Properties

Label 108.9.c.b.53.1
Level $108$
Weight $9$
Character 108.53
Analytic conductor $43.997$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [108,9,Mod(53,108)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("108.53"); S:= CuspForms(chi, 9); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(108, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 9, names="a")
 
Level: \( N \) \(=\) \( 108 = 2^{2} \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 9 \)
Character orbit: \([\chi]\) \(=\) 108.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,-14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(43.9968898866\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-30}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 30 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2\cdot 3^{2}\cdot 7 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 53.1
Root \(-5.47723i\) of defining polynomial
Character \(\chi\) \(=\) 108.53
Dual form 108.9.c.b.53.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-690.130i q^{5} -7.00000 q^{7} -13112.5i q^{11} -769.000 q^{13} -69703.2i q^{17} -11863.0 q^{19} +46238.7i q^{23} -85655.0 q^{25} +1.02001e6i q^{29} -356266. q^{31} +4830.91i q^{35} -1.05113e6 q^{37} -5.13319e6i q^{41} -2.75679e6 q^{43} +4.66873e6i q^{47} -5.76475e6 q^{49} -6.14354e6i q^{53} -9.04932e6 q^{55} +1.05390e7i q^{59} -1.76932e7 q^{61} +530710. i q^{65} -2.40562e7 q^{67} +1.89841e7i q^{71} -2.55876e7 q^{73} +91787.3i q^{77} -4.16597e7 q^{79} -7.71386e7i q^{83} -4.81043e7 q^{85} -8.64112e6i q^{89} +5383.00 q^{91} +8.18702e6i q^{95} -5.69294e7 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 14 q^{7} - 1538 q^{13} - 23726 q^{19} - 171310 q^{25} - 712532 q^{31} - 2102258 q^{37} - 5513588 q^{43} - 11529504 q^{49} - 18098640 q^{55} - 35386466 q^{61} - 48112478 q^{67} - 51175298 q^{73} - 83319422 q^{79}+ \cdots - 113858834 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/108\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(55\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 690.130i − 1.10421i −0.833775 0.552104i \(-0.813825\pi\)
0.833775 0.552104i \(-0.186175\pi\)
\(6\) 0 0
\(7\) −7.00000 −0.00291545 −0.00145773 0.999999i \(-0.500464\pi\)
−0.00145773 + 0.999999i \(0.500464\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 13112.5i − 0.895600i −0.894134 0.447800i \(-0.852208\pi\)
0.894134 0.447800i \(-0.147792\pi\)
\(12\) 0 0
\(13\) −769.000 −0.0269248 −0.0134624 0.999909i \(-0.504285\pi\)
−0.0134624 + 0.999909i \(0.504285\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 69703.2i − 0.834559i −0.908778 0.417279i \(-0.862984\pi\)
0.908778 0.417279i \(-0.137016\pi\)
\(18\) 0 0
\(19\) −11863.0 −0.0910291 −0.0455145 0.998964i \(-0.514493\pi\)
−0.0455145 + 0.998964i \(0.514493\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 46238.7i 0.165232i 0.996581 + 0.0826161i \(0.0263275\pi\)
−0.996581 + 0.0826161i \(0.973672\pi\)
\(24\) 0 0
\(25\) −85655.0 −0.219277
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1.02001e6i 1.44216i 0.692852 + 0.721080i \(0.256354\pi\)
−0.692852 + 0.721080i \(0.743646\pi\)
\(30\) 0 0
\(31\) −356266. −0.385769 −0.192885 0.981221i \(-0.561784\pi\)
−0.192885 + 0.981221i \(0.561784\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 4830.91i 0.00321927i
