Properties

Label 1080.6.a.c.1.2
Level $1080$
Weight $6$
Character 1080.1
Self dual yes
Analytic conductor $173.215$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1080,6,Mod(1,1080)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1080.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1080, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 1080 = 2^{3} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 1080.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,-50,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(173.214525398\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{11}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 11 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2\cdot 3 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(3.31662\) of defining polynomial
Character \(\chi\) \(=\) 1080.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-25.0000 q^{5} +101.499 q^{7} +254.095 q^{11} +1120.10 q^{13} +2168.28 q^{17} +486.083 q^{19} -231.581 q^{23} +625.000 q^{25} +8568.22 q^{29} -763.151 q^{31} -2537.47 q^{35} +3232.80 q^{37} +4426.31 q^{41} -11685.9 q^{43} +14009.0 q^{47} -6505.01 q^{49} -25320.1 q^{53} -6352.38 q^{55} +14810.2 q^{59} -18101.1 q^{61} -28002.4 q^{65} -8828.46 q^{67} -24891.7 q^{71} +38234.7 q^{73} +25790.3 q^{77} -71930.4 q^{79} +57290.5 q^{83} -54207.1 q^{85} -5294.34 q^{89} +113688. q^{91} -12152.1 q^{95} +32086.1 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 50 q^{5} + 4 q^{7} - 248 q^{11} + 1484 q^{13} + 1670 q^{17} - 1774 q^{19} + 2482 q^{23} + 1250 q^{25} + 3724 q^{29} - 9526 q^{31} - 100 q^{35} + 5988 q^{37} + 9768 q^{41} - 20944 q^{43} - 3344 q^{47}+ \cdots - 54112 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −25.0000 −0.447214
\(6\) 0 0
\(7\) 101.499 0.782917 0.391458 0.920196i \(-0.371971\pi\)
0.391458 + 0.920196i \(0.371971\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 254.095 0.633162 0.316581 0.948565i \(-0.397465\pi\)
0.316581 + 0.948565i \(0.397465\pi\)
\(12\) 0 0
\(13\) 1120.10 1.83822 0.919108 0.394006i \(-0.128911\pi\)
0.919108 + 0.394006i \(0.128911\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2168.28 1.81967 0.909837 0.414965i \(-0.136206\pi\)
0.909837 + 0.414965i \(0.136206\pi\)
\(18\) 0 0
\(19\) 486.083 0.308906 0.154453 0.988000i \(-0.450639\pi\)
0.154453 + 0.988000i \(0.450639\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −231.581 −0.0912818 −0.0456409 0.998958i \(-0.514533\pi\)
−0.0456409 + 0.998958i \(0.514533\pi\)
\(24\) 0 0
\(25\) 625.000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 8568.22 1.89189 0.945944 0.324330i \(-0.105139\pi\)
0.945944 + 0.324330i \(0.105139\pi\)
\(30\) 0 0
\(31\) −763.151 −0.142628 −0.0713142 0.997454i \(-0.522719\pi\)
−0.0713142 + 0.997454i \(0.522719\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2537.47 −0.350131
\(36\) 0 0
\(37\) 3232.80 0.388217 0.194108 0.980980i \(-0.437819\pi\)
0.194108 + 0.980980i \(0.437819\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4426.31 0.411227 0.205614 0.978633i \(-0.434081\pi\)
0.205614 + 0.978633i \(0.434081\pi\)
\(42\) 0 0
\(43\) −11685.9 −0.963808 −0.481904 0.876224i \(-0.660055\pi\)
−0.481904 + 0.876224i \(0.660055\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 14009.0 0.925044 0.462522 0.886608i \(-0.346945\pi\)
0.462522 + 0.886608i \(0.346945\pi\)
\(48\) 0 0
\(49\) −6505.01 −0.387041
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −25320.1 −1.23816 −0.619078 0.785330i \(-0.712493\pi\)
−0.619078 + 0.785330i \(0.712493\pi\)
\(54\) 0 0
\(55\) −6352.38 −0.283159
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 14810.2 0.553901 0.276950 0.960884i \(-0.410676\pi\)
0.276950 + 0.960884i \(0.410676\pi\)
\(60\) 0 0
\(61\) −18101.1 −0.622846 −0.311423 0.950271i \(-0.600806\pi\)
−0.311423 + 0.950271i \(0.600806\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −28002.4 −0.822075
\(66\) 0 0
\(67\) −8828.46 −0.240269 −0.120134 0.992758i \(-0.538333\pi\)
−0.120134 + 0.992758i \(0.538333\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −24891.7 −0.586015 −0.293008 0.956110i \(-0.594656\pi\)
