Properties

Label 1080.6.a.m.1.5
Level $1080$
Weight $6$
Character 1080.1
Self dual yes
Analytic conductor $173.215$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1080,6,Mod(1,1080)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1080.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1080, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 1080 = 2^{3} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1080.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,0,0,0,-125,0,88] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(173.214525398\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: \(\mathbb{Q}[x]/(x^{5} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 100x^{3} - 199x^{2} + 871x + 1455 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2^{9}\cdot 3^{8} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(2.87411\) of defining polynomial
Character \(\chi\) \(=\) 1080.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-25.0000 q^{5} +216.704 q^{7} -49.1051 q^{11} +460.124 q^{13} -547.924 q^{17} +1310.55 q^{19} -3491.31 q^{23} +625.000 q^{25} -8367.17 q^{29} -7545.52 q^{31} -5417.60 q^{35} -6504.07 q^{37} +9877.32 q^{41} +11141.4 q^{43} +8253.09 q^{47} +30153.7 q^{49} -23429.2 q^{53} +1227.63 q^{55} -39262.8 q^{59} +3174.48 q^{61} -11503.1 q^{65} -32494.2 q^{67} -21150.6 q^{71} +22041.7 q^{73} -10641.3 q^{77} -38586.9 q^{79} +49216.7 q^{83} +13698.1 q^{85} +93456.1 q^{89} +99710.8 q^{91} -32763.9 q^{95} +38920.1 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 125 q^{5} + 88 q^{7} - 134 q^{11} - 88 q^{13} - 211 q^{17} + 857 q^{19} - 461 q^{23} + 3125 q^{25} - 68 q^{29} + 1409 q^{31} - 2200 q^{35} + 5346 q^{37} - 750 q^{41} + 14486 q^{43} - 6704 q^{47} + 19005 q^{49}+ \cdots + 43184 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −25.0000 −0.447214
\(6\) 0 0
\(7\) 216.704 1.67156 0.835780 0.549064i \(-0.185016\pi\)
0.835780 + 0.549064i \(0.185016\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −49.1051 −0.122361 −0.0611807 0.998127i \(-0.519487\pi\)
−0.0611807 + 0.998127i \(0.519487\pi\)
\(12\) 0 0
\(13\) 460.124 0.755121 0.377561 0.925985i \(-0.376763\pi\)
0.377561 + 0.925985i \(0.376763\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −547.924 −0.459830 −0.229915 0.973211i \(-0.573845\pi\)
−0.229915 + 0.973211i \(0.573845\pi\)
\(18\) 0 0
\(19\) 1310.55 0.832858 0.416429 0.909168i \(-0.363281\pi\)
0.416429 + 0.909168i \(0.363281\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3491.31 −1.37616 −0.688080 0.725635i \(-0.741546\pi\)
−0.688080 + 0.725635i \(0.741546\pi\)
\(24\) 0 0
\(25\) 625.000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −8367.17 −1.84750 −0.923748 0.383002i \(-0.874890\pi\)
−0.923748 + 0.383002i \(0.874890\pi\)
\(30\) 0 0
\(31\) −7545.52 −1.41021 −0.705107 0.709101i \(-0.749101\pi\)
−0.705107 + 0.709101i \(0.749101\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −5417.60 −0.747545
\(36\) 0 0
\(37\) −6504.07 −0.781054 −0.390527 0.920591i \(-0.627707\pi\)
−0.390527 + 0.920591i \(0.627707\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 9877.32 0.917655 0.458828 0.888525i \(-0.348270\pi\)
0.458828 + 0.888525i \(0.348270\pi\)
\(42\) 0 0
\(43\) 11141.4 0.918900 0.459450 0.888204i \(-0.348047\pi\)
0.459450 + 0.888204i \(0.348047\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8253.09 0.544969 0.272485 0.962160i \(-0.412155\pi\)
0.272485 + 0.962160i \(0.412155\pi\)
\(48\) 0 0
\(49\) 30153.7 1.79411
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −23429.2 −1.14569 −0.572845 0.819664i \(-0.694160\pi\)
−0.572845 + 0.819664i \(0.694160\pi\)
\(54\) 0 0
\(55\) 1227.63 0.0547217
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −39262.8 −1.46842 −0.734212 0.678920i \(-0.762448\pi\)
−0.734212 + 0.678920i \(0.762448\pi\)
\(60\) 0 0
\(61\) 3174.48 0.109232 0.0546158 0.998507i \(-0.482607\pi\)
0.0546158 + 0.998507i \(0.482607\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −11503.1 −0.337701
\(66\) 0 0
\(67\) −32494.2 −0.884338 −0.442169 0.896932i \(-0.645791\pi\)