\(36\) 0 0
\(37\) −1.05113e6 −0.560853 −0.280427 0.959875i \(-0.590476\pi\)
−0.280427 + 0.959875i \(0.590476\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 5.13319e6i − 1.81657i −0.418353 0.908285i \(-0.637392\pi\)
0.418353 0.908285i \(-0.362608\pi\)
\(42\) 0 0
\(43\) −2.75679e6 −0.806363 −0.403181 0.915120i \(-0.632096\pi\)
−0.403181 + 0.915120i \(0.632096\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 4.66873e6i 0.956770i 0.878150 + 0.478385i \(0.158778\pi\)
−0.878150 + 0.478385i \(0.841222\pi\)
\(48\) 0 0
\(49\) −5.76475e6 −0.999992
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 6.14354e6i − 0.778602i −0.921111 0.389301i \(-0.872717\pi\)
0.921111 0.389301i \(-0.127283\pi\)
\(54\) 0 0
\(55\) −9.04932e6 −0.988929
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1.05390e7i 0.869742i 0.900493 + 0.434871i \(0.143206\pi\)
−0.900493 + 0.434871i \(0.856794\pi\)
\(60\) 0 0
\(61\) −1.76932e7 −1.27787 −0.638937 0.769259i \(-0.720625\pi\)
−0.638937 + 0.769259i \(0.720625\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 530710.i 0.0297306i
\(66\) 0 0
\(67\) −2.40562e7 −1.19379 −0.596896 0.802319i \(-0.703599\pi\)
−0.596896 + 0.802319i \(0.703599\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 1.89841e7i 0.747062i 0.927618 + 0.373531i \(0.121853\pi\)
−0.927618 + 0.373531i \(0.878147\pi\)
\(72\) 0 0
\(73\) −2.55876e7 −0.901029 −0.450515 0.892769i \(-0.648760\pi\)
−0.450515 + 0.892769i \(0.648760\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 91787.3i 0.00261108i
\(78\) 0 0
\(79\) −4.16597e7 −1.06957 −0.534783 0.844989i \(-0.679607\pi\)
−0.534783 + 0.844989i \(0.679607\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 7.71386e7i − 1.62540i −0.582684 0.812699i \(-0.697997\pi\)
0.582684 0.812699i \(-0.302003\pi\)
\(84\) 0 0
\(85\) −4.81043e7 −0.921527
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 8.64112e6i − 0.137724i −0.997626 0.0688621i \(-0.978063\pi\)
0.997626 0.0688621i \(-0.0219368\pi\)
\(90\) 0 0
\(91\) 5383.00 7.84980e−5 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 8.18702e6i 0.100515i
\(96\) 0 0
\(97\) −5.69294e7 −0.643057 −0.321529 0.946900i \(-0.604197\pi\)
−0.321529 + 0.946900i \(0.604197\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 5.25327e7i 0.504829i 0.967619 + 0.252415i \(0.0812247\pi\)
−0.967619 + 0.252415i \(0.918775\pi\)
\(102\) 0 0
\(103\) −4.52804e6 −0.0402310 −0.0201155 0.999798i \(-0.506403\pi\)
−0.0201155 + 0.999798i \(0.506403\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.60696e7i 0.504042i 0.967722 + 0.252021i \(0.0810952\pi\)
−0.967722 + 0.252021i \(0.918905\pi\)
\(108\) 0 0
\(109\) 1.10676e8 0.784054 0.392027 0.919954i \(-0.371774\pi\)
0.392027 + 0.919954i \(0.371774\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.45708e8i 0.893654i 0.894620 + 0.446827i \(0.147446\pi\)
−0.894620 + 0.446827i \(0.852554\pi\)
\(114\) 0 0
\(115\) 3.19108e7 0.182451
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 487922.i 0.00243312i
\(120\) 0 0
\(121\) 4.24218e7 0.197901
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 2.10469e8i − 0.862081i
\(126\) 0 0
\(127\) 4.79927e8 1.84485 0.922424 0.386179i \(-0.126205\pi\)
0.922424 + 0.386179i \(0.126205\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 4.42458e8i − 1.50240i −0.660073 0.751202i \(-0.729474\pi\)