−0.293008 + 0.956110i \(0.594656\pi\)
\(72\) 0 0
\(73\) 38234.7 0.839752 0.419876 0.907582i \(-0.362074\pi\)
0.419876 + 0.907582i \(0.362074\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 25790.3 0.495713
\(78\) 0 0
\(79\) −71930.4 −1.29672 −0.648358 0.761336i \(-0.724544\pi\)
−0.648358 + 0.761336i \(0.724544\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 57290.5 0.912824 0.456412 0.889769i \(-0.349134\pi\)
0.456412 + 0.889769i \(0.349134\pi\)
\(84\) 0 0
\(85\) −54207.1 −0.813783
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −5294.34 −0.0708495 −0.0354247 0.999372i \(-0.511278\pi\)
−0.0354247 + 0.999372i \(0.511278\pi\)
\(90\) 0 0
\(91\) 113688. 1.43917
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −12152.1 −0.138147
\(96\) 0 0
\(97\) 32086.1 0.346248 0.173124 0.984900i \(-0.444614\pi\)
0.173124 + 0.984900i \(0.444614\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −32724.3 −0.319203 −0.159601 0.987182i \(-0.551021\pi\)
−0.159601 + 0.987182i \(0.551021\pi\)
\(102\) 0 0
\(103\) 127296. 1.18228 0.591142 0.806567i \(-0.298677\pi\)
0.591142 + 0.806567i \(0.298677\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 107983. 0.911794 0.455897 0.890033i \(-0.349319\pi\)
0.455897 + 0.890033i \(0.349319\pi\)
\(108\) 0 0
\(109\) −150394. −1.21245 −0.606225 0.795293i \(-0.707317\pi\)
−0.606225 + 0.795293i \(0.707317\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 4065.65 0.0299526 0.0149763 0.999888i \(-0.495233\pi\)
0.0149763 + 0.999888i \(0.495233\pi\)
\(114\) 0 0
\(115\) 5789.54 0.0408225
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 220078. 1.42465
\(120\) 0 0
\(121\) −96486.6 −0.599106
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −15625.0 −0.0894427
\(126\) 0 0
\(127\) 168442. 0.926703 0.463352 0.886175i \(-0.346647\pi\)
0.463352 + 0.886175i \(0.346647\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −351179. −1.78793 −0.893964 0.448139i \(-0.852087\pi\)
−0.893964 + 0.448139i \(0.852087\pi\)
\(132\) 0 0
\(133\) 49336.8 0.241848
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −47249.1 −0.215076 −0.107538 0.994201i \(-0.534297\pi\)
−0.107538 + 0.994201i \(0.534297\pi\)
\(138\) 0 0
\(139\) −314219. −1.37941 −0.689707 0.724088i \(-0.742261\pi\)
−0.689707 + 0.724088i \(0.742261\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 284611. 1.16389
\(144\) 0 0
\(145\) −214205. −0.846078
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 248250. 0.916060 0.458030 0.888937i \(-0.348555\pi\)
0.458030 + 0.888937i \(0.348555\pi\)
\(150\) 0 0
\(151\) 129307. 0.461507 0.230754 0.973012i \(-0.425881\pi\)
0.230754 + 0.973012i \(0.425881\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 19078.8 0.0637854
\(156\) 0 0
\(157\) −86956.8 −0.281549 −0.140775 0.990042i \(-0.544959\pi\)
−0.140775 + 0.990042i \(0.544959\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −23505.2 −0.0714660
\(162\) 0 0
\(163\) 343607. 1.01296 0.506480 0.862252i \(-0.330946\pi\)
0.506480 + 0.862252i \(0.330946\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −472717. −1.31163 −0.655813 0.754923i \(-0.727674\pi\)
−0.655813 + 0.754923i \(0.727674\pi\)
\(168\) 0 0
\(169\) 883320. 2.37904
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 257127. 0.653179 0.326589 0.945166i \(-0.394101\pi\)
0.326589 + 0.945166i \(0.394101\pi\)
\(174\) 0 0
\(175\) 63436.7 0.156583
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −170170. −0.396963 −0.198481 0.980105i \(-0.563601\pi\)
−0.198481 + 0.980105i \(0.563601\pi\)
\(180\) 0 0
\(181\) −159984. −0.362979 −0.181489 0.983393i \(-0.558092\pi\)
−0.181489 + 0.983393i \(0.558092\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −80819.9 −0.173616
\(186\) 0 0
\(187\) 550950. 1.15215
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 627362. 1.24433 0.622164 0.782887i \(-0.286254\pi\)
0.622164 + 0.782887i \(0.286254\pi\)
\(192\) 0 0
\(193\) 682959. 1.31978 0.659890 0.751362i \(-0.270603\pi\)