−0.442169 + 0.896932i \(0.645791\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −21150.6 −0.497941 −0.248970 0.968511i \(-0.580092\pi\)
−0.248970 + 0.968511i \(0.580092\pi\)
\(72\) 0 0
\(73\) 22041.7 0.484104 0.242052 0.970263i \(-0.422180\pi\)
0.242052 + 0.970263i \(0.422180\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −10641.3 −0.204535
\(78\) 0 0
\(79\) −38586.9 −0.695620 −0.347810 0.937565i \(-0.613075\pi\)
−0.347810 + 0.937565i \(0.613075\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 49216.7 0.784182 0.392091 0.919926i \(-0.371752\pi\)
0.392091 + 0.919926i \(0.371752\pi\)
\(84\) 0 0
\(85\) 13698.1 0.205642
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 93456.1 1.25064 0.625321 0.780368i \(-0.284968\pi\)
0.625321 + 0.780368i \(0.284968\pi\)
\(90\) 0 0
\(91\) 99710.8 1.26223
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −32763.9 −0.372465
\(96\) 0 0
\(97\) 38920.1 0.419996 0.209998 0.977702i \(-0.432654\pi\)
0.209998 + 0.977702i \(0.432654\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −11259.7 −0.109831 −0.0549154 0.998491i \(-0.517489\pi\)
−0.0549154 + 0.998491i \(0.517489\pi\)
\(102\) 0 0
\(103\) −149539. −1.38887 −0.694436 0.719554i \(-0.744346\pi\)
−0.694436 + 0.719554i \(0.744346\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 45434.0 0.383638 0.191819 0.981430i \(-0.438561\pi\)
0.191819 + 0.981430i \(0.438561\pi\)
\(108\) 0 0
\(109\) 102271. 0.824489 0.412244 0.911073i \(-0.364745\pi\)
0.412244 + 0.911073i \(0.364745\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 92427.2 0.680932 0.340466 0.940257i \(-0.389415\pi\)
0.340466 + 0.940257i \(0.389415\pi\)
\(114\) 0 0
\(115\) 87282.8 0.615438
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −118737. −0.768634
\(120\) 0 0
\(121\) −158640. −0.985028
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −15625.0 −0.0894427
\(126\) 0 0
\(127\) −240991. −1.32584 −0.662922 0.748689i \(-0.730684\pi\)
−0.662922 + 0.748689i \(0.730684\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 129193. 0.657752 0.328876 0.944373i \(-0.393330\pi\)
0.328876 + 0.944373i \(0.393330\pi\)
\(132\) 0 0
\(133\) 284003. 1.39217
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −23171.1 −0.105474 −0.0527370 0.998608i \(-0.516794\pi\)
−0.0527370 + 0.998608i \(0.516794\pi\)
\(138\) 0 0
\(139\) −311404. −1.36706 −0.683530 0.729922i \(-0.739556\pi\)
−0.683530 + 0.729922i \(0.739556\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −22594.4 −0.0923977
\(144\) 0 0
\(145\) 209179. 0.826225
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 159701. 0.589306 0.294653 0.955604i \(-0.404796\pi\)
0.294653 + 0.955604i \(0.404796\pi\)
\(150\) 0 0
\(151\) 383268. 1.36792 0.683959 0.729521i \(-0.260257\pi\)
0.683959 + 0.729521i \(0.260257\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 188638. 0.630667
\(156\) 0 0
\(157\) −177380. −0.574321 −0.287161 0.957882i \(-0.592711\pi\)
−0.287161 + 0.957882i \(0.592711\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −756582. −2.30034
\(162\) 0 0
\(163\) −524956. −1.54758 −0.773792 0.633440i \(-0.781642\pi\)
−0.773792 + 0.633440i \(0.781642\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −443301. −1.23001 −0.615004 0.788524i \(-0.710845\pi\)
−0.615004 + 0.788524i \(0.710845\pi\)
\(168\) 0 0
\(169\) −159579. −0.429792
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 169848. 0.431465 0.215732 0.976453i \(-0.430786\pi\)
0.215732 + 0.976453i \(0.430786\pi\)
\(174\) 0 0
\(175\) 135440. 0.334312
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −320832. −0.748421 −0.374210 0.927344i \(-0.622086\pi\)
−0.374210 + 0.927344i \(0.622086\pi\)
\(180\) 0 0
\(181\) 145256. 0.329561 0.164781 0.986330i \(-0.447308\pi\)
0.164781 + 0.986330i \(0.447308\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 162602. 0.349298
\(186\) 0 0
\(187\) 26905.8 0.0562655
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −304719. −0.604389 −0.302194 0.953246i \(-0.597719\pi\)
−0.302194 + 0.953246i \(0.597719\pi\)
\(192\) 0 0
\(193\) −865507. −1.67254 −0.836271 0.548316i \(-0.815269\pi\)
