 0 0
\(303\) −9.24907 + 16.0199i −0.531345 + 0.920317i
\(304\) 0 0
\(305\) 0.121096 + 0.209744i 0.00693393 + 0.0120099i
\(306\) 0 0
\(307\) 4.53528 0.258842 0.129421 0.991590i \(-0.458688\pi\)
0.129421 + 0.991590i \(0.458688\pi\)
\(308\) 0 0
\(309\) −18.9752 −1.07946
\(310\) 0 0
\(311\) −8.00619 13.8671i −0.453989 0.786333i 0.544640 0.838670i \(-0.316666\pi\)
−0.998629 + 0.0523372i \(0.983333\pi\)
\(312\) 0 0
\(313\) 7.64400 13.2398i 0.432064 0.748357i −0.564987 0.825100i \(-0.691119\pi\)
0.997051 + 0.0767428i \(0.0244520\pi\)
\(314\) 0 0
\(315\) −9.78180 + 0.356487i −0.551142 + 0.0200858i
\(316\) 0 0
\(317\) 8.79782 15.2383i 0.494135 0.855867i −0.505842 0.862626i \(-0.668818\pi\)
0.999977 + 0.00675911i \(0.00215151\pi\)
\(318\) 0 0
\(319\) 4.66690 + 8.08330i 0.261296 + 0.452578i
\(320\) 0 0
\(321\) 20.2174 1.12843
\(322\) 0 0
\(323\) −5.48948 −0.305443
\(324\) 0 0
\(325\) 4.34362 + 7.52338i 0.240941 + 0.417322i
\(326\) 0 0
\(327\) −5.78180 + 10.0144i −0.319734 + 0.553796i
\(328\) 0 0
\(329\) 8.43268 + 13.4495i 0.464909 + 0.741497i
\(330\) 0 0
\(331\) −0.806562 + 1.39701i −0.0443326 + 0.0767864i −0.887340 0.461115i \(-0.847449\pi\)
0.843008 + 0.537902i \(0.180783\pi\)
\(332\) 0 0
\(333\) 1.55563 + 2.69443i 0.0852481 + 0.147654i
\(334\) 0 0
\(335\) 39.2509 2.14450
\(336\) 0 0
\(337\) 18.0952 0.985706 0.492853 0.870112i \(-0.335954\pi\)
0.492853 + 0.870112i \(0.335954\pi\)
\(338\) 0 0
\(339\) 8.40909 + 14.5650i 0.456719 + 0.791060i
\(340\) 0 0
\(341\) 1.20946 2.09485i 0.0654959 0.113442i
\(342\) 0 0
\(343\) −18.4098 + 2.01993i −0.994035 + 0.109066i
\(344\) 0 0
\(345\) 12.3702 21.4258i 0.665987 1.15352i
\(346\) 0 0
\(347\) 1.59269 + 2.75863i 0.0855003 + 0.148091i 0.905604 0.424124i \(-0.139418\pi\)
−0.820104 + 0.572215i \(0.806084\pi\)
\(348\) 0 0
\(349\) 31.4327 1.68255 0.841276 0.540605i \(-0.181805\pi\)
0.841276 + 0.540605i \(0.181805\pi\)
\(350\) 0 0
\(351\) 1.00000 0.0533761
\(352\) 0 0
\(353\) 14.3040 + 24.7753i 0.761326 + 1.31866i 0.942167 + 0.335143i \(0.108785\pi\)
−0.180842 + 0.983512i \(0.557882\pi\)
\(354\) 0 0
\(355\) 9.43199 16.3367i 0.500598 0.867061i
\(356\) 0 0
\(357\) 1.24907 + 1.99218i 0.0661078 + 0.105437i
\(358\) 0 0
\(359\) −3.23786 + 5.60814i −0.170888 + 0.295986i −0.938730 0.344652i \(-0.887997\pi\)
0.767843 + 0.640638i \(0.221330\pi\)
\(360\) 0 0
\(361\) −9.57598 16.5861i −0.503999 0.872952i
\(362\) 0 0
\(363\) 8.47710 0.444932
\(364\) 0 0
\(365\) −33.4930 −1.75311
\(366\) 0 0
\(367\) −6.62729 11.4788i −0.345942 0.599188i 0.639583 0.768722i \(-0.279107\pi\)
−0.985524 + 0.169534i \(0.945774\pi\)
\(368\) 0 0
\(369\) 5.74907 9.95768i 0.299285 0.518376i
\(370\) 0 0
\(371\) 2.02290 0.0737224i 0.105024 0.00382748i
\(372\) 0 0
\(373\) 18.9647 32.8479i 0.981956 1.70080i 0.327204 0.944954i \(-0.393893\pi\)
0.654752 0.755844i \(-0.272773\pi\)
\(374\) 0 0
\(375\) 6.82072 + 11.8138i 0.352221 + 0.610064i
\(376\) 0 0
\(377\) −5.87636 −0.302648
\(378\) 0 0
\(379\) −14.0655 −0.722494 −0.361247 0.932470i \(-0.617649\pi\)
−0.361247 + 0.932470i \(0.617649\pi\)
\(380\) 0 0
\(381\) 3.89307 + 6.74299i 0.199448 + 0.345454i
\(382\) 0 0
\(383\) −10.5327 + 18.2432i −0.538197 + 0.932185i 0.460804 + 0.887502i \(0.347561\pi\)
−0.999001 + 0.0446833i \(0.985772\pi\)
\(384\) 0 0
\(385\) −7.27816 + 13.7386i −0.370929 + 0.700184i
\(386\) 0 0
\(387\) 2.53273 4.38682i 0.128746 0.222995i
\(388\) 0 0