0.659890 + 0.751362i \(0.270603\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 572449. 1.05092 0.525462 0.850817i \(-0.323893\pi\)
0.525462 + 0.850817i \(0.323893\pi\)
\(198\) 0 0
\(199\) −905955. −1.62171 −0.810856 0.585245i \(-0.800998\pi\)
−0.810856 + 0.585245i \(0.800998\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 869663. 1.48119
\(204\) 0 0
\(205\) −110658. −0.183906
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 123511. 0.195587
\(210\) 0 0
\(211\) −1.23786e6 −1.91411 −0.957054 0.289910i \(-0.906375\pi\)
−0.957054 + 0.289910i \(0.906375\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 292147. 0.431028
\(216\) 0 0
\(217\) −77458.8 −0.111666
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 2.42868e6 3.34495
\(222\) 0 0
\(223\) −1.32540e6 −1.78479 −0.892393 0.451258i \(-0.850975\pi\)
−0.892393 + 0.451258i \(0.850975\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 37893.2 0.0488086 0.0244043 0.999702i \(-0.492231\pi\)
0.0244043 + 0.999702i \(0.492231\pi\)
\(228\) 0 0
\(229\) 96404.7 0.121481 0.0607406 0.998154i \(-0.480654\pi\)
0.0607406 + 0.998154i \(0.480654\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.36944e6 −1.65255 −0.826274 0.563268i \(-0.809544\pi\)
−0.826274 + 0.563268i \(0.809544\pi\)
\(234\) 0 0
\(235\) −350225. −0.413692
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 1.42820e6 1.61732 0.808658 0.588280i \(-0.200195\pi\)
0.808658 + 0.588280i \(0.200195\pi\)
\(240\) 0 0
\(241\) 758335. 0.841043 0.420522 0.907283i \(-0.361847\pi\)
0.420522 + 0.907283i \(0.361847\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 162625. 0.173090
\(246\) 0 0
\(247\) 544459. 0.567836
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 1.13225e6 1.13438 0.567188 0.823588i \(-0.308031\pi\)
0.567188 + 0.823588i \(0.308031\pi\)
\(252\) 0 0
\(253\) −58843.7 −0.0577961
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 55508.7 0.0524238 0.0262119 0.999656i \(-0.491656\pi\)
0.0262119 + 0.999656i \(0.491656\pi\)
\(258\) 0 0
\(259\) 328125. 0.303941
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 946554. 0.843832 0.421916 0.906635i \(-0.361358\pi\)
0.421916 + 0.906635i \(0.361358\pi\)
\(264\) 0 0
\(265\) 633002. 0.553720
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −537772. −0.453124 −0.226562 0.973997i \(-0.572749\pi\)
−0.226562 + 0.973997i \(0.572749\pi\)
\(270\) 0 0
\(271\) −1.42760e6 −1.18082 −0.590408 0.807105i \(-0.701033\pi\)
−0.590408 + 0.807105i \(0.701033\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 158810. 0.126632
\(276\) 0 0
\(277\) −451652. −0.353675 −0.176837 0.984240i \(-0.556587\pi\)
−0.176837 + 0.984240i \(0.556587\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 1.11232e6 0.840355 0.420178 0.907442i \(-0.361968\pi\)
0.420178 + 0.907442i \(0.361968\pi\)
\(282\) 0 0
\(283\) 1.03211e6 0.766052 0.383026 0.923737i \(-0.374882\pi\)
0.383026 + 0.923737i \(0.374882\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 449264. 0.321957
\(288\) 0 0
\(289\) 3.28159e6 2.31122
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −1.17904e6 −0.802341 −0.401171 0.916003i \(-0.631397\pi\)
−0.401171 + 0.916003i \(0.631397\pi\)
\(294\) 0 0
\(295\) −370256. −0.247712
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −259393. −0.167796
\(300\) 0 0
\(301\) −1.18610e6 −0.754581
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 452528. 0.278545
\(306\) 0 0
\(307\) 535779. 0.324444 0.162222 0.986754i \(-0.448134\pi\)
0.162222 + 0.986754i \(0.448134\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −2.03141e6 −1.19096 −0.595479 0.803371i \(-0.703038\pi\)
−0.595479 + 0.803371i \(0.703038\pi\)
\(312\) 0 0
\(313\) −3.04001e6 −1.75394 −0.876969 0.480546i \(-0.840438\pi\)
−0.876969 + 0.480546i \(0.840438\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.44246e6 0.806224 0.403112 0.915151i \(-0.367928\pi\)
0.403112 + 0.915151i \(0.367928\pi\)
\(318\) 0 0
\(319\) 2.17714e6 1.19787
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 1.05396e6 0.562108
\(324\) 0 0
\(325\) 700060. 0.367643