−0.836271 + 0.548316i \(0.815269\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −254421. −0.467076 −0.233538 0.972348i \(-0.575030\pi\)
−0.233538 + 0.972348i \(0.575030\pi\)
\(198\) 0 0
\(199\) 1.01623e6 1.81910 0.909551 0.415592i \(-0.136425\pi\)
0.909551 + 0.415592i \(0.136425\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1.81320e6 −3.08820
\(204\) 0 0
\(205\) −246933. −0.410388
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −64354.9 −0.101910
\(210\) 0 0
\(211\) 1.09583e6 1.69448 0.847242 0.531208i \(-0.178262\pi\)
0.847242 + 0.531208i \(0.178262\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −278535. −0.410945
\(216\) 0 0
\(217\) −1.63515e6 −2.35726
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −252113. −0.347228
\(222\) 0 0
\(223\) 585305. 0.788170 0.394085 0.919074i \(-0.371062\pi\)
0.394085 + 0.919074i \(0.371062\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −456018. −0.587377 −0.293689 0.955901i \(-0.594883\pi\)
−0.293689 + 0.955901i \(0.594883\pi\)
\(228\) 0 0
\(229\) −901326. −1.13578 −0.567889 0.823105i \(-0.692240\pi\)
−0.567889 + 0.823105i \(0.692240\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.07629e6 −1.29879 −0.649394 0.760452i \(-0.724978\pi\)
−0.649394 + 0.760452i \(0.724978\pi\)
\(234\) 0 0
\(235\) −206327. −0.243718
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 62346.8 0.0706023 0.0353012 0.999377i \(-0.488761\pi\)
0.0353012 + 0.999377i \(0.488761\pi\)
\(240\) 0 0
\(241\) 1.59833e6 1.77265 0.886324 0.463065i \(-0.153250\pi\)
0.886324 + 0.463065i \(0.153250\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −753842. −0.802352
\(246\) 0 0
\(247\) 603018. 0.628909
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 1.05801e6 1.06000 0.529999 0.847998i \(-0.322192\pi\)
0.529999 + 0.847998i \(0.322192\pi\)
\(252\) 0 0
\(253\) 171441. 0.168389
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −1.52253e6 −1.43791 −0.718957 0.695055i \(-0.755380\pi\)
−0.718957 + 0.695055i \(0.755380\pi\)
\(258\) 0 0
\(259\) −1.40946e6 −1.30558
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 66805.8 0.0595559 0.0297779 0.999557i \(-0.490520\pi\)
0.0297779 + 0.999557i \(0.490520\pi\)
\(264\) 0 0
\(265\) 585729. 0.512368
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −2.10628e6 −1.77475 −0.887373 0.461051i \(-0.847472\pi\)
−0.887373 + 0.461051i \(0.847472\pi\)
\(270\) 0 0
\(271\) 1.00178e6 0.828606 0.414303 0.910139i \(-0.364025\pi\)
0.414303 + 0.910139i \(0.364025\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −30690.7 −0.0244723
\(276\) 0 0
\(277\) −1.72726e6 −1.35256 −0.676282 0.736643i \(-0.736410\pi\)
−0.676282 + 0.736643i \(0.736410\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 468396. 0.353873 0.176936 0.984222i \(-0.443381\pi\)
0.176936 + 0.984222i \(0.443381\pi\)
\(282\) 0 0
\(283\) 1.16704e6 0.866207 0.433103 0.901344i \(-0.357419\pi\)
0.433103 + 0.901344i \(0.357419\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2.14046e6 1.53392
\(288\) 0 0
\(289\) −1.11964e6 −0.788556
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.52352e6 1.03676 0.518380 0.855151i \(-0.326535\pi\)
0.518380 + 0.855151i \(0.326535\pi\)
\(294\) 0 0
\(295\) 981571. 0.656700
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1.60644e6 −1.03917
\(300\) 0 0
\(301\) 2.41439e6 1.53600
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −79362.1 −0.0488499
\(306\) 0 0
\(307\) −604404. −0.366000 −0.183000 0.983113i \(-0.558581\pi\)
−0.183000 + 0.983113i \(0.558581\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −1.50927e6 −0.884845 −0.442422 0.896807i \(-0.645881\pi\)
−0.442422 + 0.896807i \(0.645881\pi\)
\(312\) 0 0
\(313\) −1.21293e6 −0.699801 −0.349900 0.936787i \(-0.613785\pi\)
−0.349900 + 0.936787i \(0.613785\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −2.41548e6 −1.35007 −0.675034 0.737787i \(-0.735871\pi\)
−0.675034 + 0.737787i \(0.735871\pi\)
\(318\) 0 0
\(319\) 410870. 0.226062
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −718084. −0.382973
