Defining parameters
Level: | \( N \) | \(=\) | \( 1080 = 2^{3} \cdot 3^{3} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 1080.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 20 \) | ||
Sturm bound: | \(1296\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(7\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_0(1080))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1104 | 80 | 1024 |
Cusp forms | 1056 | 80 | 976 |
Eisenstein series | 48 | 0 | 48 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(5\) | Fricke | Dim. |
---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(9\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(10\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(11\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(10\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(10\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(9\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(10\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(11\) |
Plus space | \(+\) | \(38\) | ||
Minus space | \(-\) | \(42\) |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_0(1080))\) into newform subspaces
Decomposition of \(S_{6}^{\mathrm{old}}(\Gamma_0(1080))\) into lower level spaces
\( S_{6}^{\mathrm{old}}(\Gamma_0(1080)) \cong \) \(S_{6}^{\mathrm{new}}(\Gamma_0(3))\)\(^{\oplus 24}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 16}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 16}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(6))\)\(^{\oplus 18}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 16}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(18))\)\(^{\oplus 12}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 9}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(45))\)\(^{\oplus 8}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(54))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(60))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(72))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(90))\)\(^{\oplus 6}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(108))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(120))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(135))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(180))\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(216))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(270))\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(360))\)\(^{\oplus 2}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(\Gamma_0(540))\)\(^{\oplus 2}\)