\(389\) −6.99381 12.1136i −0.354600 0.614186i 0.632449 0.774602i \(-0.282050\pi\)
−0.987049 + 0.160416i \(0.948716\pi\)
\(390\) 0 0
\(391\) −5.94320 −0.300560
\(392\) 0 0
\(393\) −2.66621 −0.134492
\(394\) 0 0
\(395\) −10.4585 18.1147i −0.526226 0.911450i
\(396\) 0 0
\(397\) −4.54944 + 7.87987i −0.228330 + 0.395479i −0.957313 0.289052i \(-0.906660\pi\)
0.728983 + 0.684531i \(0.239993\pi\)
\(398\) 0 0
\(399\) −7.65019 + 14.4409i −0.382988 + 0.722947i
\(400\) 0 0
\(401\) −9.42216 + 16.3197i −0.470520 + 0.814965i −0.999432 0.0337123i \(-0.989267\pi\)
0.528912 + 0.848677i \(0.322600\pi\)
\(402\) 0 0
\(403\) 0.761450 + 1.31887i 0.0379305 + 0.0656976i
\(404\) 0 0
\(405\) 3.69963 0.183836
\(406\) 0 0
\(407\) 4.94182 0.244957
\(408\) 0 0
\(409\) −19.1756 33.2130i −0.948170 1.64228i −0.749276 0.662258i \(-0.769598\pi\)
−0.198895 0.980021i \(-0.563735\pi\)
\(410\) 0 0
\(411\) −3.04325 + 5.27107i −0.150113 + 0.260003i
\(412\) 0 0
\(413\) −14.4814 + 0.527760i −0.712585 + 0.0259694i
\(414\) 0 0
\(415\) −24.3516 + 42.1782i −1.19537 + 2.07045i
\(416\) 0 0
\(417\) 6.04944 + 10.4779i 0.296242 + 0.513107i
\(418\) 0 0
\(419\) −0.176728 −0.00863373 −0.00431686 0.999991i \(-0.501374\pi\)
−0.00431686 + 0.999991i \(0.501374\pi\)
\(420\) 0 0
\(421\) 9.35346 0.455860 0.227930 0.973678i \(-0.426804\pi\)
0.227930 + 0.973678i \(0.426804\pi\)
\(422\) 0 0
\(423\) −3.00000 5.19615i −0.145865 0.252646i
\(424\) 0 0
\(425\) 3.86033 6.68630i 0.187254 0.324333i
\(426\) 0 0
\(427\) −0.0920059 0.146743i −0.00445248 0.00710139i
\(428\) 0 0
\(429\) 0.794182 1.37556i 0.0383435 0.0664128i
\(430\) 0 0
\(431\) −12.1607 21.0630i −0.585761 1.01457i −0.994780 0.102042i \(-0.967463\pi\)
0.409020 0.912526i \(-0.365871\pi\)
\(432\) 0 0
\(433\) 35.3942 1.70093 0.850467 0.526028i \(-0.176319\pi\)
0.850467 + 0.526028i \(0.176319\pi\)
\(434\) 0 0
\(435\) −21.7403 −1.04237
\(436\) 0 0
\(437\) −20.6527 35.7715i −0.987951 1.71118i
\(438\) 0 0
\(439\) −4.02723 + 6.97537i −0.192209 + 0.332916i −0.945982 0.324219i \(-0.894899\pi\)
0.753773 + 0.657135i \(0.228232\pi\)
\(440\) 0 0
\(441\) 6.98143 0.509538i 0.332449 0.0242637i
\(442\) 0 0
\(443\) −9.72548 + 16.8450i −0.462072 + 0.800331i −0.999064 0.0432556i \(-0.986227\pi\)
0.536992 + 0.843587i \(0.319560\pi\)
\(444\) 0 0
\(445\) −14.4487 25.0259i −0.684934 1.18634i
\(446\) 0 0
\(447\) −7.37450 −0.348802
\(448\) 0 0
\(449\) 23.0334 1.08701 0.543507 0.839405i \(-0.317096\pi\)
0.543507 + 0.839405i \(0.317096\pi\)
\(450\) 0 0
\(451\) −9.13162 15.8164i −0.429991 0.744766i
\(452\) 0 0
\(453\) −11.9752 + 20.7417i −0.562646 + 0.974531i
\(454\) 0 0
\(455\) −5.19963 8.29305i −0.243762 0.388784i
\(456\) 0 0
\(457\) 2.08472 3.61084i 0.0975192 0.168908i −0.813138 0.582071i \(-0.802243\pi\)
0.910657 + 0.413163i \(0.135576\pi\)
\(458\) 0 0
\(459\) −0.444368 0.769668i −0.0207413 0.0359250i
\(460\) 0 0
\(461\) −15.9381 −0.742311 −0.371156 0.928571i \(-0.621038\pi\)
−0.371156 + 0.928571i \(0.621038\pi\)
\(462\) 0 0
\(463\) −42.5278 −1.97644 −0.988218 0.153051i \(-0.951090\pi\)
−0.988218 + 0.153051i \(0.951090\pi\)
\(464\) 0 0
\(465\) 2.81708 + 4.87933i 0.130639 + 0.226273i
\(466\) 0 0
\(467\) −4.22803 + 7.32316i −0.195650 + 0.338876i −0.947113 0.320899i \(-0.896015\pi\)
0.751463 + 0.659775i \(0.229348\pi\)
\(468\) 0 0
\(469\) −28.0512 + 1.02230i −1.29529 + 0.0472053i
\(470\) 0 0
\(471\) 4.24907 7.35961i 0.195787 0.339113i
\(472\) 0 0