0.660073 0.751202i \(-0.270526\pi\)
\(132\) 0 0
\(133\) 83041.0 0.000265391 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3.41320e8i 0.968901i 0.874819 + 0.484450i \(0.160980\pi\)
−0.874819 + 0.484450i \(0.839020\pi\)
\(138\) 0 0
\(139\) 2.80647e8 0.751798 0.375899 0.926661i \(-0.377334\pi\)
0.375899 + 0.926661i \(0.377334\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1.00835e7i 0.0241139i
\(144\) 0 0
\(145\) 7.03942e8 1.59245
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 2.05115e8i − 0.416152i −0.978113 0.208076i \(-0.933280\pi\)
0.978113 0.208076i \(-0.0667202\pi\)
\(150\) 0 0
\(151\) 1.28831e8 0.247806 0.123903 0.992294i \(-0.460459\pi\)
0.123903 + 0.992294i \(0.460459\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2.45870e8i 0.425970i
\(156\) 0 0
\(157\) −1.19282e8 −0.196326 −0.0981630 0.995170i \(-0.531297\pi\)
−0.0981630 + 0.995170i \(0.531297\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) − 323671.i 0 0.000481726i
\(162\) 0 0
\(163\) 1.39482e9 1.97592 0.987959 0.154714i \(-0.0494457\pi\)
0.987959 + 0.154714i \(0.0494457\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 6.33558e8i 0.814556i 0.913304 + 0.407278i \(0.133522\pi\)
−0.913304 + 0.407278i \(0.866478\pi\)
\(168\) 0 0
\(169\) −8.15139e8 −0.999275
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 5.78389e8i − 0.645707i −0.946449 0.322853i \(-0.895358\pi\)
0.946449 0.322853i \(-0.104642\pi\)
\(174\) 0 0
\(175\) 599585. 0.000639291 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 1.23738e9i 1.20529i 0.798010 + 0.602644i \(0.205886\pi\)
−0.798010 + 0.602644i \(0.794114\pi\)
\(180\) 0 0
\(181\) 8.20752e8 0.764712 0.382356 0.924015i \(-0.375113\pi\)
0.382356 + 0.924015i \(0.375113\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 7.25416e8i 0.619299i
\(186\) 0 0
\(187\) −9.13981e8 −0.747431
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 1.86929e9i − 1.40457i −0.711898 0.702283i \(-0.752164\pi\)
0.711898 0.702283i \(-0.247836\pi\)
\(192\) 0 0
\(193\) −1.99991e9 −1.44139 −0.720696 0.693252i \(-0.756177\pi\)
−0.720696 + 0.693252i \(0.756177\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 2.58090e9i − 1.71358i −0.515662 0.856792i \(-0.672454\pi\)
0.515662 0.856792i \(-0.327546\pi\)
\(198\) 0 0
\(199\) 1.91233e9 1.21941 0.609707 0.792627i \(-0.291287\pi\)
0.609707 + 0.792627i \(0.291287\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) − 7.14009e6i − 0.00420455i
\(204\) 0 0
\(205\) −3.54257e9 −2.00587
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.55553e8i 0.0815256i
\(210\) 0 0
\(211\) −1.17629e9 −0.593453 −0.296726 0.954963i \(-0.595895\pi\)
−0.296726 + 0.954963i \(0.595895\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 1.90255e9i 0.890393i
\(216\) 0 0
\(217\) 2.49386e6 0.00112469
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 5.36017e7i 0.0224703i
\(222\) 0 0
\(223\) −2.35462e9 −0.952141 −0.476071 0.879407i \(-0.657939\pi\)
−0.476071 + 0.879407i \(0.657939\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1.62436e9i 0.611758i 0.952070 + 0.305879i \(0.0989503\pi\)
−0.952070 + 0.305879i \(0.901050\pi\)
\(228\) 0 0
\(229\) −4.53972e9 −1.65077 −0.825387 0.564567i \(-0.809043\pi\)
−0.825387 + 0.564567i \(0.809043\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3.08114e9i 1.04541i 0.852513 + 0.522706i \(0.175077\pi\)
