Properties

Label 1092.2.q.d
Level $1092$
Weight $2$
Character orbit 1092.q
Analytic conductor $8.720$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1092,2,Mod(625,1092)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1092, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1092.625"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1092 = 2^{2} \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1092.q (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,3,0,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.71966390072\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{4} q^{3} + ( - \beta_{5} + 2 \beta_{4} - 2) q^{5} + (\beta_{5} - \beta_{4} + \beta_{3} + \cdots + 1) q^{7} + (\beta_{4} - 1) q^{9} + (\beta_{3} + \beta_{2}) q^{11} - q^{13} + ( - \beta_1 - 2) q^{15}+ \cdots - \beta_{3} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{3} - 5 q^{5} + 2 q^{7} - 3 q^{9} - q^{11} - 6 q^{13} - 10 q^{15} + 3 q^{17} - 7 q^{19} + 4 q^{21} + 4 q^{23} - 2 q^{25} - 6 q^{27} - 10 q^{31} + q^{33} + 19 q^{35} + 9 q^{37} - 3 q^{39} - 8 q^{41}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu^{2} - \nu + 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{5} + \nu^{4} - 8\nu^{3} + 5\nu^{2} - 18\nu + 6 ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{4} - 2\nu^{3} + 6\nu^{2} - 5\nu + 3 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -2\nu^{5} + 5\nu^{4} - 16\nu^{3} + 19\nu^{2} - 21\nu + 9 ) / 3 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 2\nu^{5} - 5\nu^{4} + 19\nu^{3} - 22\nu^{2} + 30\nu - 9 ) / 3 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -2\beta_{5} - \beta_{4} - \beta_{3} - 2\beta_{2} + \beta _1 + 2 ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -2\beta_{5} - \beta_{4} - \beta_{3} - 2\beta_{2} + 4\beta _1 - 4 ) / 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 7\beta_{5} + 5\beta_{4} + 2\beta_{3} + 4\beta_{2} + \beta _1 - 10 ) / 3 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 16\beta_{5} + 11\beta_{4} + 8\beta_{3} + 10\beta_{2} - 17\beta _1 + 5 ) / 3 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -14\beta_{5} - 16\beta_{4} + 5\beta_{3} - 5\beta_{2} - 23\beta _1 + 47 ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1092\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(547\) \(925\)
\(\chi(n)\) \(-1 + \beta_{4}\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
625.1
0.500000 0.224437i
0.500000 + 1.41036i
0.500000 2.05195i
0.500000 + 0.224437i
0.500000 1.41036i
0.500000 + 2.05195i
0 0.500000 + 0.866025i 0 −1.84981 + 3.20397i 0 1.23855 2.33795i 0 −0.500000 + 0.866025i 0
625.2 0 0.500000 + 0.866025i 0 −0.880438 + 1.52496i 0 −2.56238 0.658939i 0 −0.500000 + 0.866025i 0
625.3 0 0.500000 + 0.866025i 0 0.230252 0.398809i 0 2.32383 + 1.26483i 0 −0.500000 + 0.866025i 0
781.1 0 0.500000 0.866025i 0 −1.84981 3.20397i 0 1.23855 + 2.33795i 0 −0.500000 0.866025i 0
781.2 0 0.500000 0.866025i 0 −0.880438 1.52496i 0 −2.56238 + 0.658939i 0 −0.500000 0.866025i 0
781.3 0 0.500000 0.866025i 0 0.230252 + 0.398809i 0 2.32383 1.26483i 0 −0.500000 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 625.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1092.2.q.d 6
3.b odd 2 1 3276.2.r.i 6
7.c even 3 1 inner 1092.2.q.d 6
7.c even 3 1 7644.2.a.w 3
7.d odd 6 1 7644.2.a.x 3
21.h odd 6 1 3276.2.r.i 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1092.2.q.d 6 1.a even 1 1 trivial
1092.2.q.d 6 7.c even 3 1 inner
3276.2.r.i 6 3.b odd 2 1
3276.2.r.i 6 21.h odd 6 1
7644.2.a.w 3 7.c even 3 1
7644.2.a.x 3 7.d odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{6} + 5T_{5}^{5} + 21T_{5}^{4} + 26T_{5}^{3} + 31T_{5}^{2} - 12T_{5} + 9 \) acting on \(S_{2}^{\mathrm{new}}(1092, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} \) Copy content Toggle raw display
$3$ \( (T^{2} - T + 1)^{3} \) Copy content Toggle raw display
$5$ \( T^{6} + 5 T^{5} + \cdots + 9 \) Copy content Toggle raw display
$7$ \( T^{6} - 2 T^{5} + \cdots + 343 \) Copy content Toggle raw display
$11$ \( T^{6} + T^{5} + 7 T^{4} + \cdots + 9 \) Copy content Toggle raw display
$13$ \( (T + 1)^{6} \) Copy content Toggle raw display
$17$ \( T^{6} - 3 T^{5} + \cdots + 49 \) Copy content Toggle raw display
$19$ \( T^{6} + 7 T^{5} + \cdots + 7569 \) Copy content Toggle raw display
$23$ \( T^{6} - 4 T^{5} + \cdots + 31329 \) Copy content Toggle raw display
$29$ \( (T^{3} - 33 T - 9)^{2} \) Copy content Toggle raw display
$31$ \( T^{6} + 10 T^{5} + \cdots + 81 \) Copy content Toggle raw display
$37$ \( T^{6} - 9 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$41$ \( (T^{3} + 4 T^{2} + \cdots - 193)^{2} \) Copy content Toggle raw display
$43$ \( (T^{3} + 4 T^{2} + \cdots - 231)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} + 6 T + 36)^{3} \) Copy content Toggle raw display
$53$ \( T^{6} + 15 T^{5} + \cdots + 529 \) Copy content Toggle raw display
$59$ \( T^{6} + 11 T^{5} + \cdots + 7921 \) Copy content Toggle raw display
$61$ \( T^{6} + 11 T^{5} + \cdots + 1 \) Copy content Toggle raw display
$67$ \( T^{6} + T^{5} + \cdots + 281961 \) Copy content Toggle raw display
$71$ \( (T^{3} - 3 T^{2} - 36 T + 27)^{2} \) Copy content Toggle raw display
$73$ \( T^{6} + 2 T^{5} + \cdots + 9801 \) Copy content Toggle raw display
$79$ \( T^{6} + 99 T^{4} + \cdots + 143641 \) Copy content Toggle raw display
$83$ \( (T^{3} - 10 T^{2} + \cdots + 123)^{2} \) Copy content Toggle raw display
$89$ \( T^{6} + 17 T^{5} + \cdots + 1089 \) Copy content Toggle raw display
$97$ \( (T^{3} - 3 T^{2} - 6 T + 9)^{2} \) Copy content Toggle raw display
show more
show less