\(473\) −4.02290 6.96787i −0.184973 0.320383i
\(474\) 0 0
\(475\) 53.6588 2.46203
\(476\) 0 0
\(477\) −0.765092 −0.0350312
\(478\) 0 0
\(479\) −17.2305 29.8441i −0.787282 1.36361i −0.927626 0.373509i \(-0.878154\pi\)
0.140345 0.990103i \(-0.455179\pi\)
\(480\) 0 0
\(481\) −1.55563 + 2.69443i −0.0709307 + 0.122856i
\(482\) 0 0
\(483\) −8.28249 + 15.6344i −0.376866 + 0.711391i
\(484\) 0 0
\(485\) −2.05563 + 3.56046i −0.0933414 + 0.161672i
\(486\) 0 0
\(487\) 14.3306 + 24.8213i 0.649379 + 1.12476i 0.983271 + 0.182147i \(0.0583046\pi\)
−0.333892 + 0.942611i \(0.608362\pi\)
\(488\) 0 0
\(489\) −1.69963 −0.0768598
\(490\) 0 0
\(491\) −6.58836 −0.297329 −0.148664 0.988888i \(-0.547497\pi\)
−0.148664 + 0.988888i \(0.547497\pi\)
\(492\) 0 0
\(493\) 2.61126 + 4.52284i 0.117605 + 0.203699i
\(494\) 0 0
\(495\) 2.93818 5.08907i 0.132061 0.228737i
\(496\) 0 0
\(497\) −6.31522 + 11.9209i −0.283276 + 0.534726i
\(498\) 0 0
\(499\) −16.7527 + 29.0165i −0.749954 + 1.29896i 0.197890 + 0.980224i \(0.436591\pi\)
−0.947844 + 0.318735i \(0.896742\pi\)
\(500\) 0 0
\(501\) 0.911636 + 1.57900i 0.0407289 + 0.0705445i
\(502\) 0 0
\(503\) −14.2632 −0.635966 −0.317983 0.948096i \(-0.603006\pi\)
−0.317983 + 0.948096i \(0.603006\pi\)
\(504\) 0 0
\(505\) −68.4362 −3.04537
\(506\) 0 0
\(507\) 0.500000 + 0.866025i 0.0222058 + 0.0384615i
\(508\) 0 0
\(509\) −10.0426 + 17.3942i −0.445129 + 0.770986i −0.998061 0.0622404i \(-0.980175\pi\)
0.552932 + 0.833226i \(0.313509\pi\)
\(510\) 0 0
\(511\) 23.9363 0.872333i 1.05888 0.0385898i
\(512\) 0 0
\(513\) 3.08836 5.34920i 0.136355 0.236173i
\(514\) 0 0
\(515\) −35.1007 60.7961i −1.54672 2.67900i
\(516\) 0 0
\(517\) −9.53018 −0.419137
\(518\) 0 0
\(519\) −7.06684 −0.310200
\(520\) 0 0
\(521\) 0.888047 + 1.53814i 0.0389061 + 0.0673873i 0.884823 0.465928i \(-0.154279\pi\)
−0.845917 + 0.533315i \(0.820946\pi\)
\(522\) 0 0
\(523\) −3.95420 + 6.84887i −0.172905 + 0.299480i −0.939434 0.342729i \(-0.888649\pi\)
0.766529 + 0.642209i \(0.221982\pi\)
\(524\) 0 0
\(525\) −12.2095 19.4732i −0.532865 0.849882i
\(526\) 0 0
\(527\) 0.676728 1.17213i 0.0294787 0.0510587i
\(528\) 0 0
\(529\) −10.8596 18.8095i −0.472159 0.817803i
\(530\) 0 0
\(531\) 5.47710 0.237686
\(532\) 0 0
\(533\) 11.4981 0.498040
\(534\) 0 0
\(535\) 37.3985 + 64.7761i 1.61688 + 2.80051i
\(536\) 0 0
\(537\) 6.07165 10.5164i 0.262011 0.453817i
\(538\) 0 0
\(539\) 4.84362 10.0081i 0.208630 0.431078i
\(540\) 0 0
\(541\) −15.4629 + 26.7825i −0.664800 + 1.15147i 0.314539 + 0.949245i \(0.398150\pi\)
−0.979339 + 0.202223i \(0.935183\pi\)
\(542\) 0 0
\(543\) 12.8702 + 22.2918i 0.552312 + 0.956632i
\(544\) 0 0
\(545\) −42.7810 −1.83254
\(546\) 0 0
\(547\) 5.14331 0.219912 0.109956 0.993936i \(-0.464929\pi\)
0.109956 + 0.993936i \(0.464929\pi\)
\(548\) 0 0
\(549\) 0.0327319 + 0.0566933i 0.00139696 + 0.00241961i
\(550\) 0 0
\(551\) −18.1483 + 31.4338i −0.773145 + 1.33913i
\(552\) 0 0
\(553\) 7.94615 + 12.6736i 0.337905 + 0.538935i
\(554\) 0 0
\(555\) −5.75526 + 9.96840i −0.244297 + 0.423135i
\(556\) 0 0
\(557\) 7.54070 + 13.0609i 0.319510 + 0.553407i 0.980386 0.197088i \(-0.0631484\pi\)
−0.660876 + 0.750495i \(0.729815\pi\)
\(558\) 0 0
\(559\) 5.06546 0.214246
\(560\) 0 0
\(561\) −1.41164 −0.0595993
\(562\) 0 0
\(563\) −13.8702 24.0238i −0.584558 1.01248i −0.994930 0.100566i \(-0.967935\pi\)
0.410373 0.911918i \(-0.365399\pi\)
\(564\) 0 0
\(565\) −31.1105 + 53.8850i −1.30883 + 2.26696i
