Properties

Label 1089.2.e.l.727.10
Level $1089$
Weight $2$
Character 1089.727
Analytic conductor $8.696$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1089,2,Mod(364,1089)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1089, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1089.364");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1089 = 3^{2} \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1089.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.69570878012\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 15 x^{18} - 2 x^{17} + 150 x^{16} - 30 x^{15} + 830 x^{14} - 321 x^{13} + 3324 x^{12} + \cdots + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 727.10
Root \(1.35844 + 2.35288i\) of defining polynomial
Character \(\chi\) \(=\) 1089.727
Dual form 1089.2.e.l.364.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.35844 - 2.35288i) q^{2} +(-0.755083 - 1.55880i) q^{3} +(-2.69069 - 4.66041i) q^{4} +(-0.835704 - 1.44748i) q^{5} +(-4.69339 - 0.340905i) q^{6} +(1.29605 - 2.24483i) q^{7} -9.18678 q^{8} +(-1.85970 + 2.35404i) q^{9} +O(q^{10})\) \(q+(1.35844 - 2.35288i) q^{2} +(-0.755083 - 1.55880i) q^{3} +(-2.69069 - 4.66041i) q^{4} +(-0.835704 - 1.44748i) q^{5} +(-4.69339 - 0.340905i) q^{6} +(1.29605 - 2.24483i) q^{7} -9.18678 q^{8} +(-1.85970 + 2.35404i) q^{9} -4.54100 q^{10} +(-5.23294 + 7.71324i) q^{12} +(0.0996757 + 0.172643i) q^{13} +(-3.52121 - 6.09891i) q^{14} +(-1.62530 + 2.39566i) q^{15} +(-7.09826 + 12.2945i) q^{16} +7.79195 q^{17} +(3.01250 + 7.57346i) q^{18} -1.13361 q^{19} +(-4.49724 + 7.78945i) q^{20} +(-4.47786 - 0.325250i) q^{21} +(-0.898734 - 1.55665i) q^{23} +(6.93678 + 14.3203i) q^{24} +(1.10320 - 1.91079i) q^{25} +0.541612 q^{26} +(5.07370 + 1.12139i) q^{27} -13.9491 q^{28} +(2.01333 - 3.48718i) q^{29} +(3.42883 + 7.07850i) q^{30} +(-2.21567 - 3.83765i) q^{31} +(10.0983 + 17.4907i) q^{32} +(10.5849 - 18.3335i) q^{34} -4.33247 q^{35} +(15.9747 + 2.33296i) q^{36} +4.55523 q^{37} +(-1.53993 + 2.66724i) q^{38} +(0.193853 - 0.285735i) q^{39} +(7.67743 + 13.2977i) q^{40} +(-2.24775 - 3.89322i) q^{41} +(-6.84816 + 10.0940i) q^{42} +(-1.68314 + 2.91529i) q^{43} +(4.96159 + 0.724595i) q^{45} -4.88349 q^{46} +(-4.17610 + 7.23321i) q^{47} +(24.5245 + 1.78134i) q^{48} +(0.140496 + 0.243346i) q^{49} +(-2.99724 - 5.19138i) q^{50} +(-5.88358 - 12.1461i) q^{51} +(0.536393 - 0.929061i) q^{52} +0.660920 q^{53} +(9.53080 - 10.4145i) q^{54} +(-11.9065 + 20.6227i) q^{56} +(0.855969 + 1.76706i) q^{57} +(-5.46994 - 9.47422i) q^{58} +(-2.26932 - 3.93059i) q^{59} +(15.5380 + 1.12860i) q^{60} +(-0.227860 + 0.394665i) q^{61} -12.0394 q^{62} +(2.87416 + 7.22567i) q^{63} +26.4783 q^{64} +(0.166599 - 0.288558i) q^{65} +(5.77168 + 9.99685i) q^{67} +(-20.9657 - 36.3137i) q^{68} +(-1.74789 + 2.57635i) q^{69} +(-5.88537 + 10.1938i) q^{70} +13.4057 q^{71} +(17.0846 - 21.6261i) q^{72} -10.7548 q^{73} +(6.18799 - 10.7179i) q^{74} +(-3.81155 - 0.276852i) q^{75} +(3.05019 + 5.28308i) q^{76} +(-0.408962 - 0.844263i) q^{78} +(-5.95069 + 10.3069i) q^{79} +23.7282 q^{80} +(-2.08305 - 8.75562i) q^{81} -12.2137 q^{82} +(1.44638 - 2.50520i) q^{83} +(10.5327 + 21.7438i) q^{84} +(-6.51177 - 11.2787i) q^{85} +(4.57288 + 7.92046i) q^{86} +(-6.95604 - 0.505253i) q^{87} +11.6422 q^{89} +(8.44489 - 10.6897i) q^{90} +0.516740 q^{91} +(-4.83643 + 8.37694i) q^{92} +(-4.30911 + 6.35153i) q^{93} +(11.3459 + 19.6517i) q^{94} +(0.947361 + 1.64088i) q^{95} +(19.6394 - 28.9481i) q^{96} +(2.36406 - 4.09467i) q^{97} +0.763417 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - q^{3} - 10 q^{4} - 3 q^{5} - 10 q^{6} + q^{7} + 6 q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 20 q - q^{3} - 10 q^{4} - 3 q^{5} - 10 q^{6} + q^{7} + 6 q^{8} + q^{9} - 5 q^{12} + q^{13} - 15 q^{14} - 7 q^{15} - 10 q^{16} + 6 q^{17} - 17 q^{18} + 4 q^{19} - 15 q^{20} - 4 q^{21} - 18 q^{23} + 27 q^{24} - 7 q^{25} + 12 q^{26} + 23 q^{27} - 8 q^{28} + 12 q^{29} + 26 q^{30} + 7 q^{31} + 24 q^{32} + 6 q^{34} + 36 q^{35} + 20 q^{36} - 2 q^{37} + 12 q^{38} - 4 q^{39} - 12 q^{40} - 6 q^{41} + 2 q^{42} - 8 q^{43} - 35 q^{45} - 36 q^{46} - 27 q^{47} + 19 q^{48} - 15 q^{49} + 15 q^{50} + 2 q^{51} - 5 q^{52} + 12 q^{53} + 44 q^{54} - 60 q^{56} - 27 q^{57} - 9 q^{58} - 21 q^{59} - 5 q^{60} - 20 q^{61} - 6 q^{62} - 74 q^{63} + 62 q^{64} + 12 q^{65} + 10 q^{67} - 69 q^{68} + 16 q^{69} - 6 q^{70} + 36 q^{71} + 102 q^{72} - 14 q^{73} - 6 q^{74} - 26 q^{75} - 2 q^{76} + 92 q^{78} + q^{79} + 102 q^{80} - 35 q^{81} - 60 q^{82} + 30 q^{83} + 70 q^{84} - 24 q^{85} - 36 q^{86} - 60 q^{87} + 108 q^{89} - 11 q^{90} + 20 q^{91} - 6 q^{92} - 19 q^{93} - 15 q^{94} + 12 q^{95} + 106 q^{96} + 16 q^{97} - 120 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1089\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(848\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.35844 2.35288i 0.960559 1.66374i 0.239457 0.970907i \(-0.423031\pi\)
0.721102 0.692829i \(-0.243636\pi\)
\(3\) −0.755083 1.55880i −0.435948 0.899972i
\(4\) −2.69069 4.66041i −1.34535 2.33021i
\(5\) −0.835704 1.44748i −0.373738 0.647334i 0.616399 0.787434i \(-0.288591\pi\)
−0.990137 + 0.140100i \(0.955257\pi\)
\(6\) −4.69339 0.340905i −1.91607 0.139174i
\(7\) 1.29605 2.24483i 0.489862 0.848466i −0.510070 0.860133i \(-0.670381\pi\)
0.999932 + 0.0116673i \(0.00371389\pi\)
\(8\) −9.18678 −3.24802
\(9\) −1.85970 + 2.35404i −0.619899 + 0.784681i
\(10\) −4.54100 −1.43599
\(11\) 0 0
\(12\) −5.23294 + 7.71324i −1.51062 + 2.22662i
\(13\) 0.0996757 + 0.172643i 0.0276451 + 0.0478827i 0.879517 0.475868i \(-0.157866\pi\)
−0.851872 + 0.523750i \(0.824533\pi\)
\(14\) −3.52121 6.09891i −0.941082 1.63000i
\(15\) −1.62530 + 2.39566i −0.419652 + 0.618558i
\(16\) −7.09826 + 12.2945i −1.77456 + 3.07364i
\(17\) 7.79195 1.88983 0.944913 0.327321i \(-0.106146\pi\)
0.944913 + 0.327321i \(0.106146\pi\)
\(18\) 3.01250 + 7.57346i 0.710053 + 1.78508i
\(19\) −1.13361 −0.260067 −0.130034 0.991510i \(-0.541509\pi\)
−0.130034 + 0.991510i \(0.541509\pi\)
\(20\) −4.49724 + 7.78945i −1.00561 + 1.74178i
\(21\) −4.47786 0.325250i −0.977149 0.0709754i
\(22\) 0 0
\(23\) −0.898734 1.55665i −0.187399 0.324584i 0.756983 0.653434i \(-0.226672\pi\)
−0.944382 + 0.328850i \(0.893339\pi\)
\(24\) 6.93678 + 14.3203i 1.41597 + 2.92312i
\(25\) 1.10320 1.91079i 0.220639 0.382159i
\(26\) 0.541612 0.106219
\(27\) 5.07370 + 1.12139i 0.976435 + 0.215812i
\(28\) −13.9491 −2.63613
\(29\) 2.01333 3.48718i 0.373865 0.647553i −0.616291 0.787518i \(-0.711366\pi\)
0.990156 + 0.139965i \(0.0446989\pi\)
\(30\) 3.42883 + 7.07850i 0.626016 + 1.29235i
\(31\) −2.21567 3.83765i −0.397946 0.689263i 0.595526 0.803336i \(-0.296944\pi\)
−0.993472 + 0.114073i \(0.963610\pi\)
\(32\) 10.0983 + 17.4907i 1.78514 + 3.09195i
\(33\) 0 0
\(34\) 10.5849 18.3335i 1.81529 3.14417i
\(35\) −4.33247 −0.732320
\(36\) 15.9747 + 2.33296i 2.66245 + 0.388826i
\(37\) 4.55523 0.748876 0.374438 0.927252i \(-0.377836\pi\)
0.374438 + 0.927252i \(0.377836\pi\)
\(38\) −1.53993 + 2.66724i −0.249810 + 0.432684i
\(39\) 0.193853 0.285735i 0.0310413 0.0457541i
\(40\) 7.67743 + 13.2977i 1.21391 + 2.10255i
\(41\) −2.24775 3.89322i −0.351040 0.608019i 0.635392 0.772190i \(-0.280839\pi\)
