Properties

Label 10890.2
Level 10890
Weight 2
Dimension 746183
Nonzero newspaces 48
Sturm bound 12545280

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 10890 = 2 \cdot 3^{2} \cdot 5 \cdot 11^{2} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 48 \)
Sturm bound: \(12545280\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(10890))\).

Total New Old
Modular forms 3156800 746183 2410617
Cusp forms 3115841 746183 2369658
Eisenstein series 40959 0 40959

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(10890))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
10890.2.a \(\chi_{10890}(1, \cdot)\) 10890.2.a.a 1 1
10890.2.a.b 1
10890.2.a.c 1
10890.2.a.d 1
10890.2.a.e 1
10890.2.a.f 1
10890.2.a.g 1
10890.2.a.h 1
10890.2.a.i 1
10890.2.a.j 1
10890.2.a.k 1
10890.2.a.l 1
10890.2.a.m 1
10890.2.a.n 1
10890.2.a.o 1
10890.2.a.p 1
10890.2.a.q 1
10890.2.a.r 1
10890.2.a.s 1
10890.2.a.t 1
10890.2.a.u 1
10890.2.a.v 1
10890.2.a.w 1
10890.2.a.x 1
10890.2.a.y 1
10890.2.a.z 1
10890.2.a.ba 1
10890.2.a.bb 1
10890.2.a.bc 1
10890.2.a.bd 1
10890.2.a.be 1
10890.2.a.bf 1
10890.2.a.bg 1
10890.2.a.bh 1
10890.2.a.bi 1
10890.2.a.bj 1
10890.2.a.bk 1
10890.2.a.bl 1
10890.2.a.bm 1
10890.2.a.bn 1
10890.2.a.bo 1
10890.2.a.bp 1
10890.2.a.bq 1
10890.2.a.br 1
10890.2.a.bs 1
10890.2.a.bt 1
10890.2.a.bu 1
10890.2.a.bv 1
10890.2.a.bw 1
10890.2.a.bx 1
10890.2.a.by 1
10890.2.a.bz 1
10890.2.a.ca 1
10890.2.a.cb 1
10890.2.a.cc 1
10890.2.a.cd 1
10890.2.a.ce 1
10890.2.a.cf 2
10890.2.a.cg 2
10890.2.a.ch 2
10890.2.a.ci 2
10890.2.a.cj 2
10890.2.a.ck 2
10890.2.a.cl 2
10890.2.a.cm 2
10890.2.a.cn 2
10890.2.a.co 2
10890.2.a.cp 2
10890.2.a.cq 2
10890.2.a.cr 2
10890.2.a.cs 2
10890.2.a.ct 2
10890.2.a.cu 2
10890.2.a.cv 2
10890.2.a.cw 2
10890.2.a.cx 2
10890.2.a.cy 2
10890.2.a.cz 2
10890.2.a.da 2
10890.2.a.db 2
10890.2.a.dc 2
10890.2.a.dd 2
10890.2.a.de 2
10890.2.a.df 2
10890.2.a.dg 2
10890.2.a.dh 2
10890.2.a.di 2
10890.2.a.dj 2
10890.2.a.dk 4
10890.2.a.dl 4
10890.2.a.dm 4
10890.2.a.dn 4
10890.2.a.do 4
10890.2.a.dp 4
10890.2.a.dq 4
10890.2.a.dr 4
10890.2.a.ds 4
10890.2.a.dt 4
10890.2.a.du 6
10890.2.a.dv 6
10890.2.a.dw 6
10890.2.a.dx 6
10890.2.c \(\chi_{10890}(2179, \cdot)\) n/a 272 1
10890.2.d \(\chi_{10890}(8711, \cdot)\) n/a 144 1
10890.2.f \(\chi_{10890}(10889, \cdot)\) n/a 216 1
10890.2.i \(\chi_{10890}(3631, \cdot)\) n/a 872 2
10890.2.k \(\chi_{10890}(2663, \cdot)\) n/a 436 2
10890.2.m \(\chi_{10890}(1693, \cdot)\) n/a 540 2
10890.2.n \(\chi_{10890}(4141, \cdot)\) n/a 720 4
10890.2.o \(\chi_{10890}(3629, \cdot)\) n/a 1296 2
10890.2.s \(\chi_{10890}(5809, \cdot)\) n/a 1308 2
10890.2.t \(\chi_{10890}(1451, \cdot)\) n/a 864 2
10890.2.x \(\chi_{10890}(2339, \cdot)\) n/a 864 4
10890.2.z \(\chi_{10890}(161, \cdot)\) n/a 576 4
10890.2.ba \(\chi_{10890}(6319, \cdot)\) n/a 1080 4
10890.2.bc \(\chi_{10890}(991, \cdot)\) n/a 2200 10
10890.2.bd \(\chi_{10890}(1937, \cdot)\) n/a 2616 4
10890.2.bf \(\chi_{10890}(967, \cdot)\) n/a 2592 4
10890.2.bh \(\chi_{10890}(511, \cdot)\) n/a 3456 8
10890.2.bi \(\chi_{10890}(1207, \cdot)\) n/a 2160 8
10890.2.bk \(\chi_{10890}(323, \cdot)\) n/a 1728 8
10890.2.bo \(\chi_{10890}(989, \cdot)\) n/a 2640 10