\(566\) 0 0
\(567\) −2.64400 + 0.0963576i −0.111037 + 0.00404664i
\(568\) 0 0
\(569\) 10.8054 18.7155i 0.452986 0.784594i −0.545584 0.838056i \(-0.683692\pi\)
0.998570 + 0.0534619i \(0.0170256\pi\)
\(570\) 0 0
\(571\) 14.1130 + 24.4445i 0.590613 + 1.02297i 0.994150 + 0.108008i \(0.0344472\pi\)
−0.403537 + 0.914963i \(0.632219\pi\)
\(572\) 0 0
\(573\) −9.54394 −0.398704
\(574\) 0 0
\(575\) 58.0938 2.42268
\(576\) 0 0
\(577\) 4.51671 + 7.82317i 0.188033 + 0.325683i 0.944594 0.328240i \(-0.106455\pi\)
−0.756561 + 0.653923i \(0.773122\pi\)
\(578\) 0 0
\(579\) 3.27128 5.66603i 0.135950 0.235472i
\(580\) 0 0
\(581\) 16.3047 30.7775i 0.676433 1.27687i
\(582\) 0 0
\(583\) −0.607622 + 1.05243i −0.0251651 + 0.0435873i
\(584\) 0 0
\(585\) 1.84981 + 3.20397i 0.0764804 + 0.132468i
\(586\) 0 0
\(587\) 6.74033 0.278203 0.139102 0.990278i \(-0.455579\pi\)
0.139102 + 0.990278i \(0.455579\pi\)
\(588\) 0 0
\(589\) 9.40654 0.387590
\(590\) 0 0
\(591\) −2.87271 4.97569i −0.118168 0.204672i
\(592\) 0 0
\(593\) −13.8040 + 23.9093i −0.566863 + 0.981835i 0.430011 + 0.902824i \(0.358510\pi\)
−0.996874 + 0.0790116i \(0.974824\pi\)
\(594\) 0 0
\(595\) −4.07234 + 7.68715i −0.166950 + 0.315142i
\(596\) 0 0
\(597\) 10.2163 17.6952i 0.418127 0.724217i
\(598\) 0 0
\(599\) −20.8814 36.1676i −0.853190 1.47777i −0.878314 0.478084i \(-0.841331\pi\)
0.0251243 0.999684i \(-0.492002\pi\)
\(600\) 0 0
\(601\) −24.1978 −0.987048 −0.493524 0.869732i \(-0.664291\pi\)
−0.493524 + 0.869732i \(0.664291\pi\)
\(602\) 0 0
\(603\) 10.6094 0.432048
\(604\) 0 0
\(605\) 15.6811 + 27.1604i 0.637526 + 1.10423i
\(606\) 0 0
\(607\) 14.5982 25.2848i 0.592522 1.02628i −0.401369 0.915916i \(-0.631465\pi\)
0.993891 0.110363i \(-0.0352012\pi\)
\(608\) 0 0
\(609\) 15.5371 0.566231i 0.629594 0.0229449i
\(610\) 0 0
\(611\) 3.00000 5.19615i 0.121367 0.210214i
\(612\) 0 0
\(613\) 7.37567 + 12.7750i 0.297900 + 0.515979i 0.975655 0.219309i \(-0.0703803\pi\)
−0.677755 + 0.735288i \(0.737047\pi\)
\(614\) 0 0
\(615\) 42.5388 1.71533
\(616\) 0 0
\(617\) 3.80951 0.153365 0.0766826 0.997056i \(-0.475567\pi\)
0.0766826 + 0.997056i \(0.475567\pi\)
\(618\) 0 0
\(619\) −8.34981 14.4623i −0.335607 0.581289i 0.647994 0.761645i \(-0.275608\pi\)
−0.983601 + 0.180356i \(0.942275\pi\)
\(620\) 0 0
\(621\) 3.34362 5.79133i 0.134175 0.232398i
\(622\) 0 0
\(623\) 10.9778 + 17.5088i 0.439816 + 0.701476i
\(624\) 0 0
\(625\) −3.51602 + 6.08993i −0.140641 + 0.243597i
\(626\) 0 0
\(627\) −4.90545 8.49648i −0.195905 0.339317i
\(628\) 0 0
\(629\) 2.76509 0.110251
\(630\) 0 0
\(631\) 33.3942 1.32940 0.664700 0.747110i \(-0.268559\pi\)
0.664700 + 0.747110i \(0.268559\pi\)
\(632\) 0 0
\(633\) 2.02290 + 3.50377i 0.0804031 + 0.139262i
\(634\) 0 0
\(635\) −14.4029 + 24.9466i −0.571562 + 0.989974i
\(636\) 0 0
\(637\) 3.93199 + 5.79133i 0.155791 + 0.229461i
\(638\) 0 0
\(639\) 2.54944 4.41576i 0.100854 0.174685i
\(640\) 0 0
\(641\) −0.345483 0.598395i −0.0136458 0.0236352i 0.859122 0.511771i \(-0.171010\pi\)
−0.872768 + 0.488136i \(0.837677\pi\)
\(642\) 0 0
\(643\) −4.73305 −0.186653 −0.0933266 0.995636i \(-0.529750\pi\)
−0.0933266 + 0.995636i \(0.529750\pi\)
\(644\) 0 0
\(645\) 18.7403 0.737900
\(646\) 0 0
\(647\) 19.2596 + 33.3586i 0.757173 + 1.31146i 0.944287 + 0.329123i \(0.106753\pi\)
−0.187114 + 0.982338i \(0.559913\pi\)
\(648\) 0 0
\(649\) 4.34981 7.53410i 0.170745 0.295739i
\(650\) 0 0