−0.852513 + 0.522706i \(0.824923\pi\)
\(234\) 0 0
\(235\) 3.22203e9 1.05647
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 3.01841e9i − 0.925095i −0.886595 0.462547i \(-0.846936\pi\)
0.886595 0.462547i \(-0.153064\pi\)
\(240\) 0 0
\(241\) −5.77217e9 −1.71108 −0.855542 0.517734i \(-0.826776\pi\)
−0.855542 + 0.517734i \(0.826776\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 3.97843e9i 1.10420i
\(246\) 0 0
\(247\) 9.12265e6 0.00245094
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 4.69528e9i − 1.18295i −0.806323 0.591476i \(-0.798546\pi\)
0.806323 0.591476i \(-0.201454\pi\)
\(252\) 0 0
\(253\) 6.06304e8 0.147982
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3.43060e8i 0.0786389i 0.999227 + 0.0393194i \(0.0125190\pi\)
−0.999227 + 0.0393194i \(0.987481\pi\)
\(258\) 0 0
\(259\) 7.35790e6 0.00163514
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 2.71809e9i − 0.568121i −0.958806 0.284060i \(-0.908318\pi\)
0.958806 0.284060i \(-0.0916816\pi\)
\(264\) 0 0
\(265\) −4.23984e9 −0.859739
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 4.53999e9i − 0.867053i −0.901141 0.433526i \(-0.857269\pi\)
0.901141 0.433526i \(-0.142731\pi\)
\(270\) 0 0
\(271\) 7.14392e9 1.32452 0.662261 0.749273i \(-0.269597\pi\)
0.662261 + 0.749273i \(0.269597\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.12315e9i 0.196384i
\(276\) 0 0
\(277\) −2.88521e9 −0.490070 −0.245035 0.969514i \(-0.578799\pi\)
−0.245035 + 0.969514i \(0.578799\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 3.90927e9i 0.627005i 0.949587 + 0.313502i \(0.101502\pi\)
−0.949587 + 0.313502i \(0.898498\pi\)
\(282\) 0 0
\(283\) 6.17503e9 0.962705 0.481353 0.876527i \(-0.340146\pi\)
0.481353 + 0.876527i \(0.340146\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 3.59323e7i 0.00529612i
\(288\) 0 0
\(289\) 2.11723e9 0.303512
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 5.58398e9i − 0.757658i −0.925467 0.378829i \(-0.876327\pi\)
0.925467 0.378829i \(-0.123673\pi\)
\(294\) 0 0
\(295\) 7.27327e9 0.960377
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 3.55576e7i − 0.00444885i
\(300\) 0 0
\(301\) 1.92976e7 0.00235091
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 1.22106e10i 1.41104i
\(306\) 0 0
\(307\) 9.50467e9 1.07000 0.535000 0.844852i \(-0.320312\pi\)
0.535000 + 0.844852i \(0.320312\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 1.25626e10i 1.34288i 0.741057 + 0.671442i \(0.234325\pi\)
−0.741057 + 0.671442i \(0.765675\pi\)
\(312\) 0 0
\(313\) 2.28958e9 0.238549 0.119275 0.992861i \(-0.461943\pi\)
0.119275 + 0.992861i \(0.461943\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 1.76089e10i − 1.74379i −0.489691 0.871896i \(-0.662891\pi\)
0.489691 0.871896i \(-0.337109\pi\)
\(318\) 0 0
\(319\) 1.33749e10 1.29160
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 8.26889e8i 0.0759691i
\(324\) 0 0
\(325\) 6.58687e7 0.00590399
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) − 3.26811e7i − 0.00278942i
\(330\) 0 0
\(331\) 1.27344e10 1.06088 0.530441 0.847722i \(-0.322026\pi\)
0.530441 + 0.847722i \(0.322026\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 1.66019e10i 1.31820i
\(336\) 0 0
\(337\) −5.69592e8 −0.0441616 −0.0220808 0.999756i \(-0.507029\pi\)
