Properties

Label 1080.4.q.e.721.9
Level $1080$
Weight $4$
Character 1080.721
Analytic conductor $63.722$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1080,4,Mod(361,1080)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1080.361"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1080, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1080 = 2^{3} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1080.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [20,0,0,0,-50,0,22] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(63.7220628062\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 1542 x^{18} + 976429 x^{16} + 327887620 x^{14} + 62946909772 x^{12} + 6953278937404 x^{10} + \cdots + 45\!\cdots\!76 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{22}\cdot 3^{25} \)
Twist minimal: no (minimal twist has level 360)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 721.9
Root \(-15.7380i\) of defining polynomial
Character \(\chi\) \(=\) 1080.721
Dual form 1080.4.q.e.361.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.50000 - 4.33013i) q^{5} +(14.1295 - 24.4730i) q^{7} +(-35.4379 + 61.3802i) q^{11} +(-31.3500 - 54.2997i) q^{13} +116.633 q^{17} +81.1071 q^{19} +(50.4969 + 87.4632i) q^{23} +(-12.5000 + 21.6506i) q^{25} +(19.6732 - 34.0749i) q^{29} +(-66.4223 - 115.047i) q^{31} -141.295 q^{35} +382.860 q^{37} +(-88.0191 - 152.454i) q^{41} +(-32.6094 + 56.4812i) q^{43} +(244.747 - 423.914i) q^{47} +(-227.786 - 394.538i) q^{49} -223.526 q^{53} +354.379 q^{55} +(-349.850 - 605.959i) q^{59} +(-102.596 + 177.701i) q^{61} +(-156.750 + 271.499i) q^{65} +(94.4948 + 163.670i) q^{67} -383.977 q^{71} -266.289 q^{73} +(1001.44 + 1734.54i) q^{77} +(167.183 - 289.569i) q^{79} +(-125.478 + 217.334i) q^{83} +(-291.583 - 505.036i) q^{85} -1004.55 q^{89} -1771.84 q^{91} +(-202.768 - 351.204i) q^{95} +(175.973 - 304.794i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 50 q^{5} + 22 q^{7} - 50 q^{11} - 16 q^{13} + 68 q^{17} + 212 q^{19} - 50 q^{23} - 250 q^{25} + 64 q^{29} - 22 q^{31} - 220 q^{35} + 600 q^{37} + 198 q^{41} - 382 q^{43} - 128 q^{47} - 1230 q^{49}+ \cdots - 1354 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1080\mathbb{Z}\right)^\times\).

\(n\) \(217\) \(271\) \(541\) \(1001\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −2.50000 4.33013i −0.223607 0.387298i
\(6\) 0 0
\(7\) 14.1295 24.4730i 0.762922 1.32142i −0.178416 0.983955i \(-0.557097\pi\)
0.941338 0.337465i \(-0.109569\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −35.4379 + 61.3802i −0.971356 + 1.68244i −0.279885 + 0.960033i \(0.590296\pi\)
−0.691471 + 0.722404i \(0.743037\pi\)
\(12\) 0 0
\(13\) −31.3500 54.2997i −0.668839 1.15846i −0.978229 0.207529i \(-0.933458\pi\)
0.309390 0.950935i \(-0.399875\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 116.633 1.66398 0.831991 0.554790i \(-0.187201\pi\)
0.831991 + 0.554790i \(0.187201\pi\)
\(18\) 0 0
\(19\) 81.1071 0.979328 0.489664 0.871911i \(-0.337119\pi\)
0.489664 + 0.871911i \(0.337119\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 50.4969 + 87.4632i 0.457797 + 0.792928i 0.998844 0.0480645i \(-0.0153053\pi\)
−0.541047 + 0.840992i \(0.681972\pi\)
\(24\) 0 0
\(25\) −12.5000 + 21.6506i −0.100000 + 0.173205i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 19.6732 34.0749i 0.125973 0.218192i −0.796140 0.605113i \(-0.793128\pi\)
0.922113 + 0.386921i \(0.126461\pi\)
\(30\) 0 0
\(31\) −66.4223 115.047i −0.384832 0.666549i 0.606914 0.794768i \(-0.292407\pi\)
−0.991746 + 0.128219i \(0.959074\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −141.295 −0.682378
\(36\) 0 0
\(37\) 382.860 1.70113 0.850564 0.525871i \(-0.176261\pi\)
0.850564 + 0.525871i \(0.176261\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −88.0191 152.454i −0.335275 0.580713i 0.648263 0.761417i \(-0.275496\pi\)
−0.983538 + 0.180703i \(0.942163\pi\)
\(42\) 0 0
\(43\) −32.6094 + 56.4812i −0.115649 + 0.200309i −0.918039 0.396490i \(-0.870228\pi\)
0.802390 + 0.596800i \(0.203561\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 244.747 423.914i 0.759575 1.31562i −0.183492 0.983021i \(-0.558740\pi\)
0.943067 0.332602i \(-0.107926\pi\)
\(48\) 0 0
\(49\) −227.786 394.538i −0.664100 1.15026i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −223.526 −0.579314 −0.289657 0.957131i \(-0.593541\pi\)
−0.289657 + 0.957131i \(0.593541\pi\)
\(54\) 0 0
\(55\) 354.379 0.868807
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −349.850 605.959i −0.771977 1.33710i −0.936478 0.350727i \(-0.885935\pi\)
0.164501 0.986377i \(-0.447399\pi\)
\(60\) 0 0
\(61\) −102.596 + 177.701i −0.215345 + 0.372989i −0.953379 0.301774i \(-0.902421\pi\)