\(324\) 0 0
\(325\) 287578. 0.151024
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1.78848e6 0.910949
\(330\) 0 0
\(331\) −2.11865e6 −1.06289 −0.531446 0.847092i \(-0.678351\pi\)
−0.531446 + 0.847092i \(0.678351\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 812354. 0.395488
\(336\) 0 0
\(337\) 812616. 0.389772 0.194886 0.980826i \(-0.437566\pi\)
0.194886 + 0.980826i \(0.437566\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 370523. 0.172556
\(342\) 0 0
\(343\) 2.89228e6 1.32741
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 995907. 0.444012 0.222006 0.975045i \(-0.428739\pi\)
0.222006 + 0.975045i \(0.428739\pi\)
\(348\) 0 0
\(349\) −665885. −0.292641 −0.146321 0.989237i \(-0.546743\pi\)
−0.146321 + 0.989237i \(0.546743\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 2.99177e6 1.27788 0.638941 0.769256i \(-0.279373\pi\)
0.638941 + 0.769256i \(0.279373\pi\)
\(354\) 0 0
\(355\) 528766. 0.222686
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −3.58779e6 −1.46924 −0.734618 0.678481i \(-0.762638\pi\)
−0.734618 + 0.678481i \(0.762638\pi\)
\(360\) 0 0
\(361\) −758547. −0.306347
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −551043. −0.216498
\(366\) 0 0
\(367\) −114041. −0.0441973 −0.0220987 0.999756i \(-0.507035\pi\)
−0.0220987 + 0.999756i \(0.507035\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −5.07720e6 −1.91509
\(372\) 0 0
\(373\) 34656.5 0.0128977 0.00644885 0.999979i \(-0.497947\pi\)
0.00644885 + 0.999979i \(0.497947\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −3.84994e6 −1.39508
\(378\) 0 0
\(379\) −4.92297e6 −1.76047 −0.880236 0.474535i \(-0.842616\pi\)
−0.880236 + 0.474535i \(0.842616\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −1.90994e6 −0.665309 −0.332655 0.943049i \(-0.607944\pi\)
−0.332655 + 0.943049i \(0.607944\pi\)
\(384\) 0 0
\(385\) 266032. 0.0914706
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −1.47691e6 −0.494856 −0.247428 0.968906i \(-0.579585\pi\)
−0.247428 + 0.968906i \(0.579585\pi\)
\(390\) 0 0
\(391\) 1.91297e6 0.632800
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 964672. 0.311091
\(396\) 0 0
\(397\) 2.77229e6 0.882799 0.441400 0.897311i \(-0.354482\pi\)
0.441400 + 0.897311i \(0.354482\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −5.60313e6 −1.74008 −0.870042 0.492978i \(-0.835908\pi\)
−0.870042 + 0.492978i \(0.835908\pi\)
\(402\) 0 0
\(403\) −3.47188e6 −1.06488
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 319383. 0.0955709
\(408\) 0 0
\(409\) 2.46880e6 0.729756 0.364878 0.931055i \(-0.381111\pi\)
0.364878 + 0.931055i \(0.381111\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −8.50842e6 −2.45456
\(414\) 0 0
\(415\) −1.23042e6 −0.350697
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −4.73295e6 −1.31703 −0.658517 0.752566i \(-0.728816\pi\)
−0.658517 + 0.752566i \(0.728816\pi\)
\(420\) 0 0
\(421\) −6.01884e6 −1.65504 −0.827518 0.561439i \(-0.810248\pi\)
−0.827518 + 0.561439i \(0.810248\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −342452. −0.0919661
\(426\) 0 0
\(427\) 687923. 0.182587
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −1.10385e6 −0.286231 −0.143115 0.989706i \(-0.545712\pi\)
−0.143115 + 0.989706i \(0.545712\pi\)
\(432\) 0 0
\(433\) −3.86946e6 −0.991814 −0.495907 0.868376i \(-0.665164\pi\)
−0.495907 + 0.868376i \(0.665164\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −4.57555e6 −1.14615
\(438\) 0 0
\(439\) 4.87495e6 1.20728 0.603641 0.797256i \(-0.293716\pi\)
0.603641 + 0.797256i \(0.293716\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −2.05403e6 −0.497277 −0.248638 0.968596i \(-0.579983\pi\)
−0.248638 + 0.968596i \(0.579983\pi\)
\(444\) 0 0
\(445\) −2.33640e6 −0.559304
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 6.19976e6 1.45131 0.725653 0.688061i \(-0.241538\pi\)
0.725653 + 0.688061i \(0.241538\pi\)
\(450\) 0 0
\(451\) −485026. −0.112286
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −2.49277e6 −0.564487
\(456\) 0 0
\(457\) 1.72779e6 0.386990 0.193495 0.981101i \(-0.438018\pi\)