−0.986432 + 0.164171i \(0.947505\pi\)
\(42\) −6.84816 + 10.0940i −1.05669 + 1.55754i
\(43\) −1.68314 + 2.91529i −0.256677 + 0.444577i −0.965350 0.260960i \(-0.915961\pi\)
0.708673 + 0.705537i \(0.249294\pi\)
\(44\) 0 0
\(45\) 4.96159 + 0.724595i 0.739631 + 0.108016i
\(46\) −4.88349 −0.720031
\(47\) −4.17610 + 7.23321i −0.609146 + 1.05507i 0.382235 + 0.924065i \(0.375154\pi\)
−0.991381 + 0.131007i \(0.958179\pi\)
\(48\) 24.5245 + 1.78134i 3.53980 + 0.257114i
\(49\) 0.140496 + 0.243346i 0.0200708 + 0.0347637i
\(50\) −2.99724 5.19138i −0.423874 0.734172i
\(51\) −5.88358 12.1461i −0.823866 1.70079i
\(52\) 0.536393 0.929061i 0.0743844 0.128838i
\(53\) 0.660920 0.0907844 0.0453922 0.998969i \(-0.485546\pi\)
0.0453922 + 0.998969i \(0.485546\pi\)
\(54\) 9.53080 10.4145i 1.29698 1.41723i
\(55\) 0 0
\(56\) −11.9065 + 20.6227i −1.59108 + 2.75583i
\(57\) 0.855969 + 1.76706i 0.113376 + 0.234053i
\(58\) −5.46994 9.47422i −0.718239 1.24403i
\(59\) −2.26932 3.93059i −0.295441 0.511719i 0.679646 0.733540i \(-0.262133\pi\)
−0.975087 + 0.221821i \(0.928800\pi\)
\(60\) 15.5380 + 1.12860i 2.00594 + 0.145702i
\(61\) −0.227860 + 0.394665i −0.0291745 + 0.0505316i −0.880244 0.474521i \(-0.842621\pi\)
0.851070 + 0.525053i \(0.175955\pi\)
\(62\) −12.0394 −1.52900
\(63\) 2.87416 + 7.22567i 0.362110 + 0.910349i
\(64\) 26.4783 3.30979
\(65\) 0.166599 0.288558i 0.0206640 0.0357912i
\(66\) 0 0
\(67\) 5.77168 + 9.99685i 0.705123 + 1.22131i 0.966647 + 0.256112i \(0.0824416\pi\)
−0.261524 + 0.965197i \(0.584225\pi\)
\(68\) −20.9657 36.3137i −2.54247 4.40369i
\(69\) −1.74789 + 2.57635i −0.210421 + 0.310156i
\(70\) −5.88537 + 10.1938i −0.703437 + 1.21839i
\(71\) 13.4057 1.59096 0.795481 0.605979i \(-0.207218\pi\)
0.795481 + 0.605979i \(0.207218\pi\)
\(72\) 17.0846 21.6261i 2.01344 2.54866i
\(73\) −10.7548 −1.25875 −0.629375 0.777101i \(-0.716689\pi\)
−0.629375 + 0.777101i \(0.716689\pi\)
\(74\) 6.18799 10.7179i 0.719339 1.24593i
\(75\) −3.81155 0.276852i −0.440119 0.0319681i
\(76\) 3.05019 + 5.28308i 0.349881 + 0.606011i
\(77\) 0 0
\(78\) −0.408962 0.844263i −0.0463059 0.0955940i
\(79\) −5.95069 + 10.3069i −0.669505 + 1.15962i 0.308538 + 0.951212i \(0.400160\pi\)
−0.978043 + 0.208404i \(0.933173\pi\)
\(80\) 23.7282 2.65289
\(81\) −2.08305 8.75562i −0.231450 0.972847i
\(82\) −12.2137 −1.34878
\(83\) 1.44638 2.50520i 0.158760 0.274981i −0.775662 0.631149i \(-0.782584\pi\)
0.934422 + 0.356168i \(0.115917\pi\)
\(84\) 10.5327 + 21.7438i 1.14922 + 2.37245i
\(85\) −6.51177 11.2787i −0.706300 1.22335i
\(86\) 4.57288 + 7.92046i 0.493106 + 0.854085i
\(87\) −6.95604 0.505253i −0.745766 0.0541688i
\(88\) 0 0
\(89\) 11.6422 1.23408 0.617038 0.786933i \(-0.288333\pi\)
0.617038 + 0.786933i \(0.288333\pi\)
\(90\) 8.44489 10.6897i 0.890169 1.12679i
\(91\) 0.516740 0.0541691
\(92\) −4.83643 + 8.37694i −0.504233 + 0.873357i
\(93\) −4.30911 + 6.35153i −0.446834 + 0.658623i
\(94\) 11.3459 + 19.6517i 1.17024 + 2.02692i
\(95\) 0.947361 + 1.64088i 0.0971972 + 0.168350i
\(96\) 19.6394 28.9481i 2.00444 2.95450i
\(97\) 2.36406 4.09467i 0.240034 0.415751i −0.720690 0.693258i \(-0.756175\pi\)
0.960724 + 0.277507i \(0.0895081\pi\)
\(98\) 0.763417 0.0771168
\(99\) 0 0
\(100\) −11.8735 −1.18735
\(101\) 0.310256 0.537378i 0.0308716 0.0534712i −0.850177 0.526497i \(-0.823505\pi\)
0.881048 + 0.473026i \(0.156838\pi\)
\(102\) −36.5707 2.65632i −3.62104 0.263015i
\(103\) 6.57101 + 11.3813i 0.647461 + 1.12143i 0.983727 + 0.179668i \(0.0575024\pi\)
−0.336267 + 0.941767i \(0.609164\pi\)
\(104\) −0.915699 1.58604i −0.0897917 0.155524i
\(105\) 3.27137 + 6.75344i 0.319253 + 0.659068i
\(106\) 0.897817 1.55507i 0.0872037 0.151041i
\(107\) 0.141493 0.0136787 0.00683933 0.999977i \(-0.497823\pi\)
0.00683933 + 0.999977i \(0.497823\pi\)
\(108\) −8.42562 26.6629i −0.810756 2.56564i
\(109\) −16.0135 −1.53381 −0.766906 0.641759i \(-0.778205\pi\)
−0.766906 + 0.641759i \(0.778205\pi\)
\(110\) 0 0
\(111\) −3.43958 7.10069i −0.326471 0.673967i
\(112\) 18.3994 + 31.8687i 1.73858 + 3.01131i
\(113\) −3.11817 5.40083i −0.293333 0.508068i 0.681263 0.732039i \(-0.261431\pi\)
−0.974596 + 0.223971i \(0.928098\pi\)
\(114\) 5.32047 + 0.386453i 0.498307 + 0.0361946i
\(115\) −1.50215 + 2.60180i −0.140076 + 0.242619i
\(116\) −21.6690 −2.01191
\(117\) −0.591777 0.0864236i −0.0547098 0.00798986i
\(118\) −12.3309 −1.13515
\(119\) 10.0988 17.4916i 0.925754 1.60345i
\(120\) 14.9313 22.0084i 1.36304 2.00909i
\(121\) 0 0
\(122\) 0.619065 + 1.07225i 0.0560475 + 0.0970772i
\(123\) −4.37150 + 6.44350i −0.394165 + 0.580991i
\(124\) −11.9234 + 20.6519i −1.07075 + 1.85459i
\(125\) −12.0448 −1.07732
\(126\) 20.9055 + 3.05305i 1.86241 + 0.271987i
\(127\) 3.73490 0.331419 0.165709 0.986175i \(-0.447009\pi\)
0.165709 + 0.986175i \(0.447009\pi\)
\(128\) 15.7726 27.3189i 1.39411 2.41467i
\(129\) 5.81526 + 0.422392i 0.512005 + 0.0371895i
\(130\) −0.452627 0.783974i −0.0396981 0.0687590i
\(131\) −6.51821 11.2899i −0.569498 0.986400i −0.996616 0.0822040i \(-0.973804\pi\)
0.427117 0.904196i \(-0.359529\pi\)
\(132\) 0 0
\(133\) −1.46922 + 2.54476i −0.127397 + 0.220658i
\(134\) 31.3618 2.70925
\(135\) −2.61692 8.28125i −0.225229 0.712736i
\(136\) −71.5830 −6.13819
\(137\) 5.45125 9.44185i 0.465732 0.806672i −0.533502 0.845799i \(-0.679124\pi\)
0.999234 + 0.0391271i \(0.0124577\pi\)
\(138\) 3.68744 + 7.61236i 0.313896 + 0.648007i
\(139\) 6.86858 + 11.8967i 0.582585 + 1.00907i 0.995172 + 0.0981489i \(0.0312922\pi\)
−0.412586 + 0.910918i \(0.635375\pi\)
\(140\) 11.6573 + 20.1911i 0.985224 + 1.70646i
\(141\) 14.4284 + 1.04801i 1.21509 + 0.0882583i
\(142\) 18.2107 31.5419i 1.52821 2.64694i
\(143\) 0 0
\(144\) −15.7413 39.5737i −1.31177 3.29781i
\(145\) −6.73018 −0.558911
\(146\) −14.6097 + 25.3047i −1.20910 + 2.09423i
\(147\) 0.273241 0.402751i 0.0225365 0.0332183i
\(148\) −12.2567 21.2293i −1.00750 1.74504i
\(149\) −2.50144 4.33261i −0.204926 0.354942i 0.745183 0.666860i \(-0.232362\pi\)
−0.950109 + 0.311918i \(0.899029\pi\)
\(150\) −5.82914 + 8.59202i −0.475947 + 0.701535i
\(151\) −9.12419 + 15.8036i −0.742516 + 1.28608i 0.208830 + 0.977952i \(0.433034\pi\)
−0.951346 + 0.308124i \(0.900299\pi\)
\(152\) 10.4142 0.844703
\(153\) −14.4907 + 18.3426i −1.17150 + 1.48291i
\(154\) 0 0
\(155\) −3.70329 + 6.41429i −0.297455 + 0.515208i
\(156\) −1.85324 0.134610i −0.148378 0.0107774i
\(157\) 1.58950 + 2.75309i 0.126856 + 0.219720i 0.922457 0.386100i \(-0.126178\pi\)
−0.795601 + 0.605821i \(0.792845\pi\)
\(158\) 16.1672 + 28.0025i 1.28620 + 2.22776i
\(159\) −0.499050 1.03024i −0.0395772 0.0817034i
\(160\) 16.8783 29.2341i 1.33435 2.31116i
\(161\) −4.65922 −0.367198
\(162\) −23.4306 6.99279i −1.84088 0.549405i
\(163\) −15.0397 −1.17800 −0.588999 0.808134i \(-0.700478\pi\)
−0.588999 + 0.808134i \(0.700478\pi\)
\(164\) −12.0960 + 20.9509i −0.944540 + 1.63599i
\(165\) 0 0
\(166\) −3.92961 6.80629i −0.304997 0.528271i
\(167\) 1.15172 + 1.99484i 0.0891229 + 0.154365i 0.907141 0.420828i \(-0.138260\pi\)
−0.818018 + 0.575193i \(0.804927\pi\)
\(168\) 41.1371 + 2.98800i 3.17380 + 0.230529i
\(169\) 6.48013 11.2239i 0.498471 0.863378i
\(170\) −35.3833 −2.71377
\(171\) 2.10817 2.66856i 0.161216 0.204070i
\(172\) 18.1153 1.38128
\(173\) 9.84903 17.0590i 0.748808 1.29697i −0.199587 0.979880i \(-0.563960\pi\)