0.738034 + 0.674763i \(0.235754\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −156.750 + 271.499i −0.299114 + 0.518081i
\(66\) 0 0
\(67\) 94.4948 + 163.670i 0.172304 + 0.298440i 0.939225 0.343302i \(-0.111545\pi\)
−0.766921 + 0.641742i \(0.778212\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −383.977 −0.641827 −0.320913 0.947109i \(-0.603990\pi\)
−0.320913 + 0.947109i \(0.603990\pi\)
\(72\) 0 0
\(73\) −266.289 −0.426942 −0.213471 0.976949i \(-0.568477\pi\)
−0.213471 + 0.976949i \(0.568477\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1001.44 + 1734.54i 1.48214 + 2.56714i
\(78\) 0 0
\(79\) 167.183 289.569i 0.238096 0.412394i −0.722072 0.691818i \(-0.756810\pi\)
0.960168 + 0.279424i \(0.0901435\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −125.478 + 217.334i −0.165940 + 0.287416i −0.936989 0.349360i \(-0.886399\pi\)
0.771049 + 0.636776i \(0.219732\pi\)
\(84\) 0 0
\(85\) −291.583 505.036i −0.372078 0.644457i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −1004.55 −1.19643 −0.598214 0.801336i \(-0.704123\pi\)
−0.598214 + 0.801336i \(0.704123\pi\)
\(90\) 0 0
\(91\) −1771.84 −2.04109
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −202.768 351.204i −0.218984 0.379292i
\(96\) 0 0
\(97\) 175.973 304.794i 0.184199 0.319043i −0.759107 0.650966i \(-0.774364\pi\)
0.943306 + 0.331923i \(0.107697\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 110.092 190.686i 0.108461 0.187861i −0.806686 0.590981i \(-0.798741\pi\)
0.915147 + 0.403120i \(0.132074\pi\)
\(102\) 0 0
\(103\) 225.741 + 390.995i 0.215951 + 0.374038i 0.953566 0.301183i \(-0.0973816\pi\)
−0.737616 + 0.675221i \(0.764048\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 258.255 0.233332 0.116666 0.993171i \(-0.462779\pi\)
0.116666 + 0.993171i \(0.462779\pi\)
\(108\) 0 0
\(109\) −491.615 −0.432002 −0.216001 0.976393i \(-0.569301\pi\)
−0.216001 + 0.976393i \(0.569301\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1003.95 1738.89i −0.835785 1.44762i −0.893390 0.449282i \(-0.851680\pi\)
0.0576052 0.998339i \(-0.481654\pi\)
\(114\) 0 0
\(115\) 252.485 437.316i 0.204733 0.354608i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1647.97 2854.37i 1.26949 2.19882i
\(120\) 0 0
\(121\) −1846.18 3197.68i −1.38706 2.40247i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 125.000 0.0894427
\(126\) 0 0
\(127\) 206.625 0.144370 0.0721852 0.997391i \(-0.477003\pi\)
0.0721852 + 0.997391i \(0.477003\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −89.5461 155.098i −0.0597228 0.103443i 0.834618 0.550829i \(-0.185688\pi\)
−0.894341 + 0.447386i \(0.852355\pi\)
\(132\) 0 0
\(133\) 1146.00 1984.94i 0.747151 1.29410i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1335.46 2313.08i 0.832817 1.44248i −0.0629778 0.998015i \(-0.520060\pi\)
0.895795 0.444467i \(-0.146607\pi\)
\(138\) 0 0
\(139\) 1256.27 + 2175.93i 0.766588 + 1.32777i 0.939403 + 0.342815i \(0.111381\pi\)
−0.172815 + 0.984954i \(0.555286\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 4443.90 2.59872
\(144\) 0 0
\(145\) −196.732 −0.112674
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −535.464 927.451i −0.294409 0.509931i 0.680438 0.732805i \(-0.261789\pi\)
−0.974847 + 0.222874i \(0.928456\pi\)
\(150\) 0 0
\(151\) 896.496 1552.78i 0.483151 0.836842i −0.516662 0.856189i \(-0.672826\pi\)
0.999813 + 0.0193477i \(0.00615894\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −332.112 + 575.234i −0.172102 + 0.298090i
\(156\) 0 0
\(157\) −1311.31 2271.25i −0.666583 1.15456i −0.978853 0.204563i \(-0.934423\pi\)
0.312270 0.949993i \(-0.398911\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 2853.99 1.39705
\(162\) 0 0
\(163\) −3806.29 −1.82903 −0.914514 0.404554i \(-0.867427\pi\)
−0.914514 + 0.404554i \(0.867427\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −846.849 1466.78i −0.392402 0.679660i 0.600364 0.799727i \(-0.295022\pi\)
−0.992766 + 0.120067i \(0.961689\pi\)
\(168\) 0 0
\(169\) −867.139 + 1501.93i −0.394692 + 0.683627i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 419.904 727.295i 0.184536 0.319625i −0.758884 0.651226i \(-0.774255\pi\)
0.943420 + 0.331600i \(0.107588\pi\)
\(174\) 0 0
\(175\) 353.238 + 611.826i 0.152584 + 0.264284i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 3324.30 1.38810 0.694051 0.719926i \(-0.255824\pi\)
0.694051 + 0.719926i \(0.255824\pi\)
\(180\) 0 0
\(181\) 447.118 0.183613 0.0918066 0.995777i \(-0.470736\pi\)
0.0918066 + 0.995777i \(0.470736\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −957.149 1657.83i −0.380384 0.658844i
\(186\) 0 0
\(187\) −4133.23 + 7158.96i −1.61632 + 2.79955i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −64.6834 + 112.035i −0.0245043 + 0.0424427i −0.878018 0.478628i \(-0.841134\pi\)