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1.42190e6 0.724233
\(330\) 0 0
\(331\) 82656.7 0.0414675 0.0207337 0.999785i \(-0.493400\pi\)
0.0207337 + 0.999785i \(0.493400\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 220711. 0.107452
\(336\) 0 0
\(337\) −485901. −0.233063 −0.116531 0.993187i \(-0.537178\pi\)
−0.116531 + 0.993187i \(0.537178\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −193913. −0.0903069
\(342\) 0 0
\(343\) −2.36614e6 −1.08594
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −1.31240e6 −0.585115 −0.292557 0.956248i \(-0.594506\pi\)
−0.292557 + 0.956248i \(0.594506\pi\)
\(348\) 0 0
\(349\) −1.50340e6 −0.660710 −0.330355 0.943857i \(-0.607168\pi\)
−0.330355 + 0.943857i \(0.607168\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 3.45396e6 1.47530 0.737650 0.675183i \(-0.235935\pi\)
0.737650 + 0.675183i \(0.235935\pi\)
\(354\) 0 0
\(355\) 622293. 0.262074
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −548375. −0.224565 −0.112282 0.993676i \(-0.535816\pi\)
−0.112282 + 0.993676i \(0.535816\pi\)
\(360\) 0 0
\(361\) −2.23982e6 −0.904577
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −955868. −0.375548
\(366\) 0 0
\(367\) −2.41160e6 −0.934633 −0.467316 0.884090i \(-0.654779\pi\)
−0.467316 + 0.884090i \(0.654779\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −2.56995e6 −0.969373
\(372\) 0 0
\(373\) 2.46980e6 0.919155 0.459578 0.888138i \(-0.348001\pi\)
0.459578 + 0.888138i \(0.348001\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 9.59722e6 3.47770
\(378\) 0 0
\(379\) 929815. 0.332505 0.166253 0.986083i \(-0.446833\pi\)
0.166253 + 0.986083i \(0.446833\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 5.57604e6 1.94236 0.971179 0.238352i \(-0.0766071\pi\)
0.971179 + 0.238352i \(0.0766071\pi\)
\(384\) 0 0
\(385\) −644759. −0.221690
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 2.57190e6 0.861747 0.430874 0.902412i \(-0.358205\pi\)
0.430874 + 0.902412i \(0.358205\pi\)
\(390\) 0 0
\(391\) −502134. −0.166103
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 1.79826e6 0.579909
\(396\) 0 0
\(397\) 2.70282e6 0.860677 0.430338 0.902668i \(-0.358394\pi\)
0.430338 + 0.902668i \(0.358394\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1.36521e6 0.423974 0.211987 0.977272i \(-0.432007\pi\)
0.211987 + 0.977272i \(0.432007\pi\)
\(402\) 0 0
\(403\) −854801. −0.262182
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 821438. 0.245804
\(408\) 0 0
\(409\) 3.89695e6 1.15190 0.575952 0.817484i \(-0.304632\pi\)
0.575952 + 0.817484i \(0.304632\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 1.50322e6 0.433658
\(414\) 0 0
\(415\) −1.43226e6 −0.408227
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 5.03961e6 1.40237 0.701184 0.712980i \(-0.252655\pi\)
0.701184 + 0.712980i \(0.252655\pi\)
\(420\) 0 0
\(421\) 5.49218e6 1.51022 0.755109 0.655600i \(-0.227584\pi\)
0.755109 + 0.655600i \(0.227584\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1.35518e6 0.363935
\(426\) 0 0
\(427\) −1.83724e6 −0.487637
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 4.75587e6 1.23321 0.616604 0.787273i \(-0.288508\pi\)
0.616604 + 0.787273i \(0.288508\pi\)
\(432\) 0 0
\(433\) −5.67962e6 −1.45579 −0.727897 0.685687i \(-0.759502\pi\)
−0.727897 + 0.685687i \(0.759502\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −112568. −0.0281975
\(438\) 0 0
\(439\) −2.85947e6 −0.708147 −0.354074 0.935218i \(-0.615204\pi\)
−0.354074 + 0.935218i \(0.615204\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −202730. −0.0490804 −0.0245402 0.999699i \(-0.507812\pi\)
−0.0245402 + 0.999699i \(0.507812\pi\)
\(444\) 0 0
\(445\) 132358. 0.0316848
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −4.55132e6 −1.06542 −0.532711 0.846298i \(-0.678827\pi\)
−0.532711 + 0.846298i \(0.678827\pi\)
\(450\) 0 0
\(451\) 1.12470e6 0.260373
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −2.84221e6 −0.643616
\(456\) 0 0
\(457\) 6.43082e6 1.44037 0.720187 0.693780i \(-0.244056\pi\)