0.948395 0.317093i \(-0.102707\pi\)
\(174\) −10.6381 + 15.6804i −0.806474 + 1.18873i
\(175\) −2.85960 4.95298i −0.216166 0.374410i
\(176\) 0 0
\(177\) −4.41346 + 6.50534i −0.331736 + 0.488971i
\(178\) 15.8152 27.3928i 1.18540 2.05318i
\(179\) −14.2894 −1.06804 −0.534022 0.845471i \(-0.679320\pi\)
−0.534022 + 0.845471i \(0.679320\pi\)
\(180\) −9.97321 25.0727i −0.743359 1.86881i
\(181\) 14.3355 1.06555 0.532776 0.846256i \(-0.321149\pi\)
0.532776 + 0.846256i \(0.321149\pi\)
\(182\) 0.701958 1.21583i 0.0520326 0.0901231i
\(183\) 0.787255 + 0.0571824i 0.0581956 + 0.00422704i
\(184\) 8.25647 + 14.3006i 0.608675 + 1.05426i
\(185\) −3.80683 6.59362i −0.279884 0.484773i
\(186\) 9.09074 + 18.7670i 0.666565 + 1.37606i
\(187\) 0 0
\(188\) 44.9464 3.27805
\(189\) 9.09312 9.93622i 0.661427 0.722753i
\(190\) 5.14771 0.373454
\(191\) 3.35069 5.80357i 0.242448 0.419931i −0.718963 0.695048i \(-0.755383\pi\)
0.961411 + 0.275117i \(0.0887164\pi\)
\(192\) −19.9933 41.2743i −1.44290 2.97872i
\(193\) −12.3581 21.4048i −0.889555 1.54075i −0.840402 0.541963i \(-0.817681\pi\)
−0.0491528 0.998791i \(-0.515652\pi\)
\(194\) −6.42285 11.1247i −0.461133 0.798707i
\(195\) −0.575599 0.0418087i −0.0412195 0.00299398i
\(196\) 0.756061 1.30954i 0.0540044 0.0935383i
\(197\) 3.16677 0.225623 0.112811 0.993616i \(-0.464014\pi\)
0.112811 + 0.993616i \(0.464014\pi\)
\(198\) 0 0
\(199\) −8.30214 −0.588523 −0.294261 0.955725i \(-0.595074\pi\)
−0.294261 + 0.955725i \(0.595074\pi\)
\(200\) −10.1348 + 17.5540i −0.716641 + 1.24126i
\(201\) 11.2250 16.5453i 0.791747 1.16702i
\(202\) −0.842924 1.45999i −0.0593079 0.102724i
\(203\) −5.21875 9.03914i −0.366285 0.634423i
\(204\) −40.7749 + 60.1013i −2.85481 + 4.20793i
\(205\) −3.75691 + 6.50716i −0.262394 + 0.454480i
\(206\) 35.7052 2.48770
\(207\) 5.33580 + 0.779244i 0.370864 + 0.0541612i
\(208\) −2.83010 −0.196232
\(209\) 0 0
\(210\) 20.3340 + 1.47696i 1.40318 + 0.101920i
\(211\) −11.2467 19.4798i −0.774254 1.34105i −0.935213 0.354086i \(-0.884792\pi\)
0.160959 0.986961i \(-0.448541\pi\)
\(212\) −1.77833 3.08016i −0.122136 0.211546i
\(213\) −10.1224 20.8967i −0.693576 1.43182i
\(214\) 0.192209 0.332916i 0.0131392 0.0227577i
\(215\) 5.62644 0.383720
\(216\) −46.6110 10.3020i −3.17148 0.700961i
\(217\) −11.4865 −0.779755
\(218\) −21.7533 + 37.6778i −1.47332 + 2.55186i
\(219\) 8.12075 + 16.7645i 0.548749 + 1.13284i
\(220\) 0 0
\(221\) 0.776669 + 1.34523i 0.0522444 + 0.0904900i
\(222\) −21.3795 1.55290i −1.43490 0.104224i
\(223\) −6.33470 + 10.9720i −0.424203 + 0.734741i −0.996346 0.0854133i \(-0.972779\pi\)
0.572143 + 0.820154i \(0.306112\pi\)
\(224\) 52.3515 3.49788
\(225\) 2.44648 + 6.15047i 0.163099 + 0.410032i
\(226\) −16.9433 −1.12705
\(227\) −2.84810 + 4.93306i −0.189035 + 0.327419i −0.944929 0.327276i \(-0.893869\pi\)
0.755894 + 0.654694i \(0.227203\pi\)
\(228\) 5.93211 8.74379i 0.392863 0.579072i
\(229\) 3.36424 + 5.82703i 0.222315 + 0.385061i 0.955511 0.294957i \(-0.0953053\pi\)
−0.733195 + 0.680018i \(0.761972\pi\)
\(230\) 4.08115 + 7.06876i 0.269103 + 0.466100i
\(231\) 0 0
\(232\) −18.4960 + 32.0360i −1.21432 + 2.10326i
\(233\) 6.62352 0.433921 0.216961 0.976180i \(-0.430386\pi\)
0.216961 + 0.976180i \(0.430386\pi\)
\(234\) −1.00723 + 1.27498i −0.0658450 + 0.0833480i
\(235\) 13.9599 0.910645
\(236\) −12.2121 + 21.1520i −0.794940 + 1.37688i
\(237\) 20.5596 + 1.49335i 1.33549 + 0.0970035i
\(238\) −27.4371 47.5224i −1.77848 3.08042i
\(239\) 2.34001 + 4.05301i 0.151362 + 0.262167i 0.931729 0.363155i \(-0.118301\pi\)
−0.780366 + 0.625323i \(0.784967\pi\)
\(240\) −17.9168 36.9874i −1.15652 2.38753i
\(241\) −1.89833 + 3.28800i −0.122282 + 0.211799i −0.920667 0.390348i \(-0.872355\pi\)
0.798385 + 0.602147i \(0.205688\pi\)
\(242\) 0 0
\(243\) −12.0754 + 9.85827i −0.774635 + 0.632409i
\(244\) 2.45240 0.156999
\(245\) 0.234826 0.406730i 0.0150025 0.0259850i
\(246\) 9.22236 + 19.0387i 0.587996 + 1.21386i
\(247\) −0.112993 0.195710i −0.00718959 0.0124527i
\(248\) 20.3549 + 35.2557i 1.29254 + 2.23874i
\(249\) −4.99723 0.362974i −0.316686 0.0230026i
\(250\) −16.3621 + 28.3400i −1.03483 + 1.79238i
\(251\) 11.5694 0.730253 0.365126 0.930958i \(-0.381026\pi\)
0.365126 + 0.930958i \(0.381026\pi\)
\(252\) 25.9411 32.8368i 1.63414 2.06853i
\(253\) 0 0
\(254\) 5.07362 8.78777i 0.318347 0.551394i
\(255\) −12.6643 + 18.6669i −0.793069 + 1.16897i
\(256\) −16.3736 28.3600i −1.02335 1.77250i
\(257\) 6.63973 + 11.5003i 0.414175 + 0.717372i 0.995341 0.0964128i \(-0.0307369\pi\)
−0.581167 + 0.813785i \(0.697404\pi\)
\(258\) 8.89349 13.1088i 0.553684 0.816118i
\(259\) 5.90382 10.2257i 0.366846 0.635395i
\(260\) −1.79306 −0.111201
\(261\) 4.46480 + 11.2246i 0.276364 + 0.694783i
\(262\) −35.4182 −2.18815
\(263\) 8.23855 14.2696i 0.508011 0.879901i −0.491946 0.870626i \(-0.663714\pi\)
0.999957 0.00927492i \(-0.00295234\pi\)
\(264\) 0 0
\(265\) −0.552334 0.956670i −0.0339296 0.0587678i
\(266\) 3.99167 + 6.91377i 0.244745 + 0.423910i
\(267\) −8.79087 18.1479i −0.537992 1.11063i
\(268\) 31.0596 53.7969i 1.89727 3.28617i
\(269\) 16.8816 1.02929 0.514643 0.857404i \(-0.327924\pi\)
0.514643 + 0.857404i \(0.327924\pi\)
\(270\) −23.0397 5.09224i −1.40215 0.309904i
\(271\) 28.0885 1.70625 0.853126 0.521704i \(-0.174704\pi\)
0.853126 + 0.521704i \(0.174704\pi\)
\(272\) −55.3093 + 95.7985i −3.35362 + 5.80864i
\(273\) −0.390182 0.805493i −0.0236149 0.0487507i
\(274\) −14.8103 25.6523i −0.894726 1.54971i
\(275\) 0 0
\(276\) 16.7099 + 1.21372i 1.00582 + 0.0730575i
\(277\) −5.73251 + 9.92900i −0.344433 + 0.596576i −0.985251 0.171117i \(-0.945262\pi\)
0.640817 + 0.767693i \(0.278596\pi\)
\(278\) 37.3221 2.23843
\(279\) 13.1545 + 1.92109i 0.787538 + 0.115013i
\(280\) 39.8014 2.37859
\(281\) −6.45621 + 11.1825i −0.385145 + 0.667091i −0.991789 0.127883i \(-0.959182\pi\)
0.606644 + 0.794973i \(0.292515\pi\)
\(282\) 22.0659 32.5246i 1.31401 1.93681i
\(283\) −12.6335 21.8818i −0.750981 1.30074i −0.947348 0.320207i \(-0.896248\pi\)
0.196366 0.980531i \(-0.437086\pi\)
\(284\) −36.0705 62.4760i −2.14039 3.70727i
\(285\) 1.84246 2.71574i 0.109138 0.160867i
\(286\) 0 0
\(287\) −11.6528 −0.687844
\(288\) −59.9536 8.75567i −3.53280 0.515933i
\(289\) 43.7146 2.57144
\(290\) −9.14251 + 15.8353i −0.536867 + 0.929880i
\(291\) −8.16783 0.593271i −0.478807 0.0347782i
\(292\) 28.9378 + 50.1217i 1.69346 + 2.93315i
\(293\) −1.14253 1.97891i −0.0667471 0.115609i 0.830721 0.556690i \(-0.187929\pi\)
−0.897468 + 0.441080i \(0.854595\pi\)
\(294\) −0.576444 1.19001i −0.0336189 0.0694029i
\(295\) −3.79297 + 6.56961i −0.220835 + 0.382498i
\(296\) −41.8479 −2.43236
\(297\) 0 0
\(298\) −13.5922 −0.787372
\(299\) 0.179164 0.310321i 0.0103613 0.0179463i
\(300\) 8.96545 + 18.5083i 0.517620 + 1.06858i
\(301\) 4.36288 + 7.55674i 0.251472 + 0.435563i
\(302\) 24.7892 + 42.9362i 1.42646 + 2.47070i
\(303\) −1.07193 0.0778600i −0.0615809 0.00447294i
\(304\) 8.04664 13.9372i 0.461507 0.799353i
\(305\) 0.761693 0.0436144
\(306\) 23.4733 + 59.0121i 1.34188 + 3.37349i
\(307\) 2.56109 0.146169 0.0730847 0.997326i \(-0.476716\pi\)
0.0730847 + 0.997326i \(0.476716\pi\)
\(308\) 0 0
\(309\) 12.7795 18.8367i 0.727001 1.07158i
\(310\) 10.0614 + 17.4268i 0.571447 + 0.989775i