\(651\) −2.14035 3.41372i −0.0838871 0.133794i
\(652\) 0 0
\(653\) −13.5600 + 23.4865i −0.530642 + 0.919100i 0.468718 + 0.883348i \(0.344716\pi\)
−0.999361 + 0.0357518i \(0.988617\pi\)
\(654\) 0 0
\(655\) −4.93199 8.54245i −0.192709 0.333781i
\(656\) 0 0
\(657\) −9.05308 −0.353194
\(658\) 0 0
\(659\) −44.3680 −1.72833 −0.864166 0.503206i \(-0.832154\pi\)
−0.864166 + 0.503206i \(0.832154\pi\)
\(660\) 0 0
\(661\) 21.6414 + 37.4841i 0.841755 + 1.45796i 0.888410 + 0.459051i \(0.151810\pi\)
−0.0466552 + 0.998911i \(0.514856\pi\)
\(662\) 0 0
\(663\) 0.444368 0.769668i 0.0172578 0.0298914i
\(664\) 0 0
\(665\) −60.4195 + 2.20192i −2.34297 + 0.0853870i
\(666\) 0 0
\(667\) −19.6483 + 34.0319i −0.760786 + 1.31772i
\(668\) 0 0
\(669\) −5.14833 8.91716i −0.199046 0.344757i
\(670\) 0 0
\(671\) 0.103980 0.00401412
\(672\) 0 0
\(673\) 16.2188 0.625189 0.312595 0.949887i \(-0.398802\pi\)
0.312595 + 0.949887i \(0.398802\pi\)
\(674\) 0 0
\(675\) 4.34362 + 7.52338i 0.167186 + 0.289575i
\(676\) 0 0
\(677\) −17.6902 + 30.6403i −0.679890 + 1.17760i 0.295124 + 0.955459i \(0.404639\pi\)
−0.975014 + 0.222145i \(0.928694\pi\)
\(678\) 0 0
\(679\) 1.37636 2.59808i 0.0528197 0.0997050i
\(680\) 0 0
\(681\) −9.16435 + 15.8731i −0.351179 + 0.608259i
\(682\) 0 0
\(683\) −12.6866 21.9738i −0.485438 0.840803i 0.514422 0.857537i \(-0.328006\pi\)
−0.999860 + 0.0167342i \(0.994673\pi\)
\(684\) 0 0
\(685\) −22.5178 −0.860361
\(686\) 0 0
\(687\) −15.8233 −0.603695
\(688\) 0 0
\(689\) −0.382546 0.662589i −0.0145738 0.0252426i
\(690\) 0 0
\(691\) 25.1599 43.5783i 0.957129 1.65780i 0.227711 0.973729i \(-0.426876\pi\)
0.729419 0.684068i \(-0.239791\pi\)
\(692\) 0 0
\(693\) −1.96727 + 3.71351i −0.0747303 + 0.141065i
\(694\) 0 0
\(695\) −22.3807 + 38.7645i −0.848948 + 1.47042i
\(696\) 0 0
\(697\) −5.10940 8.84975i −0.193533 0.335208i
\(698\) 0 0
\(699\) −1.68725 −0.0638176
\(700\) 0 0
\(701\) 6.49458 0.245297 0.122648 0.992450i \(-0.460861\pi\)
0.122648 + 0.992450i \(0.460861\pi\)
\(702\) 0 0
\(703\) 9.60872 + 16.6428i 0.362400 + 0.627695i
\(704\) 0 0
\(705\) 11.0989 19.2238i 0.418008 0.724011i
\(706\) 0 0
\(707\) 48.9090 1.78244i 1.83941 0.0670354i
\(708\) 0 0
\(709\) −2.87271 + 4.97569i −0.107887 + 0.186866i −0.914914 0.403649i \(-0.867742\pi\)
0.807027 + 0.590515i \(0.201075\pi\)
\(710\) 0 0
\(711\) −2.82691 4.89636i −0.106018 0.183628i
\(712\) 0 0
\(713\) 10.1840 0.381394
\(714\) 0 0
\(715\) 5.87636 0.219763
\(716\) 0 0
\(717\) −4.73236 8.19669i −0.176733 0.306111i
\(718\) 0 0
\(719\) −5.47641 + 9.48542i −0.204236 + 0.353747i −0.949889 0.312588i \(-0.898804\pi\)
0.745653 + 0.666334i \(0.232138\pi\)
\(720\) 0 0
\(721\) 26.6687 + 42.5347i 0.993194 + 1.58407i
\(722\) 0 0
\(723\) 7.10439 12.3052i 0.264215 0.457634i
\(724\) 0 0
\(725\) −25.5247 44.2100i −0.947963 1.64192i
\(726\) 0 0
\(727\) 9.41026 0.349007 0.174504 0.984657i \(-0.444168\pi\)
0.174504 + 0.984657i \(0.444168\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 0 0
\(731\) −2.25093 3.89872i −0.0832536 0.144200i
\(732\) 0 0
\(733\) 12.5407 21.7211i 0.463201 0.802289i −0.535917 0.844271i \(-0.680034\pi\)
0.999118 + 0.0419822i \(0.0133673\pi\)
\(734\) 0 0
\(735\) 14.5469 + 21.4258i 0.536570 + 0.790301i
\(736\) 0 0
\(737\) 8.42580 14.5939i 0.310368 0.537574i
\(738\) 0 0
\(739\) −20.0352 34.7020i −0.737007 1.27653i −0.953837 0.300324i \(-0.902905\pi\)
0.216830 0.976209i \(-0.430428\pi\)
\(740\) 0 0