10890.2.bq \(\chi_{10890}(791, \cdot)\) n/a 1760 10
10890.2.br \(\chi_{10890}(199, \cdot)\) n/a 3300 10
10890.2.bu \(\chi_{10890}(941, \cdot)\) n/a 3456 8
10890.2.bv \(\chi_{10890}(1219, \cdot)\) n/a 5184 8
10890.2.bz \(\chi_{10890}(239, \cdot)\) n/a 5184 8
10890.2.ca \(\chi_{10890}(331, \cdot)\) n/a 10560 20
10890.2.cb \(\chi_{10890}(307, \cdot)\) n/a 6600 20
10890.2.cd \(\chi_{10890}(287, \cdot)\) n/a 5280 20
10890.2.cf \(\chi_{10890}(91, \cdot)\) n/a 8800 40
10890.2.ch \(\chi_{10890}(403, \cdot)\) n/a 10368 16
10890.2.cj \(\chi_{10890}(977, \cdot)\) n/a 10368 16
10890.2.cl \(\chi_{10890}(131, \cdot)\) n/a 10560 20
10890.2.cm \(\chi_{10890}(529, \cdot)\) n/a 15840 20
10890.2.cq \(\chi_{10890}(329, \cdot)\) n/a 15840 20
10890.2.cs \(\chi_{10890}(289, \cdot)\) n/a 13200 40
10890.2.ct \(\chi_{10890}(431, \cdot)\) n/a 7040 40
10890.2.cv \(\chi_{10890}(359, \cdot)\) n/a 10560 40
10890.2.cz \(\chi_{10890}(43, \cdot)\) n/a 31680 40
10890.2.db \(\chi_{10890}(23, \cdot)\) n/a 31680 40
10890.2.dc \(\chi_{10890}(31, \cdot)\) n/a 42240 80
10890.2.de \(\chi_{10890}(53, \cdot)\) n/a 21120 80
10890.2.dg \(\chi_{10890}(73, \cdot)\) n/a 26400 80
10890.2.dh \(\chi_{10890}(29, \cdot)\) n/a 63360 80
10890.2.dl \(\chi_{10890}(49, \cdot)\) n/a 63360 80
10890.2.dm \(\chi_{10890}(41, \cdot)\) n/a 42240 80
10890.2.do \(\chi_{10890}(47, \cdot)\) n/a 126720 160
10890.2.dq \(\chi_{10890}(7, \cdot)\) n/a 126720 160

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(10890))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(10890)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 36}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(11))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(15))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(22))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(30))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(33))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(45))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(55))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(66))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(90))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(99))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(110))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(121))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(165))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(198))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(242))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(330))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(363))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(495))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(605))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(726))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(990))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1089))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1210))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1815))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2178))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3630))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5445))\)\(^{\oplus 2}\)