\(311\) 1.70546 + 2.95394i 0.0967075 + 0.167502i 0.910320 0.413905i \(-0.135836\pi\)
−0.813612 + 0.581408i \(0.802502\pi\)
\(312\) −1.78088 + 2.62498i −0.100823 + 0.148610i
\(313\) −13.9881 + 24.2282i −0.790657 + 1.36946i 0.134904 + 0.990859i \(0.456927\pi\)
−0.925561 + 0.378599i \(0.876406\pi\)
\(314\) 8.63690 0.487409
\(315\) 8.05708 10.1988i 0.453965 0.574638i
\(316\) 64.0458 3.60286
\(317\) 15.3664 26.6154i 0.863064 1.49487i −0.00589349 0.999983i \(-0.501876\pi\)
0.868957 0.494887i \(-0.164791\pi\)
\(318\) −3.10196 0.225311i −0.173949 0.0126348i
\(319\) 0 0
\(320\) −22.1280 38.3269i −1.23700 2.14254i
\(321\) −0.106839 0.220559i −0.00596318 0.0123104i
\(322\) −6.32925 + 10.9626i −0.352716 + 0.610921i
\(323\) −8.83302 −0.491482
\(324\) −35.2000 + 33.2665i −1.95555 + 1.84814i
\(325\) 0.439848 0.0243984
\(326\) −20.4304 + 35.3865i −1.13154 + 1.95988i
\(327\) 12.0915 + 24.9618i 0.668662 + 1.38039i
\(328\) 20.6496 + 35.7662i 1.14018 + 1.97486i
\(329\) 10.8249 + 18.7492i 0.596795 + 1.03368i
\(330\) 0 0
\(331\) 2.98877 5.17671i 0.164278 0.284538i −0.772121 0.635476i \(-0.780804\pi\)
0.936399 + 0.350938i \(0.114137\pi\)
\(332\) −15.5670 −0.854350
\(333\) −8.47136 + 10.7232i −0.464228 + 0.587629i
\(334\) 6.25816 0.342431
\(335\) 9.64684 16.7088i 0.527063 0.912900i
\(336\) 35.7838 52.7445i 1.95217 2.87745i
\(337\) −0.657458 1.13875i −0.0358140 0.0620317i 0.847563 0.530695i \(-0.178069\pi\)
−0.883377 + 0.468663i \(0.844736\pi\)
\(338\) −17.6057 30.4939i −0.957622 1.65865i
\(339\) −6.06432 + 8.93868i −0.329369 + 0.485482i
\(340\) −35.0423 + 60.6951i −1.90044 + 3.29165i
\(341\) 0 0
\(342\) −3.41500 8.58533i −0.184662 0.464242i
\(343\) 18.8731 1.01905
\(344\) 15.4627 26.7821i 0.833691 1.44399i
\(345\) 5.18993 + 0.376971i 0.279416 + 0.0202954i
\(346\) −26.7585 46.3471i −1.43855 2.49164i
\(347\) −8.96788 15.5328i −0.481421 0.833846i 0.518351 0.855168i \(-0.326546\pi\)
−0.999773 + 0.0213217i \(0.993213\pi\)
\(348\) 16.3619 + 33.7775i 0.877088 + 1.81066i
\(349\) 12.8616 22.2769i 0.688466 1.19246i −0.283868 0.958863i \(-0.591618\pi\)
0.972334 0.233594i \(-0.0750488\pi\)
\(350\) −15.5383 −0.830559
\(351\) 0.312124 + 0.987718i 0.0166600 + 0.0527205i
\(352\) 0 0
\(353\) 9.95335 17.2397i 0.529763 0.917577i −0.469634 0.882861i \(-0.655614\pi\)
0.999397 0.0347159i \(-0.0110526\pi\)
\(354\) 9.31087 + 19.2214i 0.494867 + 1.02161i
\(355\) −11.2032 19.4045i −0.594603 1.02988i
\(356\) −31.3257 54.2577i −1.66026 2.87565i
\(357\) −34.8913 2.53433i −1.84664 0.134131i
\(358\) −19.4113 + 33.6213i −1.02592 + 1.77694i
\(359\) 29.2180 1.54207 0.771033 0.636796i \(-0.219740\pi\)
0.771033 + 0.636796i \(0.219740\pi\)
\(360\) −45.5811 6.65669i −2.40233 0.350838i
\(361\) −17.7149 −0.932365
\(362\) 19.4739 33.7298i 1.02353 1.77280i
\(363\) 0 0
\(364\) −1.39039 2.40822i −0.0728761 0.126225i
\(365\) 8.98781 + 15.5673i 0.470443 + 0.814832i
\(366\) 1.20398 1.77464i 0.0629330 0.0927618i
\(367\) −8.57383 + 14.8503i −0.447550 + 0.775180i −0.998226 0.0595394i \(-0.981037\pi\)
0.550676 + 0.834719i \(0.314370\pi\)
\(368\) 25.5178 1.33021
\(369\) 13.3450 + 1.94891i 0.694711 + 0.101456i
\(370\) −20.6853 −1.07538
\(371\) 0.856588 1.48365i 0.0444718 0.0770274i
\(372\) 41.1952 + 2.99222i 2.13587 + 0.155139i
\(373\) 10.1208 + 17.5297i 0.524034 + 0.907654i 0.999609 + 0.0279786i \(0.00890703\pi\)
−0.475574 + 0.879676i \(0.657760\pi\)
\(374\) 0 0
\(375\) 9.09485 + 18.7754i 0.469656 + 0.969560i
\(376\) 38.3649 66.4499i 1.97852 3.42689i
\(377\) 0.802719 0.0413421
\(378\) −11.0263 34.8927i −0.567131 1.79469i
\(379\) −20.1090 −1.03293 −0.516465 0.856308i \(-0.672752\pi\)
−0.516465 + 0.856308i \(0.672752\pi\)
\(380\) 5.09811 8.83019i 0.261528 0.452979i
\(381\) −2.82016 5.82195i −0.144481 0.298268i
\(382\) −9.10339 15.7675i −0.465770 0.806737i
\(383\) 10.6542 + 18.4536i 0.544402 + 0.942932i 0.998644 + 0.0520541i \(0.0165768\pi\)
−0.454242 + 0.890878i \(0.650090\pi\)
\(384\) −54.4942 3.95819i −2.78089 0.201991i
\(385\) 0 0
\(386\) −67.1507 −3.41788
\(387\) −3.73258 9.38375i −0.189738 0.477003i
\(388\) −25.4438 −1.29171
\(389\) −17.2712 + 29.9146i −0.875685 + 1.51673i −0.0196533 + 0.999807i \(0.506256\pi\)
−0.856031 + 0.516924i \(0.827077\pi\)
\(390\) −0.880285 + 1.29752i −0.0445749 + 0.0657025i
\(391\) −7.00289 12.1294i −0.354152 0.613408i
\(392\) −1.29070 2.23556i −0.0651903 0.112913i
\(393\) −12.6768 + 18.6854i −0.639461 + 0.942552i
\(394\) 4.30184 7.45101i 0.216724 0.375377i
\(395\) 19.8921 1.00088
\(396\) 0 0
\(397\) −2.61262 −0.131124 −0.0655619 0.997849i \(-0.520884\pi\)
−0.0655619 + 0.997849i \(0.520884\pi\)
\(398\) −11.2779 + 19.5339i −0.565311 + 0.979147i
\(399\) 5.07614 + 0.368706i 0.254125 + 0.0184584i
\(400\) 15.6616 + 27.1266i 0.783078 + 1.35633i
\(401\) −5.12601 8.87852i −0.255981 0.443372i 0.709181 0.705027i \(-0.249065\pi\)
−0.965161 + 0.261655i \(0.915732\pi\)
\(402\) −23.6808 48.8867i −1.18109 2.43825i
\(403\) 0.441697 0.765042i 0.0220025 0.0381095i
\(404\) −3.33921 −0.166132
\(405\) −10.9328 + 10.3323i −0.543255 + 0.513415i
\(406\) −28.3573 −1.40735
\(407\) 0 0
\(408\) 54.0511 + 111.583i 2.67593 + 5.52420i
\(409\) −1.98229 3.43343i −0.0980181 0.169772i 0.812846 0.582478i \(-0.197917\pi\)
−0.910864 + 0.412706i \(0.864584\pi\)
\(410\) 10.2070 + 17.6791i 0.504090 + 0.873109i
\(411\) −18.8341 1.36802i −0.929017 0.0674792i
\(412\) 35.3611 61.2473i 1.74212 3.01744i
\(413\) −11.7647 −0.578901
\(414\) 9.08181 11.4959i 0.446346 0.564995i
\(415\) −4.83497 −0.237339
\(416\) −2.01310 + 3.48680i −0.0987006 + 0.170954i
\(417\) 13.3582 19.6897i 0.654156 0.964211i
\(418\) 0 0
\(419\) −16.3884 28.3856i −0.800628 1.38673i −0.919203 0.393783i \(-0.871166\pi\)
0.118575 0.992945i \(-0.462167\pi\)
\(420\) 22.6716 33.4174i 1.10626 1.63060i
\(421\) 18.7961 32.5558i 0.916066 1.58667i 0.110732 0.993850i \(-0.464681\pi\)
0.805334 0.592822i \(-0.201986\pi\)
\(422\) −61.1116 −2.97487
\(423\) −9.26102 23.2823i −0.450286 1.13202i
\(424\) −6.07173 −0.294869
\(425\) 8.59606 14.8888i 0.416970 0.722214i
\(426\) −62.9181 4.57007i −3.04839 0.221420i
\(427\) 0.590636 + 1.02301i 0.0285829 + 0.0495070i
\(428\) −0.380715 0.659417i −0.0184025 0.0318741i
\(429\) 0 0
\(430\) 7.64315 13.2383i 0.368585 0.638409i
\(431\) −30.0260 −1.44630 −0.723152 0.690689i \(-0.757307\pi\)
−0.723152 + 0.690689i \(0.757307\pi\)
\(432\) −49.8015 + 54.4190i −2.39607 + 2.61823i
\(433\) 17.8078 0.855788 0.427894 0.903829i \(-0.359256\pi\)
0.427894 + 0.903829i \(0.359256\pi\)
\(434\) −15.6037 + 27.0263i −0.749000 + 1.29731i
\(435\) 5.08185 + 10.4910i 0.243656 + 0.503004i
\(436\) 43.0873 + 74.6294i 2.06351 + 3.57410i
\(437\) 1.01881 + 1.76463i 0.0487364 + 0.0844139i
\(438\) 50.4764 + 3.66636i 2.41185 + 0.175185i
\(439\) 1.17026 2.02694i 0.0558533 0.0967407i −0.836747 0.547590i \(-0.815545\pi\)
0.892600 + 0.450849i \(0.148879\pi\)
\(440\) 0 0
\(441\) −0.834126 0.121816i −0.0397203 0.00580078i
\(442\) 4.22022 0.200735
\(443\) −3.20338 + 5.54842i −0.152197 + 0.263613i −0.932035 0.362368i \(-0.881968\pi\)
0.779838 + 0.625982i \(0.215302\pi\)
\(444\) −23.8373 + 35.1356i −1.13127 + 1.66746i
\(445\) −9.72947 16.8519i −0.461221 0.798859i
\(446\) 17.2105 + 29.8095i 0.814943 + 1.41152i
\(447\) −4.86487 + 7.17072i −0.230101 + 0.339163i