−0.0220808 + 0.999756i \(0.507029\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 4.67153e9i 0.345495i
\(342\) 0 0
\(343\) 8.07069e7 0.00583088
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 1.06446e10i − 0.734196i −0.930182 0.367098i \(-0.880351\pi\)
0.930182 0.367098i \(-0.119649\pi\)
\(348\) 0 0
\(349\) 6.40044e9 0.431428 0.215714 0.976457i \(-0.430792\pi\)
0.215714 + 0.976457i \(0.430792\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) − 2.81785e10i − 1.81476i −0.420309 0.907381i \(-0.638078\pi\)
0.420309 0.907381i \(-0.361922\pi\)
\(354\) 0 0
\(355\) 1.31015e10 0.824913
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) − 2.53861e10i − 1.52833i −0.645020 0.764166i \(-0.723151\pi\)
0.645020 0.764166i \(-0.276849\pi\)
\(360\) 0 0
\(361\) −1.68428e10 −0.991714
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 1.76588e10i 0.994924i
\(366\) 0 0
\(367\) 1.03958e10 0.573053 0.286527 0.958072i \(-0.407499\pi\)
0.286527 + 0.958072i \(0.407499\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 4.30048e7i 0.00226998i
\(372\) 0 0
\(373\) −5.19259e9 −0.268256 −0.134128 0.990964i \(-0.542823\pi\)
−0.134128 + 0.990964i \(0.542823\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 7.84390e8i − 0.0388299i
\(378\) 0 0
\(379\) −2.38155e10 −1.15426 −0.577129 0.816653i \(-0.695827\pi\)
−0.577129 + 0.816653i \(0.695827\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 6.32272e9i 0.293838i 0.989148 + 0.146919i \(0.0469357\pi\)
−0.989148 + 0.146919i \(0.953064\pi\)
\(384\) 0 0
\(385\) 6.33452e7 0.00288318
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 4.08685e10i 1.78480i 0.451242 + 0.892402i \(0.350981\pi\)
−0.451242 + 0.892402i \(0.649019\pi\)
\(390\) 0 0
\(391\) 3.22299e9 0.137896
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 2.87506e10i 1.18102i
\(396\) 0 0
\(397\) −3.14239e10 −1.26502 −0.632510 0.774552i \(-0.717975\pi\)
−0.632510 + 0.774552i \(0.717975\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 3.17958e10i − 1.22968i −0.788652 0.614840i \(-0.789220\pi\)
0.788652 0.614840i \(-0.210780\pi\)
\(402\) 0 0
\(403\) 2.73969e8 0.0103868
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.37829e10i 0.502300i
\(408\) 0 0
\(409\) −1.70740e10 −0.610158 −0.305079 0.952327i \(-0.598683\pi\)
−0.305079 + 0.952327i \(0.598683\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 7.37729e7i − 0.00253569i
\(414\) 0 0
\(415\) −5.32357e10 −1.79478
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 1.95501e10i − 0.634299i −0.948376 0.317149i \(-0.897274\pi\)
0.948376 0.317149i \(-0.102726\pi\)
\(420\) 0 0
\(421\) 9.28362e9 0.295521 0.147761 0.989023i \(-0.452793\pi\)
0.147761 + 0.989023i \(0.452793\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 5.97043e9i 0.182999i
\(426\) 0 0
\(427\) 1.23853e8 0.00372558
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 3.40413e10i − 0.986500i −0.869888 0.493250i \(-0.835809\pi\)
0.869888 0.493250i \(-0.164191\pi\)
\(432\) 0 0
\(433\) −4.15503e10 −1.18201 −0.591006 0.806667i \(-0.701269\pi\)
−0.591006 + 0.806667i \(0.701269\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 5.48530e8i − 0.0150409i
\(438\) 0 0
\(439\) −6.36157e9 −0.171280 −0.0856400 0.996326i \(-0.527293\pi\)
−0.0856400 + 0.996326i \(0.527293\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 9.86245e9i − 0.256076i −0.991769 0.128038i \(-0.959132\pi\)