0.193495 + 0.981101i \(0.438018\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −5.25908e6 −1.15254 −0.576272 0.817258i \(-0.695493\pi\)
−0.576272 + 0.817258i \(0.695493\pi\)
\(462\) 0 0
\(463\) 6.69549e6 1.45154 0.725771 0.687936i \(-0.241483\pi\)
0.725771 + 0.687936i \(0.241483\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 4.11079e6 0.872234 0.436117 0.899890i \(-0.356353\pi\)
0.436117 + 0.899890i \(0.356353\pi\)
\(468\) 0 0
\(469\) −7.04162e6 −1.47823
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −547099. −0.112438
\(474\) 0 0
\(475\) 819096. 0.166572
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −1.54856e6 −0.308383 −0.154191 0.988041i \(-0.549277\pi\)
−0.154191 + 0.988041i \(0.549277\pi\)
\(480\) 0 0
\(481\) −2.99268e6 −0.589791
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −973003. −0.187828
\(486\) 0 0
\(487\) −1.11511e6 −0.213057 −0.106528 0.994310i \(-0.533973\pi\)
−0.106528 + 0.994310i \(0.533973\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 7.81193e6 1.46236 0.731180 0.682184i \(-0.238970\pi\)
0.731180 + 0.682184i \(0.238970\pi\)
\(492\) 0 0
\(493\) 4.58457e6 0.849535
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −4.58343e6 −0.832338
\(498\) 0 0
\(499\) 8.21463e6 1.47685 0.738426 0.674335i \(-0.235570\pi\)
0.738426 + 0.674335i \(0.235570\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −4.70462e6 −0.829095 −0.414547 0.910028i \(-0.636060\pi\)
−0.414547 + 0.910028i \(0.636060\pi\)
\(504\) 0 0
\(505\) 281493. 0.0491178
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 7.48456e6 1.28048 0.640239 0.768176i \(-0.278835\pi\)
0.640239 + 0.768176i \(0.278835\pi\)
\(510\) 0 0
\(511\) 4.77653e6 0.809209
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 3.73848e6 0.621122
\(516\) 0 0
\(517\) −405269. −0.0666832
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 1.16350e7 1.87790 0.938949 0.344057i \(-0.111801\pi\)
0.938949 + 0.344057i \(0.111801\pi\)
\(522\) 0 0
\(523\) −5.61332e6 −0.897357 −0.448679 0.893693i \(-0.648105\pi\)
−0.448679 + 0.893693i \(0.648105\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 4.13437e6 0.648459
\(528\) 0 0
\(529\) 5.75291e6 0.893817
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 4.54479e6 0.692941
\(534\) 0 0
\(535\) −1.13585e6 −0.171568
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −1.48070e6 −0.219530
\(540\) 0 0
\(541\) −1.18616e7 −1.74241 −0.871204 0.490921i \(-0.836660\pi\)
−0.871204 + 0.490921i \(0.836660\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −2.55677e6 −0.368723
\(546\) 0 0
\(547\) 1.03073e7 1.47291 0.736455 0.676486i \(-0.236498\pi\)
0.736455 + 0.676486i \(0.236498\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −1.09656e7 −1.53870
\(552\) 0 0
\(553\) −8.36193e6 −1.16277
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 2.90464e6 0.396693 0.198347 0.980132i \(-0.436443\pi\)
0.198347 + 0.980132i \(0.436443\pi\)
\(558\) 0 0
\(559\) 5.12642e6 0.693881
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −1.99840e6 −0.265712 −0.132856 0.991135i \(-0.542415\pi\)
−0.132856 + 0.991135i \(0.542415\pi\)
\(564\) 0 0
\(565\) −2.31068e6 −0.304522
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −63428.7 −0.00821306 −0.00410653 0.999992i \(-0.501307\pi\)
−0.00410653 + 0.999992i \(0.501307\pi\)
\(570\) 0 0
\(571\) −9.55380e6 −1.22627 −0.613134 0.789979i \(-0.710092\pi\)
−0.613134 + 0.789979i \(0.710092\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −2.18207e6 −0.275232
\(576\) 0 0
\(577\) 1.56175e6 0.195286 0.0976432 0.995221i \(-0.468870\pi\)
0.0976432 + 0.995221i \(0.468870\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 1.06655e7 1.31081
\(582\) 0 0
\(583\) 1.15049e6 0.140188
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −3.11959e6 −0.373682 −0.186841 0.982390i \(-0.559825\pi\)
−0.186841 + 0.982390i \(0.559825\pi\)
\(588\) 0 0
\(589\) −9.88881e6 −1.17451
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 2.77513e6 0.324076 0.162038 0.986785i \(-0.448193\pi\)
0.162038 + 0.986785i \(0.448193\pi\)