0.853513 + 0.521071i \(0.174467\pi\)
\(192\) 0 0
\(193\) −687.509 1190.80i −0.256415 0.444123i 0.708864 0.705345i \(-0.249208\pi\)
−0.965279 + 0.261222i \(0.915875\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −657.111 −0.237651 −0.118825 0.992915i \(-0.537913\pi\)
−0.118825 + 0.992915i \(0.537913\pi\)
\(198\) 0 0
\(199\) 3567.27 1.27074 0.635369 0.772209i \(-0.280848\pi\)
0.635369 + 0.772209i \(0.280848\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −555.945 962.925i −0.192215 0.332926i
\(204\) 0 0
\(205\) −440.096 + 762.268i −0.149940 + 0.259703i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −2874.26 + 4978.37i −0.951277 + 1.64766i
\(210\) 0 0
\(211\) −1054.76 1826.89i −0.344135 0.596060i 0.641061 0.767490i \(-0.278495\pi\)
−0.985196 + 0.171430i \(0.945161\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 326.094 0.103439
\(216\) 0 0
\(217\) −3754.06 −1.17439
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −3656.44 6333.14i −1.11294 1.92766i
\(222\) 0 0
\(223\) 2011.76 3484.47i 0.604114 1.04636i −0.388077 0.921627i \(-0.626861\pi\)
0.992191 0.124729i \(-0.0398061\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 124.012 214.796i 0.0362598 0.0628039i −0.847326 0.531073i \(-0.821789\pi\)
0.883586 + 0.468269i \(0.155122\pi\)
\(228\) 0 0
\(229\) 401.644 + 695.668i 0.115901 + 0.200747i 0.918140 0.396257i \(-0.129691\pi\)
−0.802238 + 0.597004i \(0.796358\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1970.32 0.553992 0.276996 0.960871i \(-0.410661\pi\)
0.276996 + 0.960871i \(0.410661\pi\)
\(234\) 0 0
\(235\) −2447.47 −0.679385
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 100.058 + 173.306i 0.0270805 + 0.0469048i 0.879248 0.476364i \(-0.158046\pi\)
−0.852168 + 0.523269i \(0.824712\pi\)
\(240\) 0 0
\(241\) −2813.18 + 4872.57i −0.751921 + 1.30237i 0.194970 + 0.980809i \(0.437539\pi\)
−0.946891 + 0.321556i \(0.895794\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1138.93 + 1972.69i −0.296995 + 0.514410i
\(246\) 0 0
\(247\) −2542.70 4404.09i −0.655013 1.13452i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 2995.52 0.753289 0.376645 0.926358i \(-0.377078\pi\)
0.376645 + 0.926358i \(0.377078\pi\)
\(252\) 0 0
\(253\) −7158.01 −1.77874
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −2065.14 3576.92i −0.501244 0.868180i −0.999999 0.00143676i \(-0.999543\pi\)
0.498755 0.866743i \(-0.333791\pi\)
\(258\) 0 0
\(259\) 5409.62 9369.74i 1.29783 2.24790i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 469.302 812.856i 0.110032 0.190581i −0.805751 0.592255i \(-0.798238\pi\)
0.915783 + 0.401673i \(0.131571\pi\)
\(264\) 0 0
\(265\) 558.815 + 967.895i 0.129539 + 0.224367i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −3184.71 −0.721842 −0.360921 0.932596i \(-0.617538\pi\)
−0.360921 + 0.932596i \(0.617538\pi\)
\(270\) 0 0
\(271\) 7138.96 1.60022 0.800112 0.599850i \(-0.204773\pi\)
0.800112 + 0.599850i \(0.204773\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −885.946 1534.50i −0.194271 0.336488i
\(276\) 0 0
\(277\) 3552.99 6153.97i 0.770681 1.33486i −0.166509 0.986040i \(-0.553249\pi\)
0.937190 0.348819i \(-0.113417\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −3180.76 + 5509.24i −0.675261 + 1.16959i 0.301132 + 0.953582i \(0.402635\pi\)
−0.976393 + 0.216003i \(0.930698\pi\)
\(282\) 0 0
\(283\) 1146.48 + 1985.75i 0.240816 + 0.417106i 0.960947 0.276733i \(-0.0892516\pi\)
−0.720131 + 0.693838i \(0.755918\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −4974.67 −1.02315
\(288\) 0 0
\(289\) 8690.28 1.76883
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 4142.31 + 7174.69i 0.825926 + 1.43055i 0.901209 + 0.433384i \(0.142681\pi\)
−0.0752832 + 0.997162i \(0.523986\pi\)
\(294\) 0 0
\(295\) −1749.25 + 3029.79i −0.345239 + 0.597971i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 3166.15 5483.93i 0.612385 1.06068i
\(300\) 0 0
\(301\) 921.511 + 1596.10i 0.176462 + 0.305641i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1025.96 0.192611
\(306\) 0 0
\(307\) 4205.85 0.781891 0.390946 0.920414i \(-0.372148\pi\)
0.390946 + 0.920414i \(0.372148\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1482.22 + 2567.28i 0.270254 + 0.468093i 0.968927 0.247348i \(-0.0795591\pi\)
−0.698673 + 0.715441i \(0.746226\pi\)
\(312\) 0 0
\(313\) 1464.28 2536.21i 0.264428 0.458004i −0.702985 0.711204i \(-0.748150\pi\)
0.967414 + 0.253201i \(0.0814834\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −3831.67 + 6636.65i −0.678890 + 1.17587i 0.296425 + 0.955056i \(0.404205\pi\)
−0.975315 + 0.220816i \(0.929128\pi\)
\(318\) 0 0