0.991769 0.128038i \(-0.0408680\pi\)
\(444\) 0 0
\(445\) −5.96350e9 −0.152076
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 2.27951e9i − 0.0560861i −0.999607 0.0280431i \(-0.991072\pi\)
0.999607 0.0280431i \(-0.00892756\pi\)
\(450\) 0 0
\(451\) −6.73088e10 −1.62692
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) − 3.71497e6i 0 8.66782e-5i
\(456\) 0 0
\(457\) 2.31852e10 0.531553 0.265777 0.964035i \(-0.414372\pi\)
0.265777 + 0.964035i \(0.414372\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 4.08781e9i 0.0905080i 0.998976 + 0.0452540i \(0.0144097\pi\)
−0.998976 + 0.0452540i \(0.985590\pi\)
\(462\) 0 0
\(463\) 1.17258e10 0.255164 0.127582 0.991828i \(-0.459278\pi\)
0.127582 + 0.991828i \(0.459278\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 7.99859e9i − 0.168169i −0.996459 0.0840845i \(-0.973203\pi\)
0.996459 0.0840845i \(-0.0267966\pi\)
\(468\) 0 0
\(469\) 1.68394e8 0.00348044
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 3.61484e10i 0.722178i
\(474\) 0 0
\(475\) 1.01613e9 0.0199606
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) − 8.52117e10i − 1.61867i −0.587350 0.809333i \(-0.699829\pi\)
0.587350 0.809333i \(-0.300171\pi\)
\(480\) 0 0
\(481\) 8.08318e8 0.0151009
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 3.92887e10i 0.710070i
\(486\) 0 0
\(487\) −4.17235e10 −0.741763 −0.370882 0.928680i \(-0.620944\pi\)
−0.370882 + 0.928680i \(0.620944\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 4.99080e10i 0.858705i 0.903137 + 0.429352i \(0.141258\pi\)
−0.903137 + 0.429352i \(0.858742\pi\)
\(492\) 0 0
\(493\) 7.10981e10 1.20357
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 1.32889e8i − 0.00217802i
\(498\) 0 0
\(499\) 3.20557e10 0.517014 0.258507 0.966009i \(-0.416769\pi\)
0.258507 + 0.966009i \(0.416769\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 8.35856e10i 1.30575i 0.757467 + 0.652874i \(0.226437\pi\)
−0.757467 + 0.652874i \(0.773563\pi\)
\(504\) 0 0
\(505\) 3.62544e10 0.557437
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 2.06110e10i 0.307063i 0.988144 + 0.153531i \(0.0490646\pi\)
−0.988144 + 0.153531i \(0.950935\pi\)
\(510\) 0 0
\(511\) 1.79114e8 0.00262691
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 3.12494e9i 0.0444235i
\(516\) 0 0
\(517\) 6.12186e10 0.856883
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 1.22695e11i − 1.66524i −0.553844 0.832621i \(-0.686840\pi\)
0.553844 0.832621i \(-0.313160\pi\)
\(522\) 0 0
\(523\) −1.71228e10 −0.228859 −0.114429 0.993431i \(-0.536504\pi\)
−0.114429 + 0.993431i \(0.536504\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.48329e10i 0.321947i
\(528\) 0 0
\(529\) 7.61730e10 0.972698
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 3.94742e9i 0.0489108i
\(534\) 0 0
\(535\) 4.55967e10 0.556568
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 7.55902e10i 0.895592i
\(540\) 0 0
\(541\) 1.42085e11 1.65866 0.829331 0.558757i \(-0.188722\pi\)
0.829331 + 0.558757i \(0.188722\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) − 7.63806e10i − 0.865759i
\(546\) 0 0
\(547\) −1.91860e10 −0.214307 −0.107153 0.994243i \(-0.534174\pi\)
−0.107153 + 0.994243i \(0.534174\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) − 1.21004e10i − 0.131279i