\(741\) 6.17673 0.226908
\(742\) 0 0
\(743\) 17.1113 0.627751 0.313876 0.949464i \(-0.398372\pi\)
0.313876 + 0.949464i \(0.398372\pi\)
\(744\) 0 0
\(745\) −13.6414 23.6277i −0.499784 0.865651i
\(746\) 0 0
\(747\) −6.58217 + 11.4007i −0.240829 + 0.417128i
\(748\) 0 0
\(749\) −28.4145 45.3192i −1.03824 1.65593i
\(750\) 0 0
\(751\) 21.2069 36.7314i 0.773851 1.34035i −0.161587 0.986859i \(-0.551661\pi\)
0.935438 0.353491i \(-0.115006\pi\)
\(752\) 0 0
\(753\) 9.58286 + 16.5980i 0.349219 + 0.604865i
\(754\) 0 0
\(755\) −88.6079 −3.22477
\(756\) 0 0
\(757\) −28.0814 −1.02064 −0.510318 0.859986i \(-0.670472\pi\)
−0.510318 + 0.859986i \(0.670472\pi\)
\(758\) 0 0
\(759\) −5.31089 9.19874i −0.192773 0.333893i
\(760\) 0 0
\(761\) −3.54325 + 6.13709i −0.128443 + 0.222469i −0.923073 0.384624i \(-0.874331\pi\)
0.794631 + 0.607093i \(0.207665\pi\)
\(762\) 0 0
\(763\) 30.5741 1.11424i 1.10686 0.0403382i
\(764\) 0 0
\(765\) 1.64400 2.84748i 0.0594388 0.102951i
\(766\) 0 0
\(767\) 2.73855 + 4.74331i 0.0988833 + 0.171271i
\(768\) 0 0
\(769\) −29.3942 −1.05998 −0.529990 0.848004i \(-0.677804\pi\)
−0.529990 + 0.848004i \(0.677804\pi\)
\(770\) 0 0
\(771\) 3.76509 0.135596
\(772\) 0 0
\(773\) 2.88509 + 4.99713i 0.103770 + 0.179734i 0.913235 0.407434i \(-0.133576\pi\)
−0.809465 + 0.587168i \(0.800243\pi\)
\(774\) 0 0
\(775\) −6.61491 + 11.4574i −0.237614 + 0.411560i
\(776\) 0 0
\(777\) 3.85346 7.27397i 0.138242 0.260952i
\(778\) 0 0
\(779\) 35.5104 61.5059i 1.27229 2.20368i
\(780\) 0 0
\(781\) −4.04944 7.01384i −0.144900 0.250975i
\(782\) 0 0
\(783\) −5.87636 −0.210004
\(784\) 0 0
\(785\) 31.4400 1.12214
\(786\) 0 0
\(787\) −6.08768 10.5442i −0.217002 0.375859i 0.736888 0.676015i \(-0.236295\pi\)
−0.953890 + 0.300156i \(0.902961\pi\)
\(788\) 0 0
\(789\) −0.954888 + 1.65392i −0.0339949 + 0.0588809i
\(790\) 0 0
\(791\) 20.8302 39.3200i 0.740635 1.39806i
\(792\) 0 0
\(793\) −0.0327319 + 0.0566933i −0.00116234 + 0.00201324i
\(794\) 0 0
\(795\) −1.41528 2.45133i −0.0501947 0.0869398i
\(796\) 0 0
\(797\) 32.6377 1.15609 0.578044 0.816006i \(-0.303816\pi\)
0.578044 + 0.816006i \(0.303816\pi\)
\(798\) 0 0
\(799\) −5.33242 −0.188647
\(800\) 0 0
\(801\) −3.90545 6.76443i −0.137992 0.239009i
\(802\) 0 0
\(803\) −7.18980 + 12.4531i −0.253722 + 0.439460i
\(804\) 0 0
\(805\) −65.4133 + 2.38392i −2.30552 + 0.0840221i
\(806\) 0 0
\(807\) −9.52723 + 16.5016i −0.335374 + 0.580886i
\(808\) 0 0
\(809\) −12.1731 21.0844i −0.427983 0.741288i 0.568711 0.822537i \(-0.307442\pi\)
−0.996694 + 0.0812493i \(0.974109\pi\)
\(810\) 0 0
\(811\) −14.7156 −0.516734 −0.258367 0.966047i \(-0.583184\pi\)
−0.258367 + 0.966047i \(0.583184\pi\)
\(812\) 0 0
\(813\) 22.4079 0.785880
\(814\) 0 0
\(815\) −3.14400 5.44556i −0.110129 0.190750i
\(816\) 0 0
\(817\) 15.6440 27.0962i 0.547314 0.947976i
\(818\) 0 0
\(819\) −1.40545 2.24159i −0.0491103 0.0783275i
\(820\) 0 0
\(821\) 1.52359 2.63893i 0.0531736 0.0920994i −0.838213 0.545342i \(-0.816400\pi\)
0.891387 + 0.453243i \(0.149733\pi\)
\(822\) 0 0
\(823\) 22.2305 + 38.5044i 0.774907 + 1.34218i 0.934847 + 0.355051i \(0.115536\pi\)
−0.159940 + 0.987127i \(0.551130\pi\)
\(824\) 0 0
\(825\) 13.7985 0.480403
\(826\) 0 0
\(827\) −16.8750 −0.586801 −0.293400 0.955990i \(-0.594787\pi\)
−0.293400 + 0.955990i \(0.594787\pi\)
\(828\) 0 0
\(829\) 11.3171 + 19.6018i 0.393059 + 0.680797i 0.992851 0.119358i \(-0.0380836\pi\)