\(319\) 1394.35 + 2415.09i 0.244729 + 0.423883i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 9459.77 1.62958
\(324\) 0 0
\(325\) 1567.50 0.267536
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −6916.32 11979.4i −1.15899 2.00744i
\(330\) 0 0
\(331\) 668.853 1158.49i 0.111068 0.192375i −0.805133 0.593094i \(-0.797906\pi\)
0.916201 + 0.400719i \(0.131240\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 472.474 818.349i 0.0770568 0.133466i
\(336\) 0 0
\(337\) −4054.65 7022.85i −0.655402 1.13519i −0.981793 0.189955i \(-0.939166\pi\)
0.326390 0.945235i \(-0.394168\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 9415.46 1.49524
\(342\) 0 0
\(343\) −3181.20 −0.500783
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 5494.87 + 9517.39i 0.850087 + 1.47239i 0.881129 + 0.472875i \(0.156784\pi\)
−0.0310429 + 0.999518i \(0.509883\pi\)
\(348\) 0 0
\(349\) −445.146 + 771.016i −0.0682755 + 0.118257i −0.898142 0.439705i \(-0.855083\pi\)
0.829867 + 0.557962i \(0.188416\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −943.375 + 1633.97i −0.142240 + 0.246367i −0.928340 0.371733i \(-0.878764\pi\)
0.786100 + 0.618100i \(0.212097\pi\)
\(354\) 0 0
\(355\) 959.943 + 1662.67i 0.143517 + 0.248579i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −11935.2 −1.75464 −0.877321 0.479904i \(-0.840671\pi\)
−0.877321 + 0.479904i \(0.840671\pi\)
\(360\) 0 0
\(361\) −280.641 −0.0409158
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 665.722 + 1153.06i 0.0954671 + 0.165354i
\(366\) 0 0
\(367\) −1338.71 + 2318.72i −0.190409 + 0.329798i −0.945386 0.325953i \(-0.894315\pi\)
0.754977 + 0.655752i \(0.227648\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −3158.31 + 5470.36i −0.441971 + 0.765517i
\(372\) 0 0
\(373\) −558.751 967.785i −0.0775631 0.134343i 0.824635 0.565665i \(-0.191381\pi\)
−0.902198 + 0.431322i \(0.858047\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −2467.01 −0.337023
\(378\) 0 0
\(379\) −3561.46 −0.482691 −0.241345 0.970439i \(-0.577589\pi\)
−0.241345 + 0.970439i \(0.577589\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 329.509 + 570.727i 0.0439612 + 0.0761431i 0.887169 0.461445i \(-0.152669\pi\)
−0.843208 + 0.537588i \(0.819336\pi\)
\(384\) 0 0
\(385\) 5007.20 8672.72i 0.662832 1.14806i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 3781.21 6549.25i 0.492840 0.853625i −0.507126 0.861872i \(-0.669292\pi\)
0.999966 + 0.00824760i \(0.00262532\pi\)
\(390\) 0 0
\(391\) 5889.61 + 10201.1i 0.761766 + 1.31942i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −1671.83 −0.212959
\(396\) 0 0
\(397\) −13458.6 −1.70143 −0.850714 0.525628i \(-0.823830\pi\)
−0.850714 + 0.525628i \(0.823830\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1114.51 1930.39i −0.138793 0.240397i 0.788247 0.615359i \(-0.210989\pi\)
−0.927040 + 0.374962i \(0.877656\pi\)
\(402\) 0 0
\(403\) −4164.67 + 7213.42i −0.514782 + 0.891628i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −13567.7 + 23500.0i −1.65240 + 2.86204i
\(408\) 0 0
\(409\) 2783.71 + 4821.52i 0.336542 + 0.582907i 0.983780 0.179381i \(-0.0574094\pi\)
−0.647238 + 0.762288i \(0.724076\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −19772.9 −2.35583
\(414\) 0 0
\(415\) 1254.78 0.148421
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −3253.15 5634.61i −0.379300 0.656966i 0.611661 0.791120i \(-0.290502\pi\)
−0.990961 + 0.134154i \(0.957168\pi\)
\(420\) 0 0
\(421\) −5586.70 + 9676.44i −0.646743 + 1.12019i 0.337152 + 0.941450i \(0.390536\pi\)
−0.983896 + 0.178742i \(0.942797\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −1457.91 + 2525.18i −0.166398 + 0.288210i
\(426\) 0 0
\(427\) 2899.26 + 5021.67i 0.328583 + 0.569123i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 13021.8 1.45531 0.727653 0.685946i \(-0.240611\pi\)
0.727653 + 0.685946i \(0.240611\pi\)
\(432\) 0 0
\(433\) 12537.4 1.39148 0.695738 0.718295i \(-0.255077\pi\)
0.695738 + 0.718295i \(0.255077\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 4095.66 + 7093.88i 0.448334 + 0.776537i
\(438\) 0 0
\(439\) −159.278 + 275.878i −0.0173165 + 0.0299931i −0.874554 0.484928i \(-0.838846\pi\)
0.857237 + 0.514922i \(0.172179\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 5308.70 9194.94i 0.569355 0.986151i −0.427275 0.904122i \(-0.640527\pi\)
0.996630 0.0820294i \(-0.0261401\pi\)
\(444\) 0 0
\(445\) 2511.37 + 4349.83i 0.267529 + 0.463374i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −4773.58 −0.501735 −0.250868 0.968021i \(-0.580716\pi\)
−0.250868 + 0.968021i \(0.580716\pi\)
\(450\) 0 0
\(451\) 12476.8 1.30269
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 4429.60 + 7672.29i 0.456402 + 0.790511i