0.720187 + 0.693780i \(0.244056\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −3.31375e6 −0.726219 −0.363110 0.931746i \(-0.618285\pi\)
−0.363110 + 0.931746i \(0.618285\pi\)
\(462\) 0 0
\(463\) 6.05290e6 1.31223 0.656116 0.754660i \(-0.272198\pi\)
0.656116 + 0.754660i \(0.272198\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 7.11777e6 1.51026 0.755130 0.655575i \(-0.227574\pi\)
0.755130 + 0.655575i \(0.227574\pi\)
\(468\) 0 0
\(469\) −896077. −0.188111
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −2.96933e6 −0.610246
\(474\) 0 0
\(475\) 303802. 0.0617812
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 4.76924e6 0.949752 0.474876 0.880053i \(-0.342493\pi\)
0.474876 + 0.880053i \(0.342493\pi\)
\(480\) 0 0
\(481\) 3.62104e6 0.713626
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −802151. −0.154847
\(486\) 0 0
\(487\) −1.02959e7 −1.96718 −0.983588 0.180428i \(-0.942252\pi\)
−0.983588 + 0.180428i \(0.942252\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 2.73418e6 0.511827 0.255913 0.966700i \(-0.417624\pi\)
0.255913 + 0.966700i \(0.417624\pi\)
\(492\) 0 0
\(493\) 1.85783e7 3.44262
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −2.52648e6 −0.458801
\(498\) 0 0
\(499\) −4.43017e6 −0.796470 −0.398235 0.917284i \(-0.630377\pi\)
−0.398235 + 0.917284i \(0.630377\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −1.06852e7 −1.88306 −0.941528 0.336935i \(-0.890610\pi\)
−0.941528 + 0.336935i \(0.890610\pi\)
\(504\) 0 0
\(505\) 818107. 0.142752
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 2.21388e6 0.378756 0.189378 0.981904i \(-0.439353\pi\)
0.189378 + 0.981904i \(0.439353\pi\)
\(510\) 0 0
\(511\) 3.88078e6 0.657456
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −3.18240e6 −0.528734
\(516\) 0 0
\(517\) 3.55962e6 0.585703
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −6.57432e6 −1.06110 −0.530550 0.847654i \(-0.678015\pi\)
−0.530550 + 0.847654i \(0.678015\pi\)
\(522\) 0 0
\(523\) 630333. 0.100766 0.0503832 0.998730i \(-0.483956\pi\)
0.0503832 + 0.998730i \(0.483956\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.65473e6 −0.259537
\(528\) 0 0
\(529\) −6.38271e6 −0.991668
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 4.95788e6 0.755924
\(534\) 0 0
\(535\) −2.69958e6 −0.407767
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −1.65289e6 −0.245060
\(540\) 0 0
\(541\) −4.57583e6 −0.672167 −0.336083 0.941832i \(-0.609102\pi\)
−0.336083 + 0.941832i \(0.609102\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 3.75984e6 0.542224
\(546\) 0 0
\(547\) −1.35268e7 −1.93297 −0.966486 0.256721i \(-0.917358\pi\)
−0.966486 + 0.256721i \(0.917358\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 4.16486e6 0.584415
\(552\) 0 0
\(553\) −7.30085e6 −1.01522
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1.36802e6 0.186833 0.0934166 0.995627i \(-0.470221\pi\)
0.0934166 + 0.995627i \(0.470221\pi\)
\(558\) 0 0
\(559\) −1.30893e7 −1.77169
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 287983. 0.0382909 0.0191454 0.999817i \(-0.493905\pi\)
0.0191454 + 0.999817i \(0.493905\pi\)
\(564\) 0 0
\(565\) −101641. −0.0133952
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −1.02239e7 −1.32384 −0.661920 0.749575i \(-0.730258\pi\)
−0.661920 + 0.749575i \(0.730258\pi\)
\(570\) 0 0
\(571\) 6.38462e6 0.819493 0.409746 0.912199i \(-0.365617\pi\)
0.409746 + 0.912199i \(0.365617\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −144738. −0.0182564
\(576\) 0 0
\(577\) −4.03899e6 −0.505048 −0.252524 0.967591i \(-0.581261\pi\)
−0.252524 + 0.967591i \(0.581261\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 5.81491e6 0.714665
\(582\) 0 0
\(583\) −6.43371e6 −0.783953
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −8.79929e6 −1.05403 −0.527014 0.849856i \(-0.676689\pi\)
−0.527014 + 0.849856i \(0.676689\pi\)
\(588\) 0 0
\(589\) −370954. −0.0440587
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −3.67271e6 −0.428894 −0.214447 0.976736i \(-0.568795\pi\)
−0.214447 + 0.976736i \(0.568795\pi\)
\(594\) 0 0
\(595\) −5.50195e6 −0.637124