\(448\) 34.3173 59.4393i 1.62134 2.80824i
\(449\) 21.7677 1.02728 0.513640 0.858006i \(-0.328297\pi\)
0.513640 + 0.858006i \(0.328297\pi\)
\(450\) 17.7947 + 2.59875i 0.838850 + 0.122506i
\(451\) 0 0
\(452\) −16.7801 + 29.0640i −0.789269 + 1.36705i
\(453\) 31.5241 + 2.28975i 1.48113 + 0.107582i
\(454\) 7.73793 + 13.4025i 0.363159 + 0.629010i
\(455\) −0.431842 0.747972i −0.0202451 0.0350655i
\(456\) −7.86359 16.2336i −0.368247 0.760210i
\(457\) 3.57114 6.18539i 0.167051 0.289340i −0.770331 0.637644i \(-0.779909\pi\)
0.937382 + 0.348304i \(0.113242\pi\)
\(458\) 18.2804 0.854187
\(459\) 39.5341 + 8.73784i 1.84529 + 0.407847i
\(460\) 16.1673 0.753804
\(461\) −1.44390 + 2.50091i −0.0672491 + 0.116479i −0.897689 0.440629i \(-0.854756\pi\)
0.830440 + 0.557108i \(0.188089\pi\)
\(462\) 0 0
\(463\) −0.726039 1.25754i −0.0337419 0.0584426i 0.848661 0.528937i \(-0.177409\pi\)
−0.882403 + 0.470494i \(0.844076\pi\)
\(464\) 28.5822 + 49.5058i 1.32690 + 2.29825i
\(465\) 12.7949 + 0.929357i 0.593348 + 0.0430979i
\(466\) 8.99763 15.5843i 0.416807 0.721931i
\(467\) 5.50281 0.254640 0.127320 0.991862i \(-0.459363\pi\)
0.127320 + 0.991862i \(0.459363\pi\)
\(468\) 1.18952 + 2.99047i 0.0549856 + 0.138234i
\(469\) 29.9216 1.38165
\(470\) 18.9637 32.8460i 0.874728 1.51507i
\(471\) 3.09130 4.55651i 0.142440 0.209953i
\(472\) 20.8478 + 36.1094i 0.959597 + 1.66207i
\(473\) 0 0
\(474\) 31.4426 46.3457i 1.44421 2.12873i
\(475\) −1.25059 + 2.16609i −0.0573812 + 0.0993871i
\(476\) −108.691 −4.98184
\(477\) −1.22911 + 1.55584i −0.0562772 + 0.0712368i
\(478\) 12.7150 0.581570
\(479\) 5.22744 9.05419i 0.238848 0.413696i −0.721536 0.692377i \(-0.756564\pi\)
0.960384 + 0.278680i \(0.0898970\pi\)
\(480\) −58.3146 4.23569i −2.66169 0.193332i
\(481\) 0.454046 + 0.786431i 0.0207027 + 0.0358582i
\(482\) 5.15751 + 8.93307i 0.234918 + 0.406890i
\(483\) 3.51810 + 7.26279i 0.160079 + 0.330468i
\(484\) 0 0
\(485\) −7.90262 −0.358840
\(486\) 6.79172 + 41.8037i 0.308079 + 1.89625i
\(487\) 5.69868 0.258232 0.129116 0.991630i \(-0.458786\pi\)
0.129116 + 0.991630i \(0.458786\pi\)
\(488\) 2.09330 3.62570i 0.0947591 0.164128i
\(489\) 11.3562 + 23.4438i 0.513546 + 1.06017i
\(490\) −0.637991 1.10503i −0.0288215 0.0499203i
\(491\) 4.15018 + 7.18832i 0.187295 + 0.324404i 0.944347 0.328950i \(-0.106695\pi\)
−0.757053 + 0.653354i \(0.773361\pi\)
\(492\) 41.7917 + 3.03555i 1.88412 + 0.136853i
\(493\) 15.6877 27.1720i 0.706540 1.22376i
\(494\) −0.613976 −0.0276241
\(495\) 0 0
\(496\) 62.9096 2.82472
\(497\) 17.3745 30.0935i 0.779351 1.34988i
\(498\) −7.64244 + 11.2648i −0.342466 + 0.504787i
\(499\) −6.95262 12.0423i −0.311242 0.539087i 0.667389 0.744709i \(-0.267412\pi\)
−0.978632 + 0.205622i \(0.934078\pi\)
\(500\) 32.4089 + 56.1339i 1.44937 + 2.51038i
\(501\) 2.23991 3.30157i 0.100072 0.147503i
\(502\) 15.7162 27.2213i 0.701451 1.21495i
\(503\) 29.2592 1.30460 0.652302 0.757959i \(-0.273803\pi\)
0.652302 + 0.757959i \(0.273803\pi\)
\(504\) −26.4043 66.3806i −1.17614 2.95683i
\(505\) −1.03713 −0.0461516
\(506\) 0 0
\(507\) −22.3888 1.62622i −0.994323 0.0722228i
\(508\) −10.0495 17.4062i −0.445873 0.772275i
\(509\) 18.3346 + 31.7565i 0.812669 + 1.40758i 0.910990 + 0.412429i \(0.135319\pi\)
−0.0983212 + 0.995155i \(0.531347\pi\)
\(510\) 26.7173 + 55.1553i 1.18306 + 2.44232i
\(511\) −13.9387 + 24.1426i −0.616614 + 1.06801i
\(512\) −25.8799 −1.14374
\(513\) −5.75159 1.27122i −0.253939 0.0561257i
\(514\) 36.0785 1.59136
\(515\) 10.9828 19.0228i 0.483962 0.838246i
\(516\) −13.6785 28.2380i −0.602164 1.24311i
\(517\) 0 0
\(518\) −16.0399 27.7820i −0.704754 1.22067i
\(519\) −34.0284 2.47166i −1.49368 0.108494i
\(520\) −1.53051 + 2.65092i −0.0671172 + 0.116250i
\(521\) 42.0462 1.84208 0.921039 0.389469i \(-0.127342\pi\)
0.921039 + 0.389469i \(0.127342\pi\)
\(522\) 32.4752 + 4.74270i 1.42140 + 0.207582i
\(523\) −36.3284 −1.58853 −0.794264 0.607573i \(-0.792143\pi\)
−0.794264 + 0.607573i \(0.792143\pi\)
\(524\) −35.0770 + 60.7551i −1.53234 + 2.65410i
\(525\) −5.56145 + 8.19745i −0.242722 + 0.357766i
\(526\) −22.3831 38.7686i −0.975948 1.69039i
\(527\) −17.2644 29.9028i −0.752049 1.30259i
\(528\) 0 0
\(529\) 9.88456 17.1206i 0.429763 0.744372i
\(530\) −3.00124 −0.130365
\(531\) 13.4730 + 1.96761i 0.584680 + 0.0853871i
\(532\) 15.8128 0.685573
\(533\) 0.448093 0.776119i 0.0194091 0.0336175i
\(534\) −54.6416 3.96890i −2.36457 0.171751i
\(535\) −0.118246 0.204809i −0.00511224 0.00885466i
\(536\) −53.0232 91.8388i −2.29025 3.96683i
\(537\) 10.7897 + 22.2744i 0.465611 + 0.961209i
\(538\) 22.9325 39.7203i 0.988690 1.71246i
\(539\) 0 0
\(540\) −31.5527 + 34.4782i −1.35781 + 1.48371i
\(541\) 16.4772 0.708409 0.354205 0.935168i \(-0.384752\pi\)
0.354205 + 0.935168i \(0.384752\pi\)
\(542\) 38.1564 66.0887i 1.63896 2.83875i
\(543\) −10.8245 22.3462i −0.464525 0.958968i
\(544\) 78.6852 + 136.287i 3.37360 + 5.84325i
\(545\) 13.3825 + 23.1792i 0.573244 + 0.992888i
\(546\) −2.42526 0.176159i −0.103792 0.00753892i
\(547\) 6.74141 11.6765i 0.288242 0.499250i −0.685148 0.728404i \(-0.740263\pi\)
0.973390 + 0.229154i \(0.0735960\pi\)
\(548\) −58.6706 −2.50628
\(549\) −0.505308 1.27035i −0.0215660 0.0542172i
\(550\) 0 0
\(551\) −2.28232 + 3.95310i −0.0972302 + 0.168408i
\(552\) 16.0574 23.6683i 0.683450 1.00739i
\(553\) 15.4248 + 26.7165i 0.655929 + 1.13610i
\(554\) 15.5745 + 26.9758i 0.661697 + 1.14609i
\(555\) −7.40364 + 10.9128i −0.314267 + 0.463223i
\(556\) 36.9625 64.0209i 1.56756 2.71509i
\(557\) −41.2760 −1.74892 −0.874460 0.485098i \(-0.838784\pi\)
−0.874460 + 0.485098i \(0.838784\pi\)
\(558\) 22.3896 28.3412i 0.947828 1.19978i
\(559\) −0.671074 −0.0283834
\(560\) 30.7530 53.2657i 1.29955 2.25089i
\(561\) 0 0
\(562\) 17.5407 + 30.3813i 0.739909 + 1.28156i
\(563\) −0.715826 1.23985i −0.0301685 0.0522533i 0.850547 0.525899i \(-0.176271\pi\)
−0.880715 + 0.473646i \(0.842938\pi\)
\(564\) −33.9382 70.0623i −1.42906 2.95015i
\(565\) −5.21174 + 9.02700i −0.219260 + 0.379769i
\(566\) −68.6469 −2.88545
\(567\) −22.3546 6.67166i −0.938805 0.280183i
\(568\) −123.155 −5.16747
\(569\) −14.6876 + 25.4396i −0.615734 + 1.06648i 0.374521 + 0.927218i \(0.377807\pi\)
−0.990255 + 0.139265i \(0.955526\pi\)
\(570\) −3.88695 8.02424i −0.162807 0.336098i
\(571\) 11.9853 + 20.7591i 0.501569 + 0.868743i 0.999998 + 0.00181287i \(0.000577056\pi\)
−0.498429 + 0.866930i \(0.666090\pi\)
\(572\) 0 0
\(573\) −11.5766 0.840870i −0.483621 0.0351279i
\(574\) −15.8296 + 27.4177i −0.660715 + 1.14439i
\(575\) −3.96592 −0.165390
\(576\) −49.2417 + 62.3311i −2.05174 + 2.59713i
\(577\) 41.8351 1.74162 0.870810 0.491620i \(-0.163595\pi\)
0.870810 + 0.491620i \(0.163595\pi\)
\(578\) 59.3834 102.855i 2.47002 4.27821i
\(579\) −24.0344 + 35.4262i −0.998836 + 1.47226i
\(580\) 18.1088 + 31.3654i 0.751928 + 1.30238i
\(581\) −3.74916 6.49373i −0.155541 0.269405i
\(582\) −12.4914 + 18.4120i −0.517784 + 0.763202i
\(583\) 0 0
\(584\) 98.8017 4.08844
\(585\) 0.369454 + 0.928811i 0.0152750 + 0.0384016i
\(586\) −6.20819 −0.256458
\(587\) −1.57929 + 2.73540i −0.0651841 + 0.112902i −0.896776 0.442486i \(-0.854097\pi\)
0.831592 + 0.555388i \(0.187430\pi\)
\(588\) −2.61219 0.189737i −0.107725 0.00782461i