\(456\) 0 0
\(457\) −4622.34 + 8006.12i −0.473137 + 0.819498i −0.999527 0.0307452i \(-0.990212\pi\)
0.526390 + 0.850243i \(0.323545\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 3082.48 5339.02i 0.311422 0.539399i −0.667249 0.744835i \(-0.732528\pi\)
0.978670 + 0.205437i \(0.0658614\pi\)
\(462\) 0 0
\(463\) 8461.59 + 14655.9i 0.849338 + 1.47110i 0.881800 + 0.471623i \(0.156332\pi\)
−0.0324625 + 0.999473i \(0.510335\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 11457.5 1.13531 0.567655 0.823266i \(-0.307851\pi\)
0.567655 + 0.823266i \(0.307851\pi\)
\(468\) 0 0
\(469\) 5340.66 0.525819
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −2311.22 4003.15i −0.224672 0.389143i
\(474\) 0 0
\(475\) −1013.84 + 1756.02i −0.0979328 + 0.169625i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −7196.00 + 12463.8i −0.686416 + 1.18891i 0.286573 + 0.958058i \(0.407484\pi\)
−0.972989 + 0.230850i \(0.925849\pi\)
\(480\) 0 0
\(481\) −12002.6 20789.2i −1.13778 1.97070i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −1759.73 −0.164753
\(486\) 0 0
\(487\) −3589.81 −0.334024 −0.167012 0.985955i \(-0.553412\pi\)
−0.167012 + 0.985955i \(0.553412\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 1085.51 + 1880.15i 0.0997724 + 0.172811i 0.911590 0.411100i \(-0.134855\pi\)
−0.811818 + 0.583911i \(0.801522\pi\)
\(492\) 0 0
\(493\) 2294.54 3974.27i 0.209617 0.363067i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −5425.41 + 9397.09i −0.489664 + 0.848123i
\(498\) 0 0
\(499\) 6665.42 + 11544.9i 0.597967 + 1.03571i 0.993121 + 0.117094i \(0.0373578\pi\)
−0.395154 + 0.918615i \(0.629309\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 13677.7 1.21244 0.606222 0.795295i \(-0.292684\pi\)
0.606222 + 0.795295i \(0.292684\pi\)
\(504\) 0 0
\(505\) −1100.92 −0.0970109
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 793.895 + 1375.07i 0.0691332 + 0.119742i 0.898520 0.438933i \(-0.144643\pi\)
−0.829387 + 0.558675i \(0.811310\pi\)
\(510\) 0 0
\(511\) −3762.53 + 6516.89i −0.325723 + 0.564169i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 1128.71 1954.98i 0.0965761 0.167275i
\(516\) 0 0
\(517\) 17346.6 + 30045.2i 1.47564 + 2.55588i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −1472.45 −0.123818 −0.0619090 0.998082i \(-0.519719\pi\)
−0.0619090 + 0.998082i \(0.519719\pi\)
\(522\) 0 0
\(523\) −4319.49 −0.361143 −0.180572 0.983562i \(-0.557795\pi\)
−0.180572 + 0.983562i \(0.557795\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −7747.04 13418.3i −0.640354 1.10912i
\(528\) 0 0
\(529\) 983.626 1703.69i 0.0808437 0.140025i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −5518.79 + 9558.82i −0.448490 + 0.776808i
\(534\) 0 0
\(535\) −645.638 1118.28i −0.0521745 0.0903690i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 32289.0 2.58031
\(540\) 0 0
\(541\) 8142.01 0.647047 0.323523 0.946220i \(-0.395133\pi\)
0.323523 + 0.946220i \(0.395133\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 1229.04 + 2128.76i 0.0965986 + 0.167314i
\(546\) 0 0
\(547\) 3033.11 5253.50i 0.237087 0.410646i −0.722790 0.691067i \(-0.757141\pi\)
0.959877 + 0.280421i \(0.0904741\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 1595.63 2763.72i 0.123369 0.213681i
\(552\) 0 0
\(553\) −4724.43 8182.95i −0.363297 0.629248i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1792.03 0.136321 0.0681604 0.997674i \(-0.478287\pi\)
0.0681604 + 0.997674i \(0.478287\pi\)
\(558\) 0 0
\(559\) 4089.22 0.309402
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −10238.8 17734.2i −0.766458 1.32754i −0.939472 0.342625i \(-0.888684\pi\)
0.173014 0.984919i \(-0.444649\pi\)
\(564\) 0 0
\(565\) −5019.75 + 8694.46i −0.373774 + 0.647396i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −1287.83 + 2230.59i −0.0948833 + 0.164343i −0.909560 0.415573i \(-0.863581\pi\)
0.814677 + 0.579916i \(0.196914\pi\)
\(570\) 0 0
\(571\) −1335.22 2312.67i −0.0978586 0.169496i 0.812939 0.582348i \(-0.197866\pi\)
−0.910798 + 0.412852i \(0.864533\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −2524.85 −0.183119
\(576\) 0 0
\(577\) −23938.6 −1.72717 −0.863584 0.504205i \(-0.831786\pi\)
−0.863584 + 0.504205i \(0.831786\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 3545.88 + 6141.65i 0.253198 + 0.438552i
\(582\) 0 0
\(583\) 7921.28 13720.1i 0.562720 0.974660i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −1856.66 + 3215.83i −0.130549 + 0.226118i −0.923888 0.382662i \(-0.875007\pi\)
0.793339 + 0.608780i \(0.208341\pi\)
\(588\) 0 0
\(589\) −5387.32 9331.11i −0.376877 0.652770i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 6634.76 0.459455 0.229728 0.973255i \(-0.426216\pi\)