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 3.22693e6 0.367470 0.183735 0.982976i \(-0.441181\pi\)
0.183735 + 0.982976i \(0.441181\pi\)
\(600\) 0 0
\(601\) 9.26294e6 1.04607 0.523037 0.852310i \(-0.324799\pi\)
0.523037 + 0.852310i \(0.324799\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2.41217e6 0.267928
\(606\) 0 0
\(607\) −2.45733e6 −0.270702 −0.135351 0.990798i \(-0.543216\pi\)
−0.135351 + 0.990798i \(0.543216\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 1.56914e7 1.70043
\(612\) 0 0
\(613\) 1.23201e7 1.32423 0.662114 0.749403i \(-0.269659\pi\)
0.662114 + 0.749403i \(0.269659\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −6.30851e6 −0.667135 −0.333568 0.942726i \(-0.608253\pi\)
−0.333568 + 0.942726i \(0.608253\pi\)
\(618\) 0 0
\(619\) 1.43375e7 1.50399 0.751996 0.659167i \(-0.229091\pi\)
0.751996 + 0.659167i \(0.229091\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −537369. −0.0554692
\(624\) 0 0
\(625\) 390625. 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 7.00962e6 0.706428
\(630\) 0 0
\(631\) −7.09131e6 −0.709011 −0.354506 0.935054i \(-0.615351\pi\)
−0.354506 + 0.935054i \(0.615351\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −4.21105e6 −0.414434
\(636\) 0 0
\(637\) −7.28623e6 −0.711466
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −3.41831e6 −0.328599 −0.164299 0.986411i \(-0.552536\pi\)
−0.164299 + 0.986411i \(0.552536\pi\)
\(642\) 0 0
\(643\) −5.61084e6 −0.535181 −0.267590 0.963533i \(-0.586227\pi\)
−0.267590 + 0.963533i \(0.586227\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −2.05386e7 −1.92890 −0.964452 0.264257i \(-0.914873\pi\)
−0.964452 + 0.264257i \(0.914873\pi\)
\(648\) 0 0
\(649\) 3.76321e6 0.350709
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1.28565e7 1.17988 0.589941 0.807446i \(-0.299151\pi\)
0.589941 + 0.807446i \(0.299151\pi\)
\(654\) 0 0
\(655\) 8.77947e6 0.799586
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −1.21433e6 −0.108924 −0.0544620 0.998516i \(-0.517344\pi\)
−0.0544620 + 0.998516i \(0.517344\pi\)
\(660\) 0 0
\(661\) 1.68972e7 1.50422 0.752108 0.659040i \(-0.229037\pi\)
0.752108 + 0.659040i \(0.229037\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −1.23342e6 −0.108158
\(666\) 0 0
\(667\) −1.98424e6 −0.172695
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −4.59941e6 −0.394362
\(672\) 0 0
\(673\) 5.15783e6 0.438964 0.219482 0.975617i \(-0.429563\pi\)
0.219482 + 0.975617i \(0.429563\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −2.04545e7 −1.71521 −0.857605 0.514309i \(-0.828048\pi\)
−0.857605 + 0.514309i \(0.828048\pi\)
\(678\) 0 0
\(679\) 3.25669e6 0.271083
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 36424.8 0.00298776 0.00149388 0.999999i \(-0.499524\pi\)
0.00149388 + 0.999999i \(0.499524\pi\)
\(684\) 0 0
\(685\) 1.18123e6 0.0961849
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −2.83609e7 −2.27600
\(690\) 0 0
\(691\) −1.92415e7 −1.53301 −0.766503 0.642241i \(-0.778005\pi\)
−0.766503 + 0.642241i \(0.778005\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 7.85547e6 0.616893
\(696\) 0 0
\(697\) 9.59748e6 0.748300
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −3.36694e6 −0.258786 −0.129393 0.991593i \(-0.541303\pi\)
−0.129393 + 0.991593i \(0.541303\pi\)
\(702\) 0 0
\(703\) 1.57141e6 0.119922
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −3.32147e6 −0.249909
\(708\) 0 0
\(709\) 4.06268e6 0.303527 0.151764 0.988417i \(-0.451505\pi\)
0.151764 + 0.988417i \(0.451505\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 176731. 0.0130194
\(714\) 0 0
\(715\) −7.11527e6 −0.520507
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 152035. 0.0109678 0.00548392 0.999985i \(-0.498254\pi\)
0.00548392 + 0.999985i \(0.498254\pi\)
\(720\) 0 0
\(721\) 1.29204e7 0.925630
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 5.35513e6 0.378378
\(726\) 0 0
\(727\) −1.10583e7 −0.775984 −0.387992 0.921663i \(-0.626831\pi\)
−0.387992 + 0.921663i \(0.626831\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −2.53383e7 −1.75382