\(589\) 2.51170 + 4.35040i 0.103493 + 0.179255i
\(590\) 10.3050 + 17.8488i 0.424250 + 0.734823i
\(591\) −2.39117 4.93635i −0.0983597 0.203054i
\(592\) −32.3342 + 56.0045i −1.32893 + 2.30177i
\(593\) 42.1283 1.73000 0.865001 0.501770i \(-0.167318\pi\)
0.865001 + 0.501770i \(0.167318\pi\)
\(594\) 0 0
\(595\) −33.7584 −1.38396
\(596\) −13.4612 + 23.3155i −0.551392 + 0.955038i
\(597\) 6.26881 + 12.9413i 0.256565 + 0.529654i
\(598\) −0.486765 0.843102i −0.0199053 0.0344770i
\(599\) −11.4511 19.8340i −0.467881 0.810393i 0.531445 0.847093i \(-0.321649\pi\)
−0.999326 + 0.0366990i \(0.988316\pi\)
\(600\) 35.0158 + 2.54338i 1.42952 + 0.103833i
\(601\) −1.47861 + 2.56102i −0.0603136 + 0.104466i −0.894606 0.446857i \(-0.852543\pi\)
0.834292 + 0.551323i \(0.185877\pi\)
\(602\) 23.7068 0.966216
\(603\) −34.2666 5.00432i −1.39544 0.203792i
\(604\) 98.2015 3.99576
\(605\) 0 0
\(606\) −1.63935 + 2.41636i −0.0665939 + 0.0981579i
\(607\) −8.38100 14.5163i −0.340174 0.589199i 0.644291 0.764781i \(-0.277153\pi\)
−0.984465 + 0.175582i \(0.943819\pi\)
\(608\) −11.4475 19.8276i −0.464256 0.804116i
\(609\) −10.1496 + 14.9603i −0.411282 + 0.606221i
\(610\) 1.03471 1.79217i 0.0418942 0.0725629i
\(611\) −1.66502 −0.0673596
\(612\) 124.474 + 18.1783i 5.03157 + 0.734814i
\(613\) −27.4806 −1.10993 −0.554965 0.831874i \(-0.687268\pi\)
−0.554965 + 0.831874i \(0.687268\pi\)
\(614\) 3.47908 6.02594i 0.140404 0.243187i
\(615\) 12.9801 + 0.942813i 0.523409 + 0.0380179i
\(616\) 0 0
\(617\) 17.9737 + 31.1313i 0.723592 + 1.25330i 0.959551 + 0.281535i \(0.0908436\pi\)
−0.235959 + 0.971763i \(0.575823\pi\)
\(618\) −26.9604 55.6571i −1.08451 2.23886i
\(619\) −15.4945 + 26.8373i −0.622778 + 1.07868i 0.366188 + 0.930541i \(0.380663\pi\)
−0.988966 + 0.148143i \(0.952671\pi\)
\(620\) 39.8576 1.60072
\(621\) −2.81429 8.90583i −0.112934 0.357379i
\(622\) 9.26700 0.371573
\(623\) 15.0890 26.1349i 0.604527 1.04707i
\(624\) 2.13696 + 4.41155i 0.0855468 + 0.176603i
\(625\) 4.54992 + 7.88070i 0.181997 + 0.315228i
\(626\) 38.0040 + 65.8248i 1.51894 + 2.63089i
\(627\) 0 0
\(628\) 8.55368 14.8154i 0.341329 0.591199i
\(629\) 35.4942 1.41525
\(630\) −13.0516 32.8118i −0.519987 1.30725i
\(631\) 17.8066 0.708868 0.354434 0.935081i \(-0.384674\pi\)
0.354434 + 0.935081i \(0.384674\pi\)
\(632\) 54.6676 94.6871i 2.17456 3.76645i
\(633\) −21.8729 + 32.2402i −0.869371 + 1.28143i
\(634\) −41.7485 72.3106i −1.65805 2.87182i
\(635\) −3.12127 5.40620i −0.123864 0.214539i
\(636\) −3.45856 + 5.09784i −0.137141 + 0.202143i
\(637\) −0.0280080 + 0.0485113i −0.00110972 + 0.00192209i
\(638\) 0 0
\(639\) −24.9305 + 31.5576i −0.986236 + 1.24840i
\(640\) −52.7247 −2.08413
\(641\) −6.42074 + 11.1210i −0.253604 + 0.439255i −0.964515 0.264027i \(-0.914949\pi\)
0.710911 + 0.703282i \(0.248283\pi\)
\(642\) −0.664083 0.0482358i −0.0262093 0.00190371i
\(643\) −8.08421 14.0023i −0.318810 0.552195i 0.661430 0.750007i \(-0.269950\pi\)
−0.980240 + 0.197812i \(0.936617\pi\)
\(644\) 12.5365 + 21.7139i 0.494009 + 0.855648i
\(645\) −4.24843 8.77048i −0.167282 0.345337i
\(646\) −11.9991 + 20.7830i −0.472098 + 0.817697i
\(647\) 0.875926 0.0344362 0.0172181 0.999852i \(-0.494519\pi\)
0.0172181 + 0.999852i \(0.494519\pi\)
\(648\) 19.1365 + 80.4360i 0.751753 + 3.15982i
\(649\) 0 0
\(650\) 0.597505 1.03491i 0.0234361 0.0405925i
\(651\) 8.67327 + 17.9051i 0.339932 + 0.701757i
\(652\) 40.4671 + 70.0911i 1.58482 + 2.74498i
\(653\) −15.8631 27.4757i −0.620771 1.07521i −0.989342 0.145607i \(-0.953486\pi\)
0.368572 0.929599i \(-0.379847\pi\)
\(654\) 75.1575 + 5.45907i 2.93889 + 0.213467i
\(655\) −10.8946 + 18.8700i −0.425687 + 0.737311i
\(656\) 63.8205 2.49177
\(657\) 20.0006 25.3172i 0.780299 0.987718i
\(658\) 58.8196 2.29303
\(659\) −5.99686 + 10.3869i −0.233605 + 0.404615i −0.958866 0.283858i \(-0.908385\pi\)
0.725262 + 0.688473i \(0.241719\pi\)
\(660\) 0 0
\(661\) 11.9234 + 20.6520i 0.463768 + 0.803270i 0.999145 0.0413433i \(-0.0131637\pi\)
−0.535377 + 0.844613i \(0.679830\pi\)
\(662\) −8.12011 14.0644i −0.315597 0.546630i
\(663\) 1.51049 2.22643i 0.0586626 0.0864674i
\(664\) −13.2875 + 23.0147i −0.515656 + 0.893143i
\(665\) 4.91132 0.190453
\(666\) 13.7226 + 34.4989i 0.531742 + 1.33680i
\(667\) −7.23777 −0.280248
\(668\) 6.19786 10.7350i 0.239802 0.415350i
\(669\) 21.8864 + 1.58972i 0.846176 + 0.0614621i
\(670\) −26.2092 45.3957i −1.01255 1.75379i
\(671\) 0 0
\(672\) −39.5298 81.6054i −1.52489 3.14800i
\(673\) −16.4861 + 28.5547i −0.635491 + 1.10070i 0.350920 + 0.936406i \(0.385869\pi\)
−0.986411 + 0.164297i \(0.947464\pi\)
\(674\) −3.57245 −0.137606
\(675\) 7.74005 8.45769i 0.297915 0.325537i
\(676\) −69.7441 −2.68247
\(677\) −13.2643 + 22.9745i −0.509789 + 0.882980i 0.490147 + 0.871640i \(0.336943\pi\)
−0.999936 + 0.0113405i \(0.996390\pi\)
\(678\) 12.7936 + 26.4112i 0.491337 + 1.01432i
\(679\) −6.12789 10.6138i −0.235167 0.407321i
\(680\) 59.8222 + 103.615i 2.29408 + 3.97346i
\(681\) 9.84020 + 0.714744i 0.377077 + 0.0273890i
\(682\) 0 0
\(683\) 17.4229 0.666669 0.333334 0.942809i \(-0.391826\pi\)
0.333334 + 0.942809i \(0.391826\pi\)
\(684\) −18.1090 2.64466i −0.692416 0.101121i
\(685\) −18.2225 −0.696247
\(686\) 25.6379 44.4061i 0.978859 1.69543i
\(687\) 6.54288 9.64406i 0.249626 0.367944i
\(688\) −23.8948 41.3869i −0.910979 1.57786i
\(689\) 0.0658777 + 0.114104i 0.00250974 + 0.00434700i
\(690\) 7.93715 11.6992i 0.302162 0.445380i
\(691\) −21.7319 + 37.6408i −0.826721 + 1.43192i 0.0738765 + 0.997267i \(0.476463\pi\)
−0.900597 + 0.434655i \(0.856870\pi\)
\(692\) −106.003 −4.02962
\(693\) 0 0
\(694\) −48.7292 −1.84973
\(695\) 11.4802 19.8843i 0.435469 0.754254i
\(696\) 63.9036 + 4.64164i 2.42226 + 0.175941i
\(697\) −17.5144 30.3358i −0.663405 1.14905i
\(698\) −34.9433 60.5236i −1.32262 2.29085i
\(699\) −5.00131 10.3247i −0.189167 0.390517i
\(700\) −15.3886 + 26.6539i −0.581635 + 1.00742i
\(701\) −16.2104 −0.612258 −0.306129 0.951990i \(-0.599034\pi\)
−0.306129 + 0.951990i \(0.599034\pi\)
\(702\) 2.74798 + 0.607360i 0.103716 + 0.0229233i
\(703\) −5.16385 −0.194758
\(704\) 0 0
\(705\) −10.5409 21.7607i −0.396994 0.819555i
\(706\) −27.0420 46.8381i −1.01774 1.76277i
\(707\) −0.804215 1.39294i −0.0302456 0.0523870i
\(708\) 42.1928 + 3.06468i 1.58570 + 0.115178i
\(709\) −4.56049 + 7.89900i −0.171273 + 0.296653i −0.938865 0.344285i \(-0.888121\pi\)
0.767592 + 0.640938i \(0.221455\pi\)
\(710\) −60.8752 −2.28460
\(711\) −13.1964 33.1759i −0.494904 1.24419i
\(712\) −106.955 −4.00830
\(713\) −3.98260 + 6.89806i −0.149149 + 0.258334i
\(714\) −53.3605 + 78.6522i −1.99697 + 2.94349i
\(715\) 0 0
\(716\) 38.4485 + 66.5947i 1.43689 + 2.48876i
\(717\) 4.55092 6.70796i 0.169957 0.250513i
\(718\) 39.6907 68.7463i 1.48124 2.56559i
\(719\) 30.5511 1.13936 0.569682 0.821865i \(-0.307066\pi\)
0.569682 + 0.821865i \(0.307066\pi\)
\(720\) −44.1272 + 55.8572i −1.64452 + 2.08167i
\(721\) 34.0655 1.26867
\(722\) −24.0646 + 41.6811i −0.895591 + 1.55121i
\(723\) 6.55873 + 0.476394i 0.243922 + 0.0177173i
\(724\) −38.5725 66.8096i −1.43354 2.48296i
\(725\) −4.44219 7.69410i −0.164979 0.285752i
\(726\) 0 0
\(727\) −8.34868 + 14.4603i −0.309635 + 0.536304i −0.978283 0.207276i \(-0.933540\pi\)
0.668647 + 0.743580i \(0.266874\pi\)
\(728\) −4.74718 −0.175942