\(552\) 0 0
\(553\) 2.91618e8 0.00311827
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 5.88630e10i − 0.611535i −0.952106 0.305767i \(-0.901087\pi\)
0.952106 0.305767i \(-0.0989130\pi\)
\(558\) 0 0
\(559\) 2.11997e9 0.0217112
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 1.68404e11i − 1.67617i −0.545539 0.838085i \(-0.683675\pi\)
0.545539 0.838085i \(-0.316325\pi\)
\(564\) 0 0
\(565\) 1.00557e11 0.986780
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 2.37920e10i 0.226977i 0.993539 + 0.113488i \(0.0362025\pi\)
−0.993539 + 0.113488i \(0.963798\pi\)
\(570\) 0 0
\(571\) 2.57853e10 0.242565 0.121283 0.992618i \(-0.461299\pi\)
0.121283 + 0.992618i \(0.461299\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) − 3.96058e9i − 0.0362316i
\(576\) 0 0
\(577\) 1.43649e11 1.29598 0.647991 0.761648i \(-0.275609\pi\)
0.647991 + 0.761648i \(0.275609\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 5.39970e8i 0.00473877i
\(582\) 0 0
\(583\) −8.05570e10 −0.697315
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1.74988e11i 1.47386i 0.675971 + 0.736929i \(0.263725\pi\)
−0.675971 + 0.736929i \(0.736275\pi\)
\(588\) 0 0
\(589\) 4.22638e9 0.0351162
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 7.19394e9i − 0.0581766i −0.999577 0.0290883i \(-0.990740\pi\)
0.999577 0.0290883i \(-0.00926039\pi\)
\(594\) 0 0
\(595\) 3.36730e8 0.00268667
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 1.52262e11i 1.18272i 0.806406 + 0.591362i \(0.201410\pi\)
−0.806406 + 0.591362i \(0.798590\pi\)
\(600\) 0 0
\(601\) −6.12297e10 −0.469315 −0.234657 0.972078i \(-0.575397\pi\)
−0.234657 + 0.972078i \(0.575397\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 2.92766e10i − 0.218524i
\(606\) 0 0
\(607\) −1.50544e10 −0.110894 −0.0554472 0.998462i \(-0.517658\pi\)
−0.0554472 + 0.998462i \(0.517658\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 3.59026e9i − 0.0257609i
\(612\) 0 0
\(613\) 2.11739e11 1.49954 0.749770 0.661698i \(-0.230164\pi\)
0.749770 + 0.661698i \(0.230164\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 1.93848e11i 1.33758i 0.743449 + 0.668792i \(0.233188\pi\)
−0.743449 + 0.668792i \(0.766812\pi\)
\(618\) 0 0
\(619\) −1.73290e11 −1.18035 −0.590176 0.807274i \(-0.700942\pi\)
−0.590176 + 0.807274i \(0.700942\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 6.04879e7i 0 0.000401528i
\(624\) 0 0
\(625\) −1.78710e11 −1.17119
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 7.32670e10i 0.468065i
\(630\) 0 0
\(631\) −6.63235e10 −0.418360 −0.209180 0.977877i \(-0.567079\pi\)
−0.209180 + 0.977877i \(0.567079\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 3.31212e11i − 2.03710i
\(636\) 0 0
\(637\) 4.43309e9 0.0269246
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 1.45297e11i 0.860644i 0.902676 + 0.430322i \(0.141600\pi\)
−0.902676 + 0.430322i \(0.858400\pi\)
\(642\) 0 0
\(643\) −6.21621e10 −0.363648 −0.181824 0.983331i \(-0.558200\pi\)
−0.181824 + 0.983331i \(0.558200\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 2.22471e11i − 1.26957i −0.772688 0.634786i \(-0.781088\pi\)
0.772688 0.634786i \(-0.218912\pi\)
\(648\) 0 0
\(649\) 1.38192e11 0.778941
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 7.49669e10i − 0.412303i −0.978520 0.206152i \(-0.933906\pi\)