0.229728 + 0.973255i \(0.426216\pi\)
\(594\) 0 0
\(595\) −16479.7 −1.13546
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −8064.71 13968.5i −0.550109 0.952816i −0.998266 0.0588615i \(-0.981253\pi\)
0.448158 0.893955i \(-0.352080\pi\)
\(600\) 0 0
\(601\) −5289.56 + 9161.79i −0.359011 + 0.621826i −0.987796 0.155754i \(-0.950219\pi\)
0.628785 + 0.777580i \(0.283553\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −9230.92 + 15988.4i −0.620314 + 1.07442i
\(606\) 0 0
\(607\) −11811.4 20457.9i −0.789800 1.36797i −0.926089 0.377304i \(-0.876851\pi\)
0.136289 0.990669i \(-0.456482\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −30691.2 −2.03214
\(612\) 0 0
\(613\) 17537.7 1.15553 0.577767 0.816201i \(-0.303924\pi\)
0.577767 + 0.816201i \(0.303924\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 4956.91 + 8585.61i 0.323432 + 0.560201i 0.981194 0.193025i \(-0.0618300\pi\)
−0.657762 + 0.753226i \(0.728497\pi\)
\(618\) 0 0
\(619\) −8217.29 + 14232.8i −0.533572 + 0.924173i 0.465659 + 0.884964i \(0.345817\pi\)
−0.999231 + 0.0392091i \(0.987516\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −14193.8 + 24584.4i −0.912781 + 1.58098i
\(624\) 0 0
\(625\) −312.500 541.266i −0.0200000 0.0346410i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 44654.1 2.83065
\(630\) 0 0
\(631\) −9675.24 −0.610404 −0.305202 0.952288i \(-0.598724\pi\)
−0.305202 + 0.952288i \(0.598724\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −516.563 894.714i −0.0322822 0.0559144i
\(636\) 0 0
\(637\) −14282.2 + 24737.5i −0.888353 + 1.53867i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −3280.93 + 5682.73i −0.202167 + 0.350163i −0.949226 0.314594i \(-0.898132\pi\)
0.747060 + 0.664757i \(0.231465\pi\)
\(642\) 0 0
\(643\) 13340.9 + 23107.1i 0.818218 + 1.41720i 0.906994 + 0.421144i \(0.138371\pi\)
−0.0887753 + 0.996052i \(0.528295\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 18569.8 1.12837 0.564183 0.825650i \(-0.309191\pi\)
0.564183 + 0.825650i \(0.309191\pi\)
\(648\) 0 0
\(649\) 49591.8 2.99946
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −4692.26 8127.23i −0.281198 0.487049i 0.690482 0.723350i \(-0.257398\pi\)
−0.971680 + 0.236300i \(0.924065\pi\)
\(654\) 0 0
\(655\) −447.731 + 775.492i −0.0267088 + 0.0462611i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 3204.61 5550.55i 0.189429 0.328101i −0.755631 0.654998i \(-0.772670\pi\)
0.945060 + 0.326896i \(0.106003\pi\)
\(660\) 0 0
\(661\) −3994.79 6919.17i −0.235067 0.407148i 0.724225 0.689563i \(-0.242198\pi\)
−0.959292 + 0.282416i \(0.908864\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −11460.0 −0.668272
\(666\) 0 0
\(667\) 3973.74 0.230680
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −7271.56 12594.7i −0.418354 0.724610i
\(672\) 0 0
\(673\) 8794.62 15232.7i 0.503726 0.872480i −0.496264 0.868171i \(-0.665295\pi\)
0.999991 0.00430813i \(-0.00137132\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −8380.19 + 14514.9i −0.475741 + 0.824008i −0.999614 0.0277884i \(-0.991154\pi\)
0.523872 + 0.851797i \(0.324487\pi\)
\(678\) 0 0
\(679\) −4972.82 8613.18i −0.281060 0.486809i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −19144.5 −1.07254 −0.536269 0.844047i \(-0.680167\pi\)
−0.536269 + 0.844047i \(0.680167\pi\)
\(684\) 0 0
\(685\) −13354.6 −0.744894
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 7007.52 + 12137.4i 0.387468 + 0.671114i
\(690\) 0 0
\(691\) 5618.53 9731.57i 0.309318 0.535755i −0.668895 0.743357i \(-0.733233\pi\)
0.978213 + 0.207602i \(0.0665659\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 6281.37 10879.7i 0.342829 0.593797i
\(696\) 0 0
\(697\) −10265.9 17781.1i −0.557891 0.966296i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −7341.40 −0.395550 −0.197775 0.980247i \(-0.563372\pi\)
−0.197775 + 0.980247i \(0.563372\pi\)
\(702\) 0 0
\(703\) 31052.6 1.66596
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −3111.11 5388.59i −0.165495 0.286646i
\(708\) 0 0
\(709\) −1185.69 + 2053.67i −0.0628060 + 0.108783i −0.895719 0.444621i \(-0.853338\pi\)
0.832913 + 0.553404i \(0.186672\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 6708.24 11619.0i 0.352350 0.610288i
\(714\) 0 0
\(715\) −11109.8 19242.7i −0.581093 1.00648i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 18337.4 0.951141 0.475571 0.879678i \(-0.342242\pi\)
0.475571 + 0.879678i \(0.342242\pi\)
\(720\) 0 0
\(721\) 12758.4 0.659014
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 491.829 + 851.873i 0.0251946 + 0.0436383i
\(726\) 0 0
\(727\) 4542.93 7868.58i 0.231758 0.401416i −0.726568 0.687095i \(-0.758886\pi\)