−0.599793 + 0.800155i \(0.704750\pi\)
\(830\) 0 0
\(831\) −14.0767 + 24.3815i −0.488314 + 0.845785i
\(832\) 0 0
\(833\) 2.71015 5.59980i 0.0939011 0.194022i
\(834\) 0 0
\(835\) −3.37271 + 5.84171i −0.116718 + 0.202161i
\(836\) 0 0
\(837\) 0.761450 + 1.31887i 0.0263196 + 0.0455868i
\(838\) 0 0
\(839\) −9.57970 −0.330728 −0.165364 0.986233i \(-0.552880\pi\)
−0.165364 + 0.986233i \(0.552880\pi\)
\(840\) 0 0
\(841\) 5.53156 0.190743
\(842\) 0 0
\(843\) −6.04325 10.4672i −0.208141 0.360510i
\(844\) 0 0
\(845\) −1.84981 + 3.20397i −0.0636355 + 0.110220i
\(846\) 0 0
\(847\) −11.9141 19.0022i −0.409374 0.652922i
\(848\) 0 0
\(849\) −7.71634 + 13.3651i −0.264824 + 0.458689i
\(850\) 0 0
\(851\) 10.4029 + 18.0183i 0.356607 + 0.617661i
\(852\) 0 0
\(853\) 33.9788 1.16341 0.581706 0.813399i \(-0.302385\pi\)
0.581706 + 0.813399i \(0.302385\pi\)
\(854\) 0 0
\(855\) 22.8516 0.781508
\(856\) 0 0
\(857\) −19.3523 33.5191i −0.661061 1.14499i −0.980337 0.197330i \(-0.936773\pi\)
0.319276 0.947662i \(-0.396560\pi\)
\(858\) 0 0
\(859\) −10.3454 + 17.9188i −0.352981 + 0.611381i −0.986770 0.162125i \(-0.948165\pi\)
0.633789 + 0.773506i \(0.281499\pi\)
\(860\) 0 0
\(861\) −30.4010 + 1.10793i −1.03606 + 0.0377583i
\(862\) 0 0
\(863\) 27.5073 47.6440i 0.936359 1.62182i 0.164166 0.986433i \(-0.447507\pi\)
0.772193 0.635388i \(-0.219160\pi\)
\(864\) 0 0
\(865\) −13.0723 22.6420i −0.444473 0.769850i
\(866\) 0 0
\(867\) 16.2101 0.550526
\(868\) 0 0
\(869\) −8.98034 −0.304637
\(870\) 0 0
\(871\) 5.30470 + 9.18801i 0.179743 + 0.311324i
\(872\) 0 0
\(873\) −0.555632 + 0.962383i −0.0188053 + 0.0325717i
\(874\) 0 0
\(875\) 16.8956 31.8930i 0.571176 1.07818i
\(876\) 0 0
\(877\) 11.6614 20.1981i 0.393777 0.682042i −0.599167 0.800624i \(-0.704501\pi\)
0.992944 + 0.118582i \(0.0378348\pi\)
\(878\) 0 0
\(879\) 6.71565 + 11.6318i 0.226513 + 0.392332i
\(880\) 0 0
\(881\) −31.5105 −1.06162 −0.530808 0.847492i \(-0.678112\pi\)
−0.530808 + 0.847492i \(0.678112\pi\)
\(882\) 0 0
\(883\) 15.2990 0.514852 0.257426 0.966298i \(-0.417126\pi\)
0.257426 + 0.966298i \(0.417126\pi\)
\(884\) 0 0
\(885\) 10.1316 + 17.5485i 0.340571 + 0.589886i
\(886\) 0 0
\(887\) −15.4272 + 26.7207i −0.517994 + 0.897192i 0.481788 + 0.876288i \(0.339988\pi\)
−0.999781 + 0.0209037i \(0.993346\pi\)
\(888\) 0 0
\(889\) 9.64351 18.2036i 0.323433 0.610528i
\(890\) 0 0
\(891\) 0.794182 1.37556i 0.0266061 0.0460831i
\(892\) 0 0
\(893\) −18.5302 32.0952i −0.620089 1.07403i
\(894\) 0 0
\(895\) 44.9257 1.50170
\(896\) 0 0
\(897\) 6.68725 0.223281
\(898\) 0 0
\(899\) −4.47455 7.75015i −0.149235 0.258482i
\(900\) 0 0
\(901\) −0.339982 + 0.588867i −0.0113265 + 0.0196180i
\(902\) 0 0
\(903\) −13.3931 + 0.488096i −0.445693 + 0.0162428i
\(904\) 0 0
\(905\) −47.6148 + 82.4713i −1.58277 + 2.74144i
\(906\) 0 0
\(907\) 18.1756 + 31.4810i 0.603509 + 1.04531i 0.992285 + 0.123977i \(0.0395648\pi\)
−0.388776 + 0.921332i \(0.627102\pi\)
\(908\) 0 0
\(909\) −18.4981 −0.613545
\(910\) 0 0
\(911\) 17.6749 0.585595 0.292797 0.956175i \(-0.405414\pi\)
0.292797 + 0.956175i \(0.405414\pi\)
\(912\) 0 0
\(913\) 10.4549 + 18.1084i 0.346006 + 0.599300i
\(914\) 0 0
\(915\) −0.121096 + 0.209744i −0.00400331 + 0.00693393i
\(916\) 0 0
\(917\) 3.74721 + 5.97654i 0.123744 + 0.197363i
\(918\) 0 0
\(919\) 11.8585 20.5395i 0.391175 0.677535i −0.601430 0.798926i \(-0.705402\pi\)
0.992605 + 0.121391i \(0.0387354\pi\)
\(920\) 0 0