\(594\) 0 0
\(595\) 2.96843e6 0.343744
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −4.89325e6 −0.557225 −0.278612 0.960404i \(-0.589874\pi\)
−0.278612 + 0.960404i \(0.589874\pi\)
\(600\) 0 0
\(601\) −8.48417e6 −0.958127 −0.479063 0.877780i \(-0.659024\pi\)
−0.479063 + 0.877780i \(0.659024\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 3.96599e6 0.440518
\(606\) 0 0
\(607\) 1.78640e7 1.96792 0.983961 0.178382i \(-0.0570864\pi\)
0.983961 + 0.178382i \(0.0570864\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 3.79745e6 0.411518
\(612\) 0 0
\(613\) −1.03552e7 −1.11303 −0.556514 0.830838i \(-0.687861\pi\)
−0.556514 + 0.830838i \(0.687861\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −1.80436e6 −0.190814 −0.0954068 0.995438i \(-0.530415\pi\)
−0.0954068 + 0.995438i \(0.530415\pi\)
\(618\) 0 0
\(619\) 6.41967e6 0.673420 0.336710 0.941608i \(-0.390686\pi\)
0.336710 + 0.941608i \(0.390686\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 2.02523e7 2.09052
\(624\) 0 0
\(625\) 390625. 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 3.56373e6 0.359152
\(630\) 0 0
\(631\) 4.02548e6 0.402480 0.201240 0.979542i \(-0.435503\pi\)
0.201240 + 0.979542i \(0.435503\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 6.02479e6 0.592935
\(636\) 0 0
\(637\) 1.38744e7 1.35477
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 1.83544e6 0.176439 0.0882197 0.996101i \(-0.471882\pi\)
0.0882197 + 0.996101i \(0.471882\pi\)
\(642\) 0 0
\(643\) 3.86958e6 0.369094 0.184547 0.982824i \(-0.440918\pi\)
0.184547 + 0.982824i \(0.440918\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 1.75710e7 1.65020 0.825101 0.564986i \(-0.191118\pi\)
0.825101 + 0.564986i \(0.191118\pi\)
\(648\) 0 0
\(649\) 1.92800e6 0.179679
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −3.61584e6 −0.331838 −0.165919 0.986139i \(-0.553059\pi\)
−0.165919 + 0.986139i \(0.553059\pi\)
\(654\) 0 0
\(655\) −3.22984e6 −0.294156
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 7.22385e6 0.647970 0.323985 0.946062i \(-0.394977\pi\)
0.323985 + 0.946062i \(0.394977\pi\)
\(660\) 0 0
\(661\) −1.04789e6 −0.0932849 −0.0466424 0.998912i \(-0.514852\pi\)
−0.0466424 + 0.998912i \(0.514852\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −7.10006e6 −0.622599
\(666\) 0 0
\(667\) 2.92124e7 2.54245
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −155883. −0.0133657
\(672\) 0 0
\(673\) −5.45996e6 −0.464678 −0.232339 0.972635i \(-0.574638\pi\)
−0.232339 + 0.972635i \(0.574638\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −2.33313e6 −0.195644 −0.0978222 0.995204i \(-0.531188\pi\)
−0.0978222 + 0.995204i \(0.531188\pi\)
\(678\) 0 0
\(679\) 8.43415e6 0.702048
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −1.08135e7 −0.886985 −0.443493 0.896278i \(-0.646261\pi\)
−0.443493 + 0.896278i \(0.646261\pi\)
\(684\) 0 0
\(685\) 579277. 0.0471694
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −1.07803e7 −0.865135
\(690\) 0 0
\(691\) 1.61286e7 1.28500 0.642498 0.766287i \(-0.277898\pi\)
0.642498 + 0.766287i \(0.277898\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 7.78511e6 0.611368
\(696\) 0 0
\(697\) −5.41202e6 −0.421966
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 595078. 0.0457381 0.0228691 0.999738i \(-0.492720\pi\)
0.0228691 + 0.999738i \(0.492720\pi\)
\(702\) 0 0
\(703\) −8.52394e6 −0.650507
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −2.44003e6 −0.183589
\(708\) 0 0
\(709\) −2.34844e7 −1.75455 −0.877273 0.479992i \(-0.840640\pi\)
−0.877273 + 0.479992i \(0.840640\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 2.63438e7 1.94068
\(714\) 0 0
\(715\) 564861. 0.0413215
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −1.47052e7 −1.06084 −0.530418 0.847737i \(-0.677965\pi\)
−0.530418 + 0.847737i \(0.677965\pi\)
\(720\) 0 0
\(721\) −3.24058e7 −2.32158
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −5.22948e6 −0.369499
\(726\) 0 0
\(727\) −2.56423e6 −0.179937 −0.0899685 0.995945i \(-0.528677\pi\)