0.958325 + 0.285679i \(0.0922190\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −3803.34 + 6587.58i −0.192437 + 0.333311i
\(732\) 0 0
\(733\) −4452.27 7711.56i −0.224350 0.388585i 0.731774 0.681547i \(-0.238692\pi\)
−0.956124 + 0.292962i \(0.905359\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −13394.8 −0.669475
\(738\) 0 0
\(739\) 7295.24 0.363139 0.181569 0.983378i \(-0.441882\pi\)
0.181569 + 0.983378i \(0.441882\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 1041.48 + 1803.89i 0.0514241 + 0.0890691i 0.890592 0.454804i \(-0.150291\pi\)
−0.839168 + 0.543873i \(0.816957\pi\)
\(744\) 0 0
\(745\) −2677.32 + 4637.26i −0.131664 + 0.228048i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 3649.02 6320.29i 0.178014 0.308329i
\(750\) 0 0
\(751\) 3976.35 + 6887.23i 0.193208 + 0.334645i 0.946311 0.323256i \(-0.104778\pi\)
−0.753104 + 0.657902i \(0.771444\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −8964.96 −0.432143
\(756\) 0 0
\(757\) −17476.8 −0.839108 −0.419554 0.907730i \(-0.637814\pi\)
−0.419554 + 0.907730i \(0.637814\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −11127.2 19272.8i −0.530038 0.918053i −0.999386 0.0350397i \(-0.988844\pi\)
0.469348 0.883013i \(-0.344489\pi\)
\(762\) 0 0
\(763\) −6946.29 + 12031.3i −0.329584 + 0.570856i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −21935.6 + 37993.6i −1.03266 + 1.78862i
\(768\) 0 0
\(769\) 4243.66 + 7350.23i 0.198999 + 0.344676i 0.948204 0.317662i \(-0.102898\pi\)
−0.749205 + 0.662338i \(0.769564\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 34964.8 1.62690 0.813452 0.581632i \(-0.197586\pi\)
0.813452 + 0.581632i \(0.197586\pi\)
\(774\) 0 0
\(775\) 3321.12 0.153933
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −7138.97 12365.1i −0.328344 0.568709i
\(780\) 0 0
\(781\) 13607.3 23568.6i 0.623442 1.07983i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −6556.53 + 11356.2i −0.298105 + 0.516333i
\(786\) 0 0
\(787\) 18093.6 + 31339.0i 0.819524 + 1.41946i 0.906033 + 0.423207i \(0.139096\pi\)
−0.0865087 + 0.996251i \(0.527571\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −56741.3 −2.55055
\(792\) 0 0
\(793\) 12865.5 0.576126
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −2706.11 4687.12i −0.120270 0.208314i 0.799604 0.600528i \(-0.205043\pi\)
−0.919874 + 0.392214i \(0.871709\pi\)
\(798\) 0 0
\(799\) 28545.6 49442.5i 1.26392 2.18917i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 9436.70 16344.8i 0.414712 0.718303i
\(804\) 0 0
\(805\) −7134.97 12358.1i −0.312391 0.541077i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −5626.82 −0.244534 −0.122267 0.992497i \(-0.539016\pi\)
−0.122267 + 0.992497i \(0.539016\pi\)
\(810\) 0 0
\(811\) 7559.74 0.327322 0.163661 0.986517i \(-0.447670\pi\)
0.163661 + 0.986517i \(0.447670\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 9515.72 + 16481.7i 0.408983 + 0.708380i
\(816\) 0 0
\(817\) −2644.86 + 4581.03i −0.113258 + 0.196169i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −7242.20 + 12543.9i −0.307862 + 0.533233i −0.977894 0.209099i \(-0.932947\pi\)
0.670032 + 0.742332i \(0.266280\pi\)
\(822\) 0 0
\(823\) 15111.3 + 26173.5i 0.640032 + 1.10857i 0.985425 + 0.170110i \(0.0544123\pi\)
−0.345393 + 0.938458i \(0.612254\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −11032.1 −0.463875 −0.231937 0.972731i \(-0.574506\pi\)
−0.231937 + 0.972731i \(0.574506\pi\)
\(828\) 0 0
\(829\) −12061.6 −0.505326 −0.252663 0.967554i \(-0.581306\pi\)
−0.252663 + 0.967554i \(0.581306\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −26567.4 46016.1i −1.10505 1.91400i
\(834\) 0 0
\(835\) −4234.24 + 7333.92i −0.175487 + 0.303953i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 22373.8 38752.5i 0.920655 1.59462i 0.122250 0.992499i \(-0.460989\pi\)
0.798405 0.602121i \(-0.205678\pi\)
\(840\) 0 0
\(841\) 11420.4 + 19780.8i 0.468262 + 0.811053i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 8671.39 0.353024
\(846\) 0 0
\(847\) −104343. −4.23289
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 19333.2 + 33486.1i 0.778771 + 1.34887i
\(852\) 0 0
\(853\) −9823.29 + 17014.4i −0.394306 + 0.682958i −0.993012 0.118011i \(-0.962348\pi\)
0.598706 + 0.800969i \(0.295682\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 10923.3 18919.8i 0.435396 0.754127i −0.561932 0.827183i \(-0.689942\pi\)
0.997328 + 0.0730559i \(0.0232751\pi\)
\(858\) 0 0
\(859\) −10438.2 18079.5i −0.414607 0.718120i 0.580780 0.814060i \(-0.302747\pi\)
−0.995387 + 0.0959404i \(0.969414\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 4812.37 0.189820 0.0949102 0.995486i \(-0.469744\pi\)
0.0949102 + 0.995486i \(0.469744\pi\)
\(864\) 0 0
\(865\) −4199.04 −0.165054