\(921\) 2.26764 + 3.92767i 0.0747213 + 0.129421i
\(922\) 0 0
\(923\) 5.09888 0.167832
\(924\) 0 0
\(925\) −27.0283 −0.888686
\(926\) 0 0
\(927\) −9.48762 16.4330i −0.311614 0.539732i
\(928\) 0 0
\(929\) 13.8287 23.9520i 0.453705 0.785840i −0.544908 0.838496i \(-0.683435\pi\)
0.998613 + 0.0526561i \(0.0167687\pi\)
\(930\) 0 0
\(931\) 43.1224 3.14728i 1.41328 0.103148i
\(932\) 0 0
\(933\) 8.00619 13.8671i 0.262111 0.453989i
\(934\) 0 0
\(935\) −2.61126 4.52284i −0.0853975 0.147913i
\(936\) 0 0
\(937\) −19.5439 −0.638473 −0.319236 0.947675i \(-0.603426\pi\)
−0.319236 + 0.947675i \(0.603426\pi\)
\(938\) 0 0
\(939\) 15.2880 0.498905
\(940\) 0 0
\(941\) 22.0476 + 38.1875i 0.718731 + 1.24488i 0.961503 + 0.274795i \(0.0886099\pi\)
−0.242772 + 0.970083i \(0.578057\pi\)
\(942\) 0 0
\(943\) 38.4455 66.5895i 1.25196 2.16845i
\(944\) 0 0
\(945\) −5.19963 8.29305i −0.169144 0.269773i
\(946\) 0 0
\(947\) −19.0388 + 32.9762i −0.618679 + 1.07158i 0.371048 + 0.928614i \(0.378999\pi\)
−0.989727 + 0.142970i \(0.954335\pi\)
\(948\) 0 0
\(949\) −4.52654 7.84020i −0.146938 0.254504i
\(950\) 0 0
\(951\) 17.5956 0.570578
\(952\) 0 0
\(953\) −17.2581 −0.559046 −0.279523 0.960139i \(-0.590176\pi\)
−0.279523 + 0.960139i \(0.590176\pi\)
\(954\) 0 0
\(955\) −17.6545 30.5785i −0.571287 0.989498i
\(956\) 0 0
\(957\) −4.66690 + 8.08330i −0.150859 + 0.261296i
\(958\) 0 0
\(959\) 16.0927 0.586481i 0.519660 0.0189385i
\(960\) 0 0
\(961\) 14.3404 24.8383i 0.462593 0.801235i
\(962\) 0 0
\(963\) 10.1087 + 17.5088i 0.325749 + 0.564214i
\(964\) 0 0
\(965\) 24.2051 0.779188
\(966\) 0 0
\(967\) −38.5760 −1.24052 −0.620260 0.784396i \(-0.712973\pi\)
−0.620260 + 0.784396i \(0.712973\pi\)
\(968\) 0 0
\(969\) −2.74474 4.75403i −0.0881737 0.152721i
\(970\) 0 0
\(971\) 14.7298 25.5128i 0.472702 0.818744i −0.526810 0.849983i \(-0.676612\pi\)
0.999512 + 0.0312390i \(0.00994531\pi\)
\(972\) 0 0
\(973\) 14.9851 28.2865i 0.480399 0.906825i
\(974\) 0 0
\(975\) −4.34362 + 7.52338i −0.139107 + 0.240941i
\(976\) 0 0
\(977\) −12.4258 21.5221i −0.397537 0.688553i 0.595885 0.803070i \(-0.296801\pi\)
−0.993421 + 0.114516i \(0.963468\pi\)
\(978\) 0 0
\(979\) −12.4065 −0.396515
\(980\) 0 0
\(981\) −11.5636 −0.369197
\(982\) 0 0
\(983\) −19.6836 34.0930i −0.627810 1.08740i −0.987990 0.154516i \(-0.950618\pi\)
0.360181 0.932883i \(-0.382715\pi\)
\(984\) 0 0
\(985\) 10.6280 18.4082i 0.338635 0.586534i
\(986\) 0 0
\(987\) −7.43130 + 14.0277i −0.236541 + 0.446506i
\(988\) 0 0
\(989\) 16.9370 29.3358i 0.538566 0.932823i
\(990\) 0 0
\(991\) 7.41164 + 12.8373i 0.235438 + 0.407791i 0.959400 0.282049i \(-0.0910141\pi\)
−0.723962 + 0.689840i \(0.757681\pi\)
\(992\) 0 0
\(993\) −1.61312 −0.0511909
\(994\) 0 0
\(995\) 75.5933 2.39647
\(996\) 0 0
\(997\) 10.2825 + 17.8098i 0.325650 + 0.564042i 0.981644 0.190724i \(-0.0610836\pi\)
−0.655994 + 0.754766i \(0.727750\pi\)
\(998\) 0 0
\(999\) −1.55563 + 2.69443i −0.0492180 + 0.0852481i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1092.2.q.d.625.1 6
3.2 odd 2 3276.2.r.i.2809.3 6
7.2 even 3 7644.2.a.w.1.3 3
7.4 even 3 inner 1092.2.q.d.781.1 yes 6
7.5 odd 6 7644.2.a.x.1.1 3
21.11 odd 6 3276.2.r.i.1873.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1092.2.q.d.625.1 6 1.1 even 1 trivial
1092.2.q.d.781.1 yes 6 7.4 even 3 inner
3276.2.r.i.1873.3 6 21.11 odd 6
3276.2.r.i.2809.3 6 3.2 odd 2
7644.2.a.w.1.3 3 7.2 even 3
7644.2.a.x.1.1 3 7.5 odd 6