−0.0899685 + 0.995945i \(0.528677\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −6.10463e6 −0.422538
\(732\) 0 0
\(733\) 1.23334e7 0.847858 0.423929 0.905695i \(-0.360651\pi\)
0.423929 + 0.905695i \(0.360651\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.59563e6 0.108209
\(738\) 0 0
\(739\) −2.54081e7 −1.71144 −0.855720 0.517440i \(-0.826885\pi\)
−0.855720 + 0.517440i \(0.826885\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 2.62014e7 1.74121 0.870607 0.491979i \(-0.163726\pi\)
0.870607 + 0.491979i \(0.163726\pi\)
\(744\) 0 0
\(745\) −3.99251e6 −0.263546
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 9.84574e6 0.641274
\(750\) 0 0
\(751\) −9.37497e6 −0.606555 −0.303278 0.952902i \(-0.598081\pi\)
−0.303278 + 0.952902i \(0.598081\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −9.58169e6 −0.611751
\(756\) 0 0
\(757\) −2.95539e7 −1.87446 −0.937229 0.348714i \(-0.886619\pi\)
−0.937229 + 0.348714i \(0.886619\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 4.92890e6 0.308524 0.154262 0.988030i \(-0.450700\pi\)
0.154262 + 0.988030i \(0.450700\pi\)
\(762\) 0 0
\(763\) 2.21625e7 1.37818
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1.80658e7 −1.10884
\(768\) 0 0
\(769\) 766481. 0.0467396 0.0233698 0.999727i \(-0.492560\pi\)
0.0233698 + 0.999727i \(0.492560\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −3.81694e6 −0.229756 −0.114878 0.993380i \(-0.536648\pi\)
−0.114878 + 0.993380i \(0.536648\pi\)
\(774\) 0 0
\(775\) −4.71595e6 −0.282043
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1.29448e7 0.764276
\(780\) 0 0
\(781\) 1.03860e6 0.0609288
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 4.43449e6 0.256844
\(786\) 0 0
\(787\) 2.63477e7 1.51637 0.758186 0.652038i \(-0.226086\pi\)
0.758186 + 0.652038i \(0.226086\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 2.00294e7 1.13822
\(792\) 0 0
\(793\) 1.46066e6 0.0824831
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 1.43168e7 0.798365 0.399183 0.916871i \(-0.369294\pi\)
0.399183 + 0.916871i \(0.369294\pi\)
\(798\) 0 0
\(799\) −4.52206e6 −0.250593
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −1.08236e6 −0.0592356
\(804\) 0 0
\(805\) 1.89145e7 1.02874
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 2.83586e7 1.52340 0.761699 0.647930i \(-0.224365\pi\)
0.761699 + 0.647930i \(0.224365\pi\)
\(810\) 0 0
\(811\) −1.51736e7 −0.810096 −0.405048 0.914295i \(-0.632745\pi\)
−0.405048 + 0.914295i \(0.632745\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 1.31239e7 0.692101
\(816\) 0 0
\(817\) 1.46014e7 0.765313
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −3.10718e7 −1.60883 −0.804413 0.594070i \(-0.797520\pi\)
−0.804413 + 0.594070i \(0.797520\pi\)
\(822\) 0 0
\(823\) 1.62540e7 0.836488 0.418244 0.908335i \(-0.362646\pi\)
0.418244 + 0.908335i \(0.362646\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −2.47146e6 −0.125658 −0.0628290 0.998024i \(-0.520012\pi\)
−0.0628290 + 0.998024i \(0.520012\pi\)
\(828\) 0 0
\(829\) −2.28848e6 −0.115654 −0.0578270 0.998327i \(-0.518417\pi\)
−0.0578270 + 0.998327i \(0.518417\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −1.65219e7 −0.824988
\(834\) 0 0
\(835\) 1.10825e7 0.550076
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −616161. −0.0302196 −0.0151098 0.999886i \(-0.504810\pi\)
−0.0151098 + 0.999886i \(0.504810\pi\)
\(840\) 0 0
\(841\) 4.94983e7 2.41324
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 3.98947e6 0.192209
\(846\) 0 0
\(847\) −3.43779e7 −1.64653
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 2.27077e7 1.07486
\(852\) 0 0
\(853\) −6.22473e6 −0.292919 −0.146460 0.989217i \(-0.546788\pi\)
−0.146460 + 0.989217i \(0.546788\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1.95218e7 0.907961 0.453980 0.891012i \(-0.350004\pi\)
0.453980 + 0.891012i \(0.350004\pi\)
\(858\) 0 0
\(859\) 4.91732e6 0.227377 0.113688 0.993516i \(-0.463733\pi\)
0.113688 + 0.993516i \(0.463733\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −1.45672e7 −0.665809 −0.332905 0.942961i \(-0.608029\pi\)
−0.332905 + 0.942961i \(0.608029\pi\)