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 11849.2 + 20523.4i 0.462551 + 0.801162i
\(870\) 0 0
\(871\) 5924.82 10262.1i 0.230488 0.399216i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1766.19 3059.13i 0.0682378 0.118191i
\(876\) 0 0
\(877\) −7719.06 13369.8i −0.297211 0.514785i 0.678286 0.734798i \(-0.262723\pi\)
−0.975497 + 0.220014i \(0.929390\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 43054.1 1.64646 0.823228 0.567711i \(-0.192171\pi\)
0.823228 + 0.567711i \(0.192171\pi\)
\(882\) 0 0
\(883\) −47526.9 −1.81133 −0.905667 0.423990i \(-0.860629\pi\)
−0.905667 + 0.423990i \(0.860629\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 10033.6 + 17378.7i 0.379815 + 0.657858i 0.991035 0.133602i \(-0.0426545\pi\)
−0.611220 + 0.791460i \(0.709321\pi\)
\(888\) 0 0
\(889\) 2919.52 5056.75i 0.110143 0.190774i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 19850.7 34382.5i 0.743874 1.28843i
\(894\) 0 0
\(895\) −8310.76 14394.7i −0.310389 0.537609i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −5226.95 −0.193914
\(900\) 0 0
\(901\) −26070.5 −0.963967
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −1117.79 1936.08i −0.0410572 0.0711131i
\(906\) 0 0
\(907\) 10457.5 18112.8i 0.382838 0.663095i −0.608629 0.793455i \(-0.708280\pi\)
0.991467 + 0.130360i \(0.0416134\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 22762.3 39425.5i 0.827826 1.43384i −0.0719144 0.997411i \(-0.522911\pi\)
0.899740 0.436426i \(-0.143756\pi\)
\(912\) 0 0
\(913\) −8893.34 15403.7i −0.322373 0.558366i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −5060.97 −0.182255
\(918\) 0 0
\(919\) −45257.7 −1.62450 −0.812249 0.583311i \(-0.801757\pi\)
−0.812249 + 0.583311i \(0.801757\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 12037.7 + 20849.9i 0.429279 + 0.743533i
\(924\) 0 0
\(925\) −4785.75 + 8289.16i −0.170113 + 0.294644i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 12499.7 21650.1i 0.441445 0.764604i −0.556352 0.830946i \(-0.687800\pi\)
0.997797 + 0.0663420i \(0.0211328\pi\)
\(930\) 0 0
\(931\) −18475.1 31999.8i −0.650372 1.12648i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 41332.3 1.44568
\(936\) 0 0
\(937\) 48386.6 1.68700 0.843502 0.537126i \(-0.180490\pi\)
0.843502 + 0.537126i \(0.180490\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −1881.68 3259.16i −0.0651870 0.112907i 0.831590 0.555390i \(-0.187431\pi\)
−0.896777 + 0.442483i \(0.854098\pi\)
\(942\) 0 0
\(943\) 8889.38 15396.9i 0.306976 0.531698i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −13296.2 + 23029.7i −0.456249 + 0.790247i −0.998759 0.0498027i \(-0.984141\pi\)
0.542510 + 0.840049i \(0.317474\pi\)
\(948\) 0 0
\(949\) 8348.14 + 14459.4i 0.285555 + 0.494596i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 22556.7 0.766719 0.383360 0.923599i \(-0.374767\pi\)
0.383360 + 0.923599i \(0.374767\pi\)
\(954\) 0 0
\(955\) 646.834 0.0219173
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −37738.8 65365.5i −1.27075 2.20100i
\(960\) 0 0
\(961\) 6071.66 10516.4i 0.203808 0.353006i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −3437.55 + 5954.01i −0.114672 + 0.198618i
\(966\) 0 0
\(967\) 15264.7 + 26439.2i 0.507631 + 0.879242i 0.999961 + 0.00883360i \(0.00281186\pi\)
−0.492330 + 0.870408i \(0.663855\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −3354.98 −0.110882 −0.0554409 0.998462i \(-0.517656\pi\)
−0.0554409 + 0.998462i \(0.517656\pi\)
\(972\) 0 0
\(973\) 71002.2 2.33939
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 3111.02 + 5388.44i 0.101873 + 0.176450i 0.912456 0.409174i \(-0.134183\pi\)
−0.810583 + 0.585624i \(0.800850\pi\)
\(978\) 0 0
\(979\) 35599.1 61659.4i 1.16216 2.01292i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −10262.8 + 17775.6i −0.332992 + 0.576760i −0.983097 0.183085i \(-0.941392\pi\)
0.650105 + 0.759845i \(0.274725\pi\)
\(984\) 0 0
\(985\) 1642.78 + 2845.37i 0.0531404 + 0.0920418i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −6586.70 −0.211774
\(990\) 0 0
\(991\) −14110.0 −0.452289 −0.226145 0.974094i \(-0.572612\pi\)
−0.226145 + 0.974094i \(0.572612\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −8918.16 15446.7i −0.284146 0.492154i
\(996\) 0 0
\(997\) −8359.84 + 14479.7i −0.265555 + 0.459955i −0.967709 0.252070i \(-0.918889\pi\)
0.702154 + 0.712026i \(0.252222\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1080.4.q.e.721.9 20
3.2 odd 2 360.4.q.e.241.8 yes 20
9.4 even 3 inner 1080.4.q.e.361.9 20
9.5 odd 6 360.4.q.e.121.8 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
360.4.q.e.121.8 20 9.5 odd 6
360.4.q.e.241.8 yes 20 3.2 odd 2
1080.4.q.e.361.9 20 9.4 even 3 inner
1080.4.q.e.721.9 20 1.1 even 1 trivial