\(732\) 0 0
\(733\) 1.46140e7 1.00464 0.502319 0.864683i \(-0.332480\pi\)
0.502319 + 0.864683i \(0.332480\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −2.24327e6 −0.152129
\(738\) 0 0
\(739\) −1.95198e7 −1.31481 −0.657405 0.753537i \(-0.728346\pi\)
−0.657405 + 0.753537i \(0.728346\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −2.56749e7 −1.70622 −0.853112 0.521728i \(-0.825288\pi\)
−0.853112 + 0.521728i \(0.825288\pi\)
\(744\) 0 0
\(745\) −6.20626e6 −0.409675
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 1.09602e7 0.713859
\(750\) 0 0
\(751\) 98418.0 0.00636758 0.00318379 0.999995i \(-0.498987\pi\)
0.00318379 + 0.999995i \(0.498987\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −3.23267e6 −0.206392
\(756\) 0 0
\(757\) −2.27659e7 −1.44393 −0.721963 0.691932i \(-0.756760\pi\)
−0.721963 + 0.691932i \(0.756760\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −1.03666e7 −0.648895 −0.324448 0.945904i \(-0.605178\pi\)
−0.324448 + 0.945904i \(0.605178\pi\)
\(762\) 0 0
\(763\) −1.52648e7 −0.949247
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1.65889e7 1.01819
\(768\) 0 0
\(769\) 3.19043e7 1.94551 0.972754 0.231840i \(-0.0744745\pi\)
0.972754 + 0.231840i \(0.0744745\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −4.44636e6 −0.267643 −0.133821 0.991005i \(-0.542725\pi\)
−0.133821 + 0.991005i \(0.542725\pi\)
\(774\) 0 0
\(775\) −476969. −0.0285257
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 2.15155e6 0.127030
\(780\) 0 0
\(781\) −6.32487e6 −0.371043
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 2.17392e6 0.125913
\(786\) 0 0
\(787\) 6.67710e6 0.384283 0.192141 0.981367i \(-0.438457\pi\)
0.192141 + 0.981367i \(0.438457\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 412658. 0.0234504
\(792\) 0 0
\(793\) −2.02750e7 −1.14493
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −9.01010e6 −0.502440 −0.251220 0.967930i \(-0.580832\pi\)
−0.251220 + 0.967930i \(0.580832\pi\)
\(798\) 0 0
\(799\) 3.03755e7 1.68328
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 9.71526e6 0.531699
\(804\) 0 0
\(805\) 587631. 0.0319606
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 9.62357e6 0.516969 0.258485 0.966015i \(-0.416777\pi\)
0.258485 + 0.966015i \(0.416777\pi\)
\(810\) 0 0
\(811\) −2.65601e7 −1.41800 −0.709002 0.705207i \(-0.750854\pi\)
−0.709002 + 0.705207i \(0.750854\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −8.59016e6 −0.453010
\(816\) 0 0
\(817\) −5.68031e6 −0.297726
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −8.39304e6 −0.434572 −0.217286 0.976108i \(-0.569720\pi\)
−0.217286 + 0.976108i \(0.569720\pi\)
\(822\) 0 0
\(823\) −1.80623e7 −0.929550 −0.464775 0.885429i \(-0.653865\pi\)
−0.464775 + 0.885429i \(0.653865\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −1.07639e7 −0.547275 −0.273638 0.961833i \(-0.588227\pi\)
−0.273638 + 0.961833i \(0.588227\pi\)
\(828\) 0 0
\(829\) 2.80469e7 1.41742 0.708710 0.705500i \(-0.249278\pi\)
0.708710 + 0.705500i \(0.249278\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −1.41047e7 −0.704289
\(834\) 0 0
\(835\) 1.18179e7 0.586577
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −2.51483e7 −1.23340 −0.616700 0.787198i \(-0.711531\pi\)
−0.616700 + 0.787198i \(0.711531\pi\)
\(840\) 0 0
\(841\) 5.29032e7 2.57924
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −2.20830e7 −1.06394
\(846\) 0 0
\(847\) −9.79327e6 −0.469050
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −748656. −0.0354371
\(852\) 0 0
\(853\) 2.50392e7 1.17828 0.589139 0.808032i \(-0.299467\pi\)
0.589139 + 0.808032i \(0.299467\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 4.20247e7 1.95458 0.977288 0.211917i \(-0.0679706\pi\)
0.977288 + 0.211917i \(0.0679706\pi\)
\(858\) 0 0
\(859\) 2.54461e7 1.17662 0.588312 0.808634i \(-0.299793\pi\)
0.588312 + 0.808634i \(0.299793\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −1.27150e7 −0.581151 −0.290576 0.956852i \(-0.593847\pi\)
−0.290576 + 0.956852i \(0.593847\pi\)
\(864\) 0 0
\(865\) −6.42817e6 −0.292110