\(864\) 0 0
\(865\) −4.24620e6 −0.192957
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1.89481e6 0.0851170
\(870\) 0 0
\(871\) −1.49514e7 −0.667783
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −3.38600e6 −0.149509
\(876\) 0 0
\(877\) −2.79156e6 −0.122560 −0.0612799 0.998121i \(-0.519518\pi\)
−0.0612799 + 0.998121i \(0.519518\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 1.75646e7 0.762427 0.381214 0.924487i \(-0.375506\pi\)
0.381214 + 0.924487i \(0.375506\pi\)
\(882\) 0 0
\(883\) −7.02211e6 −0.303086 −0.151543 0.988451i \(-0.548424\pi\)
−0.151543 + 0.988451i \(0.548424\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 2.32738e7 0.993248 0.496624 0.867966i \(-0.334573\pi\)
0.496624 + 0.867966i \(0.334573\pi\)
\(888\) 0 0
\(889\) −5.22238e7 −2.21623
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 1.08161e7 0.453882
\(894\) 0 0
\(895\) 8.02081e6 0.334704
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 6.31346e7 2.60536
\(900\) 0 0
\(901\) 1.28374e7 0.526823
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −3.63139e6 −0.147384
\(906\) 0 0
\(907\) −1.10282e7 −0.445129 −0.222564 0.974918i \(-0.571443\pi\)
−0.222564 + 0.974918i \(0.571443\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 2.95239e7 1.17863 0.589316 0.807903i \(-0.299397\pi\)
0.589316 + 0.807903i \(0.299397\pi\)
\(912\) 0 0
\(913\) −2.41679e6 −0.0959537
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 2.79968e7 1.09947
\(918\) 0 0
\(919\) −2.25710e7 −0.881582 −0.440791 0.897610i \(-0.645302\pi\)
−0.440791 + 0.897610i \(0.645302\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −9.73193e6 −0.376006
\(924\) 0 0
\(925\) −4.06505e6 −0.156211
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 4.02520e7 1.53020 0.765099 0.643913i \(-0.222690\pi\)
0.765099 + 0.643913i \(0.222690\pi\)
\(930\) 0 0
\(931\) 3.95180e7 1.49424
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −672646. −0.0251627
\(936\) 0 0
\(937\) −5.93146e6 −0.220705 −0.110353 0.993892i \(-0.535198\pi\)
−0.110353 + 0.993892i \(0.535198\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1.67266e7 0.615793 0.307896 0.951420i \(-0.400375\pi\)
0.307896 + 0.951420i \(0.400375\pi\)
\(942\) 0 0
\(943\) −3.44848e7 −1.26284
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 5.32798e7 1.93058 0.965290 0.261181i \(-0.0841118\pi\)
0.965290 + 0.261181i \(0.0841118\pi\)
\(948\) 0 0
\(949\) 1.01419e7 0.365557
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −4.03774e7 −1.44015 −0.720073 0.693898i \(-0.755892\pi\)
−0.720073 + 0.693898i \(0.755892\pi\)
\(954\) 0 0
\(955\) 7.61798e6 0.270291
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −5.02127e6 −0.176306
\(960\) 0 0
\(961\) 2.83057e7 0.988703
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 2.16377e7 0.747984
\(966\) 0 0
\(967\) 4.90032e7 1.68523 0.842613 0.538520i \(-0.181016\pi\)
0.842613 + 0.538520i \(0.181016\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 2.00304e7 0.681777 0.340889 0.940104i \(-0.389272\pi\)
0.340889 + 0.940104i \(0.389272\pi\)
\(972\) 0 0
\(973\) −6.74826e7 −2.28512
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1.10720e7 0.371099 0.185550 0.982635i \(-0.440593\pi\)
0.185550 + 0.982635i \(0.440593\pi\)
\(978\) 0 0
\(979\) −4.58917e6 −0.153030
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 4.51692e7 1.49093 0.745467 0.666543i \(-0.232227\pi\)
0.745467 + 0.666543i \(0.232227\pi\)
\(984\) 0 0
\(985\) 6.36053e6 0.208883
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −3.88981e7 −1.26455
\(990\) 0 0
\(991\) 2.52900e7 0.818020 0.409010 0.912530i \(-0.365874\pi\)
0.409010 + 0.912530i \(0.365874\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −2.54056e7 −0.813527
\(996\) 0 0
\(997\) 2.53395e7 0.807348 0.403674 0.914903i \(-0.367733\pi\)
0.403674 + 0.914903i \(0.367733\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1080.6.a.m.1.5 5
3.2 odd 2 1080.6.a.r.1.5 yes 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1080.6.a.m.1.5 5 1.1 even 1 trivial
1080.6.a.r.1.5 yes 5 3.2 odd 2