\(729\) 24.4850 + 11.3792i 0.906850 + 0.421453i
\(730\) 48.8374 1.80755
\(731\) −13.1150 + 22.7158i −0.485075 + 0.840174i
\(732\) −1.85177 3.82280i −0.0684433 0.141295i
\(733\) 16.1822 + 28.0283i 0.597702 + 1.03525i 0.993159 + 0.116766i \(0.0372528\pi\)
−0.395457 + 0.918484i \(0.629414\pi\)
\(734\) 23.2940 + 40.3464i 0.859797 + 1.48921i
\(735\) −0.811322 0.0589305i −0.0299261 0.00217368i
\(736\) 18.1513 31.4390i 0.669066 1.15886i
\(737\) 0 0
\(738\) 22.7138 28.7516i 0.836106 1.05836i
\(739\) 27.6489 1.01708 0.508541 0.861038i \(-0.330185\pi\)
0.508541 + 0.861038i \(0.330185\pi\)
\(740\) −20.4860 + 35.4828i −0.753080 + 1.30437i
\(741\) −0.219753 + 0.323911i −0.00807282 + 0.0118992i
\(742\) −2.32724 4.03089i −0.0854356 0.147979i
\(743\) −3.42693 5.93562i −0.125722 0.217757i 0.796293 0.604911i \(-0.206791\pi\)
−0.922015 + 0.387154i \(0.873458\pi\)
\(744\) 39.5868 58.3501i 1.45132 2.13922i
\(745\) −4.18092 + 7.24157i −0.153177 + 0.265310i
\(746\) 54.9937 2.01346
\(747\) 3.20752 + 8.06374i 0.117357 + 0.295037i
\(748\) 0 0
\(749\) 0.183383 0.317628i 0.00670066 0.0116059i
\(750\) 56.5311 + 4.10614i 2.06422 + 0.149935i
\(751\) −11.4092 19.7613i −0.416327 0.721099i 0.579240 0.815157i \(-0.303349\pi\)
−0.995567 + 0.0940582i \(0.970016\pi\)
\(752\) −59.2860 102.686i −2.16194 3.74459i
\(753\) −8.73585 18.0343i −0.318352 0.657207i
\(754\) 1.09044 1.88870i 0.0397115 0.0687824i
\(755\) 30.5005 1.11003
\(756\) −70.7737 15.6424i −2.57401 0.568909i
\(757\) −2.07971 −0.0755884 −0.0377942 0.999286i \(-0.512033\pi\)
−0.0377942 + 0.999286i \(0.512033\pi\)
\(758\) −27.3168 + 47.3140i −0.992190 + 1.71852i
\(759\) 0 0
\(760\) −8.70319 15.0744i −0.315698 0.546805i
\(761\) 10.9223 + 18.9179i 0.395931 + 0.685773i 0.993220 0.116253i \(-0.0370884\pi\)
−0.597288 + 0.802027i \(0.703755\pi\)
\(762\) −17.5294 1.27325i −0.635022 0.0461249i
\(763\) −20.7543 + 35.9475i −0.751356 + 1.30139i
\(764\) −36.0627 −1.30470
\(765\) 38.6605 + 5.64601i 1.39777 + 0.204132i
\(766\) 57.8920 2.09172
\(767\) 0.452393 0.783568i 0.0163350 0.0282930i
\(768\) −31.8440 + 46.9374i −1.14907 + 1.69371i
\(769\) −1.78408 3.09013i −0.0643357 0.111433i 0.832063 0.554681i \(-0.187160\pi\)
−0.896399 + 0.443248i \(0.853826\pi\)
\(770\) 0 0
\(771\) 12.9132 19.0337i 0.465056 0.685482i
\(772\) −66.5036 + 115.188i −2.39352 + 4.14569i
\(773\) −9.24340 −0.332462 −0.166231 0.986087i \(-0.553160\pi\)
−0.166231 + 0.986087i \(0.553160\pi\)
\(774\) −27.1493 3.96490i −0.975861 0.142515i
\(775\) −9.77729 −0.351211
\(776\) −21.7181 + 37.6169i −0.779634 + 1.35037i
\(777\) −20.3977 1.48159i −0.731764 0.0531517i
\(778\) 46.9236 + 81.2741i 1.68229 + 2.91382i
\(779\) 2.54807 + 4.41339i 0.0912941 + 0.158126i
\(780\) 1.35391 + 2.79502i 0.0484779 + 0.100078i
\(781\) 0 0
\(782\) −38.0519 −1.36073
\(783\) 14.1255 15.4352i 0.504805 0.551609i
\(784\) −3.98910 −0.142468
\(785\) 2.65670 4.60153i 0.0948215 0.164236i
\(786\) 26.7437 + 55.2099i 0.953917 + 1.96927i
\(787\) 7.35288 + 12.7356i 0.262102 + 0.453974i 0.966800 0.255533i \(-0.0822510\pi\)
−0.704698 + 0.709507i \(0.748918\pi\)
\(788\) −8.52079 14.7584i −0.303541 0.525748i
\(789\) −28.4642 2.06750i −1.01335 0.0736049i
\(790\) 27.0221 46.8036i 0.961402 1.66520i
\(791\) −16.1653 −0.574771
\(792\) 0 0
\(793\) −0.0908484 −0.00322612
\(794\) −3.54908 + 6.14718i −0.125952 + 0.218155i
\(795\) −1.07420 + 1.58334i −0.0380978 + 0.0561554i
\(796\) 22.3385 + 38.6914i 0.791767 + 1.37138i
\(797\) 10.5634 + 18.2964i 0.374176 + 0.648092i 0.990203 0.139633i \(-0.0445923\pi\)
−0.616027 + 0.787725i \(0.711259\pi\)
\(798\) 7.76312 11.4427i 0.274812 0.405066i
\(799\) −32.5400 + 56.3609i −1.15118 + 1.99390i
\(800\) 44.5615 1.57549
\(801\) −21.6511 + 27.4064i −0.765003 + 0.968356i
\(802\) −27.8534 −0.983539
\(803\) 0 0
\(804\) −107.311 7.79455i −3.78457 0.274893i
\(805\) 3.89373 + 6.74414i 0.137236 + 0.237700i
\(806\) −1.20003 2.07852i −0.0422694 0.0732127i
\(807\) −12.7470 26.3149i −0.448715 0.926329i
\(808\) −2.85025 + 4.93678i −0.100271 + 0.173675i
\(809\) −29.6574 −1.04270 −0.521349 0.853344i \(-0.674571\pi\)
−0.521349 + 0.853344i \(0.674571\pi\)
\(810\) 9.45912 + 39.7593i 0.332360 + 1.39700i
\(811\) 6.19031 0.217371 0.108686 0.994076i \(-0.465336\pi\)
0.108686 + 0.994076i \(0.465336\pi\)
\(812\) −28.0841 + 48.6431i −0.985559 + 1.70704i
\(813\) −21.2091 43.7842i −0.743837 1.53558i
\(814\) 0 0
\(815\) 12.5687 + 21.7697i 0.440263 + 0.762558i
\(816\) 191.094 + 13.8801i 6.68962 + 0.485901i
\(817\) 1.90802 3.30479i 0.0667533 0.115620i
\(818\) −10.7713 −0.376608
\(819\) −0.960980 + 1.21643i −0.0335794 + 0.0425055i
\(820\) 40.4348 1.41204
\(821\) 10.6296 18.4109i 0.370974 0.642546i −0.618742 0.785595i \(-0.712357\pi\)
0.989716 + 0.143049i \(0.0456906\pi\)
\(822\) −28.8036 + 42.4559i −1.00464 + 1.48082i
\(823\) 20.0091 + 34.6568i 0.697474 + 1.20806i 0.969340 + 0.245725i \(0.0790259\pi\)
−0.271866 + 0.962335i \(0.587641\pi\)
\(824\) −60.3664 104.558i −2.10296 3.64244i
\(825\) 0 0
\(826\) −15.9815 + 27.6808i −0.556068 + 0.963138i
\(827\) −22.0260 −0.765919 −0.382960 0.923765i \(-0.625095\pi\)
−0.382960 + 0.923765i \(0.625095\pi\)
\(828\) −10.7254 26.9638i −0.372733 0.937055i
\(829\) −30.6206 −1.06350 −0.531749 0.846902i \(-0.678465\pi\)
−0.531749 + 0.846902i \(0.678465\pi\)
\(830\) −6.56799 + 11.3761i −0.227978 + 0.394870i
\(831\) 19.8058 + 1.43860i 0.687057 + 0.0499044i
\(832\) 2.63925 + 4.57131i 0.0914994 + 0.158482i
\(833\) 1.09474 + 1.89614i 0.0379304 + 0.0656973i
\(834\) −28.1813 58.1776i −0.975838 2.01452i
\(835\) 1.92500 3.33419i 0.0666173 0.115385i
\(836\) 0 0
\(837\) −6.93814 21.9558i −0.239817 0.758902i
\(838\) −89.0506 −3.07620
\(839\) −4.32169 + 7.48538i −0.149201 + 0.258424i −0.930932 0.365191i \(-0.881004\pi\)
0.781731 + 0.623615i \(0.214337\pi\)
\(840\) −30.0534 62.0423i −1.03694 2.14066i
\(841\) 6.39304 + 11.0731i 0.220450 + 0.381830i
\(842\) −51.0665 88.4498i −1.75987 3.04818i
\(843\) 22.3062 + 1.62021i 0.768266 + 0.0558031i
\(844\) −60.5227 + 104.828i −2.08328 + 3.60834i
\(845\) −21.6619 −0.745191
\(846\) −67.3609 9.83744i −2.31592 0.338218i
\(847\) 0 0
\(848\) −4.69138 + 8.12572i −0.161103 + 0.279038i
\(849\) −24.5700 + 36.2156i −0.843239 + 1.24292i
\(850\) −23.3544 40.4510i −0.801049 1.38746i
\(851\) −4.09394 7.09092i −0.140339 0.243073i
\(852\) −70.1512 + 103.401i −2.40334 + 3.54247i
\(853\) −2.62208 + 4.54158i −0.0897784 + 0.155501i −0.907417 0.420231i \(-0.861949\pi\)
0.817639 + 0.575731i \(0.195283\pi\)
\(854\) 3.20936 0.109822
\(855\) −5.62450 0.821406i −0.192354 0.0280915i
\(856\) −1.29987 −0.0444285
\(857\) 11.2020 19.4024i 0.382653 0.662774i −0.608788 0.793333i \(-0.708344\pi\)
0.991441 + 0.130559i \(0.0416772\pi\)
\(858\) 0 0
\(859\) −0.190301 0.329611i −0.00649299 0.0112462i 0.862761 0.505613i \(-0.168733\pi\)
−0.869254 + 0.494366i \(0.835400\pi\)
\(860\) −15.1390 26.2215i −0.516236 0.894147i
\(861\) 8.79885 + 18.1644i 0.299864 + 0.619041i
\(862\) −40.7884 + 70.6476i −1.38926 + 2.40627i
\(863\) 14.6703 0.499382 0.249691 0.968326i \(-0.419671\pi\)
0.249691 + 0.968326i \(0.419671\pi\)
\(864\) 31.6217 + 100.067i 1.07579 + 3.40434i
\(865\) −32.9235 −1.11943
\(866\) 24.1907 41.8996i 0.822034 1.42380i
\(867\) −33.0081 68.1421i −1.12102 2.31423i