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −1.82772e7 −0.821031
\(870\) 0 0
\(871\) −9.88871e6 −0.441666
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −1.58592e6 −0.0700262
\(876\) 0 0
\(877\) −1.74338e7 −0.765409 −0.382704 0.923871i \(-0.625007\pi\)
−0.382704 + 0.923871i \(0.625007\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −1.31070e7 −0.568937 −0.284469 0.958685i \(-0.591817\pi\)
−0.284469 + 0.958685i \(0.591817\pi\)
\(882\) 0 0
\(883\) −1.80224e7 −0.777876 −0.388938 0.921264i \(-0.627158\pi\)
−0.388938 + 0.921264i \(0.627158\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 3.96494e7 1.69211 0.846054 0.533098i \(-0.178972\pi\)
0.846054 + 0.533098i \(0.178972\pi\)
\(888\) 0 0
\(889\) 1.70966e7 0.725532
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 6.80953e6 0.285752
\(894\) 0 0
\(895\) 4.25424e6 0.177527
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −6.53884e6 −0.269837
\(900\) 0 0
\(901\) −5.49011e7 −2.25304
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 3.99961e6 0.162329
\(906\) 0 0
\(907\) 1.99541e7 0.805405 0.402703 0.915331i \(-0.368071\pi\)
0.402703 + 0.915331i \(0.368071\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −2.89836e7 −1.15706 −0.578530 0.815661i \(-0.696374\pi\)
−0.578530 + 0.815661i \(0.696374\pi\)
\(912\) 0 0
\(913\) 1.45572e7 0.577965
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −3.56442e7 −1.39980
\(918\) 0 0
\(919\) −1.96413e7 −0.767151 −0.383575 0.923510i \(-0.625307\pi\)
−0.383575 + 0.923510i \(0.625307\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −2.78811e7 −1.07722
\(924\) 0 0
\(925\) 2.02050e6 0.0776433
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −2.80349e6 −0.106576 −0.0532881 0.998579i \(-0.516970\pi\)
−0.0532881 + 0.998579i \(0.516970\pi\)
\(930\) 0 0
\(931\) −3.16197e6 −0.119559
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −1.37738e7 −0.515257
\(936\) 0 0
\(937\) −3.56858e7 −1.32784 −0.663921 0.747802i \(-0.731109\pi\)
−0.663921 + 0.747802i \(0.731109\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −8.92762e6 −0.328671 −0.164336 0.986404i \(-0.552548\pi\)
−0.164336 + 0.986404i \(0.552548\pi\)
\(942\) 0 0
\(943\) −1.02505e6 −0.0375375
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −3.02382e7 −1.09567 −0.547836 0.836586i \(-0.684548\pi\)
−0.547836 + 0.836586i \(0.684548\pi\)
\(948\) 0 0
\(949\) 4.28265e7 1.54364
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −3.06486e7 −1.09314 −0.546572 0.837412i \(-0.684068\pi\)
−0.546572 + 0.837412i \(0.684068\pi\)
\(954\) 0 0
\(955\) −1.56840e7 −0.556480
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −4.79572e6 −0.168387
\(960\) 0 0
\(961\) −2.80468e7 −0.979657
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −1.70740e7 −0.590224
\(966\) 0 0
\(967\) 1.75738e7 0.604365 0.302183 0.953250i \(-0.402285\pi\)
0.302183 + 0.953250i \(0.402285\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −2.40755e7 −0.819458 −0.409729 0.912207i \(-0.634377\pi\)
−0.409729 + 0.912207i \(0.634377\pi\)
\(972\) 0 0
\(973\) −3.18928e7 −1.07997
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 3.73572e7 1.25210 0.626049 0.779784i \(-0.284671\pi\)
0.626049 + 0.779784i \(0.284671\pi\)
\(978\) 0 0
\(979\) −1.34527e6 −0.0448592
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −1.90868e7 −0.630013 −0.315007 0.949089i \(-0.602007\pi\)
−0.315007 + 0.949089i \(0.602007\pi\)
\(984\) 0 0
\(985\) −1.43112e7 −0.469987
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 2.70623e6 0.0879781
\(990\) 0 0
\(991\) 3.82344e7 1.23672 0.618359 0.785896i \(-0.287798\pi\)
0.618359 + 0.785896i \(0.287798\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 2.26489e7 0.725252
\(996\) 0 0
\(997\) 1.82342e7 0.580964 0.290482 0.956880i \(-0.406184\pi\)
0.290482 + 0.956880i \(0.406184\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1080.6.a.c.1.2 2
3.2 odd 2 1080.6.a.d.1.2 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1080.6.a.c.1.2 2 1.1 even 1 trivial
1080.6.a.d.1.2 yes 2 3.2 odd 2