\(868\) 30.9066 + 53.5319i 1.04904 + 1.81699i
\(869\) 0 0
\(870\) 31.5874 + 2.29435i 1.07091 + 0.0777858i
\(871\) −1.15059 + 1.99289i −0.0389864 + 0.0675264i
\(872\) 147.112 4.98185
\(873\) 5.24260 + 13.1800i 0.177435 + 0.446074i
\(874\) 5.53596 0.187257
\(875\) −15.6107 + 27.0386i −0.527739 + 0.914071i
\(876\) 56.2791 82.9542i 1.90150 2.80276i
\(877\) −13.8909 24.0597i −0.469061 0.812438i 0.530313 0.847802i \(-0.322074\pi\)
−0.999375 + 0.0353638i \(0.988741\pi\)
\(878\) −3.17943 5.50694i −0.107301 0.185850i
\(879\) −2.22202 + 3.27521i −0.0749469 + 0.110470i
\(880\) 0 0
\(881\) 12.5329 0.422243 0.211122 0.977460i \(-0.432288\pi\)
0.211122 + 0.977460i \(0.432288\pi\)
\(882\) −1.41972 + 1.79712i −0.0478046 + 0.0605121i
\(883\) −51.2943 −1.72619 −0.863095 0.505042i \(-0.831477\pi\)
−0.863095 + 0.505042i \(0.831477\pi\)
\(884\) 4.17955 7.23920i 0.140574 0.243481i
\(885\) 13.1047 + 0.951862i 0.440510 + 0.0319965i
\(886\) 8.70317 + 15.0743i 0.292389 + 0.506432i
\(887\) 1.28108 + 2.21890i 0.0430146 + 0.0745034i 0.886731 0.462286i \(-0.152970\pi\)
−0.843717 + 0.536789i \(0.819637\pi\)
\(888\) 31.5987 + 65.2324i 1.06038 + 2.18906i
\(889\) 4.84063 8.38421i 0.162349 0.281197i
\(890\) −52.8674 −1.77212
\(891\) 0 0
\(892\) 68.1789 2.28280
\(893\) 4.73406 8.19963i 0.158419 0.274390i
\(894\) 10.2632 + 21.1874i 0.343253 + 0.708613i
\(895\) 11.9417 + 20.6837i 0.399169 + 0.691380i
\(896\) −40.8841 70.8134i −1.36584 2.36571i
\(897\) −0.619011 0.0449620i −0.0206682 0.00150124i
\(898\) 29.5700 51.2167i 0.986763 1.70912i
\(899\) −17.8435 −0.595113
\(900\) 22.0810 27.9506i 0.736035 0.931688i
\(901\) 5.14986 0.171567
\(902\) 0 0
\(903\) 8.48508 12.5068i 0.282366 0.416201i
\(904\) 28.6460 + 49.6163i 0.952751 + 1.65021i
\(905\) −11.9803 20.7504i −0.398238 0.689768i
\(906\) 48.2109 71.0618i 1.60170 2.36087i
\(907\) −23.9715 + 41.5198i −0.795960 + 1.37864i 0.126268 + 0.991996i \(0.459700\pi\)
−0.922228 + 0.386647i \(0.873633\pi\)
\(908\) 30.6535 1.01727
\(909\) 0.688031 + 1.72972i 0.0228205 + 0.0573711i
\(910\) −2.34652 −0.0777862
\(911\) −27.2103 + 47.1296i −0.901517 + 1.56147i −0.0759919 + 0.997108i \(0.524212\pi\)
−0.825525 + 0.564365i \(0.809121\pi\)
\(912\) −27.8011 2.01934i −0.920588 0.0668670i
\(913\) 0 0
\(914\) −9.70232 16.8049i −0.320924 0.555857i
\(915\) −0.575142 1.18733i −0.0190136 0.0392518i
\(916\) 18.1043 31.3575i 0.598181 1.03608i
\(917\) −33.7918 −1.11590
\(918\) 74.2635 81.1491i 2.45106 2.67832i
\(919\) −3.69832 −0.121996 −0.0609982 0.998138i \(-0.519428\pi\)
−0.0609982 + 0.998138i \(0.519428\pi\)
\(920\) 13.7999 23.9022i 0.454970 0.788031i
\(921\) −1.93384 3.99223i −0.0637222 0.131548i
\(922\) 3.92288 + 6.79464i 0.129193 + 0.223769i
\(923\) 1.33622 + 2.31440i 0.0439823 + 0.0761795i
\(924\) 0 0
\(925\) 5.02532 8.70411i 0.165232 0.286189i
\(926\) −3.94511 −0.129644
\(927\) −39.0122 5.69737i −1.28133 0.187126i
\(928\) 81.3244 2.66960
\(929\) 12.9204 22.3787i 0.423903 0.734222i −0.572414 0.819965i \(-0.693993\pi\)
0.996317 + 0.0857426i \(0.0273263\pi\)
\(930\) 19.5677 28.8423i 0.641649 0.945776i
\(931\) −0.159267 0.275859i −0.00521977 0.00904090i
\(932\) −17.8219 30.8684i −0.583774 1.01113i
\(933\) 3.31682 4.88893i 0.108588 0.160056i
\(934\) 7.47521 12.9474i 0.244596 0.423653i
\(935\) 0 0
\(936\) 5.43652 + 0.793954i 0.177698 + 0.0259512i
\(937\) 28.1689 0.920239 0.460120 0.887857i \(-0.347806\pi\)
0.460120 + 0.887857i \(0.347806\pi\)
\(938\) 40.6466 70.4019i 1.32716 2.29870i
\(939\) 48.3290 + 3.51039i 1.57716 + 0.114557i
\(940\) −37.5619 65.0590i −1.22513 2.12199i
\(941\) −15.2435 26.4026i −0.496925 0.860700i 0.503068 0.864247i \(-0.332204\pi\)
−0.999994 + 0.00354657i \(0.998871\pi\)
\(942\) −6.52158 13.4632i −0.212485 0.438654i
\(943\) −4.04026 + 6.99794i −0.131569 + 0.227884i
\(944\) 64.4330 2.09712
\(945\) −21.9817 4.85839i −0.715063 0.158044i
\(946\) 0 0
\(947\) 27.4071 47.4705i 0.890611 1.54258i 0.0514664 0.998675i \(-0.483610\pi\)
0.839144 0.543909i \(-0.183056\pi\)
\(948\) −48.3600 99.8345i −1.57066 3.24247i
\(949\) −1.07199 1.85674i −0.0347983 0.0602724i
\(950\) 3.39770 + 5.88499i 0.110236 + 0.190934i
\(951\) −53.0909 3.85627i −1.72159 0.125048i
\(952\) −92.7753 + 160.691i −3.00686 + 5.20804i
\(953\) −38.8502 −1.25848 −0.629240 0.777211i \(-0.716634\pi\)
−0.629240 + 0.777211i \(0.716634\pi\)
\(954\) 1.99102 + 5.00545i 0.0644618 + 0.162058i
\(955\) −11.2007 −0.362448
\(956\) 12.5925 21.8108i 0.407270 0.705412i
\(957\) 0 0
\(958\) −14.2023 24.5991i −0.458855 0.794759i
\(959\) −14.1302 24.4743i −0.456289 0.790315i
\(960\) −43.0353 + 63.4331i −1.38896 + 2.04730i
\(961\) 5.68161 9.84083i 0.183278 0.317446i
\(962\) 2.46717 0.0795448
\(963\) −0.263135 + 0.333081i −0.00847940 + 0.0107334i
\(964\) 20.4313 0.658047
\(965\) −20.6554 + 35.7762i −0.664921 + 1.15168i
\(966\) 21.8676 + 1.58835i 0.703577 + 0.0511044i
\(967\) −12.9249 22.3865i −0.415636 0.719903i 0.579859 0.814717i \(-0.303108\pi\)
−0.995495 + 0.0948141i \(0.969774\pi\)
\(968\) 0 0
\(969\) 6.66967 + 13.7689i 0.214261 + 0.442320i
\(970\) −10.7352 + 18.5939i −0.344686 + 0.597014i
\(971\) 14.7459 0.473219 0.236609 0.971605i \(-0.423964\pi\)
0.236609 + 0.971605i \(0.423964\pi\)
\(972\) 78.4347 + 29.7506i 2.51579 + 0.954252i
\(973\) 35.6082 1.14155
\(974\) 7.74129 13.4083i 0.248047 0.429630i
\(975\) −0.332122 0.685634i −0.0106364 0.0219579i
\(976\) −3.23481 5.60286i −0.103544 0.179343i
\(977\) −18.8198 32.5968i −0.602099 1.04287i −0.992503 0.122222i \(-0.960998\pi\)
0.390404 0.920644i \(-0.372335\pi\)
\(978\) 70.5871 + 5.12710i 2.25713 + 0.163947i
\(979\) 0 0
\(980\) −2.52737 −0.0807340
\(981\) 29.7802 37.6964i 0.950809 1.20355i
\(982\) 22.5510 0.719631
\(983\) −3.21486 + 5.56830i −0.102538 + 0.177601i −0.912730 0.408564i \(-0.866030\pi\)
0.810192 + 0.586165i \(0.199363\pi\)
\(984\) 40.1600 59.1950i 1.28025 1.88707i
\(985\) −2.64648 4.58384i −0.0843238 0.146053i
\(986\) −42.6216 73.8227i −1.35735 2.35099i
\(987\) 21.0526 31.0310i 0.670111 0.987729i
\(988\) −0.608060 + 1.05319i −0.0193450 + 0.0335064i
\(989\) 6.05079 0.192404
\(990\) 0 0
\(991\) 35.1704 1.11722 0.558612 0.829429i \(-0.311334\pi\)
0.558612 + 0.829429i \(0.311334\pi\)
\(992\) 44.7489 77.5073i 1.42078 2.46086i
\(993\) −10.3262 0.750045i −0.327692 0.0238020i
\(994\) −47.2042 81.7600i −1.49723 2.59327i
\(995\) 6.93813 + 12.0172i 0.219954 + 0.380971i
\(996\) 11.7544 + 24.2658i 0.372452 + 0.768891i
\(997\) 0.0643563 0.111468i 0.00203818 0.00353024i −0.865005 0.501764i \(-0.832685\pi\)
0.867043 + 0.498234i \(0.166018\pi\)
\(998\) −37.7787 −1.19587
\(999\) 23.1119 + 5.10820i 0.731229 + 0.161616i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1089.2.e.l.727.10 yes 20
9.2 odd 6 9801.2.a.cb.1.10 10
9.4 even 3 inner 1089.2.e.l.364.10 20
9.7 even 3 9801.2.a.cd.1.1 10
11.10 odd 2 1089.2.e.m.727.1 yes 20
99.43 odd 6 9801.2.a.ce.1.10 10
99.65 even 6 9801.2.a.cc.1.1 10
99.76 odd 6 1089.2.e.m.364.1 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1089.2.e.l.364.10 20 9.4 even 3 inner
1089.2.e.l.727.10 yes 20 1.1 even 1 trivial
1089.2.e.m.364.1 yes 20 99.76 odd 6
1089.2.e.m.727.1 yes 20 11.10 odd 2
9801.2.a.cb.1.10 10 9.2 odd 6
9801.2.a.cc.1.1 10 99.65 even 6
9801.2.a.cd.1.1 10 9.7 even 3
9801.2.a.ce.1.10 10 99.43 odd 6