0.978520 0.206152i \(-0.0660940\pi\)
\(654\) 0 0
\(655\) −3.05354e11 −1.65897
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 1.65866e11i − 0.879458i −0.898130 0.439729i \(-0.855074\pi\)
0.898130 0.439729i \(-0.144926\pi\)
\(660\) 0 0
\(661\) −2.26604e11 −1.18703 −0.593516 0.804822i \(-0.702261\pi\)
−0.593516 + 0.804822i \(0.702261\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 5.73091e7i 0 0.000293047i
\(666\) 0 0
\(667\) −4.71641e10 −0.238291
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 2.32002e11i 1.14446i
\(672\) 0 0
\(673\) −2.06445e11 −1.00634 −0.503170 0.864188i \(-0.667833\pi\)
−0.503170 + 0.864188i \(0.667833\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 2.08742e11i − 0.993699i −0.867837 0.496850i \(-0.834490\pi\)
0.867837 0.496850i \(-0.165510\pi\)
\(678\) 0 0
\(679\) 3.98506e8 0.00187480
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 2.51957e11i 1.15783i 0.815390 + 0.578913i \(0.196523\pi\)
−0.815390 + 0.578913i \(0.803477\pi\)
\(684\) 0 0
\(685\) 2.35555e11 1.06987
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 4.72438e9i 0.0209637i
\(690\) 0 0
\(691\) −2.80957e11 −1.23233 −0.616165 0.787617i \(-0.711315\pi\)
−0.616165 + 0.787617i \(0.711315\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) − 1.93683e11i − 0.830142i
\(696\) 0 0
\(697\) −3.57800e11 −1.51603
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 2.29537e11i 0.950564i 0.879833 + 0.475282i \(0.157654\pi\)
−0.879833 + 0.475282i \(0.842346\pi\)
\(702\) 0 0
\(703\) 1.24695e10 0.0510539
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 3.67729e8i − 0.00147181i
\(708\) 0 0
\(709\) −3.69232e10 −0.146121 −0.0730607 0.997327i \(-0.523277\pi\)
−0.0730607 + 0.997327i \(0.523277\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) − 1.64733e10i − 0.0637415i
\(714\) 0 0
\(715\) 6.95893e9 0.0266267
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) − 2.85751e11i − 1.06923i −0.845095 0.534617i \(-0.820456\pi\)
0.845095 0.534617i \(-0.179544\pi\)
\(720\) 0 0
\(721\) 3.16963e7 0.000117292 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 8.73692e10i − 0.316232i
\(726\) 0 0
\(727\) −9.18263e10 −0.328723 −0.164361 0.986400i \(-0.552556\pi\)
−0.164361 + 0.986400i \(0.552556\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 1.92157e11i 0.672957i
\(732\) 0 0
\(733\) −9.28369e10 −0.321592 −0.160796 0.986988i \(-0.551406\pi\)
−0.160796 + 0.986988i \(0.551406\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 3.15437e11i 1.06916i
\(738\) 0 0
\(739\) 4.57349e10 0.153345 0.0766725 0.997056i \(-0.475570\pi\)
0.0766725 + 0.997056i \(0.475570\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 5.69333e11i 1.86815i 0.357080 + 0.934074i \(0.383772\pi\)
−0.357080 + 0.934074i \(0.616228\pi\)
\(744\) 0 0
\(745\) −1.41556e11 −0.459519
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 4.62487e8i − 0.00146951i
\(750\) 0 0
\(751\) 2.18221e11 0.686021 0.343010 0.939332i \(-0.388553\pi\)
0.343010 + 0.939332i \(0.388553\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 8.89101e10i − 0.273630i
\(756\) 0 0
\(757\) 5.02194e11 1.52928 0.764642 0.644455i \(-0.222916\pi\)
0.764642 + 0.644455i \(0.222916\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 1.51690e11i − 0.452293i −0.974093 0.226146i \(-0.927387\pi\)
0.974093 0.226146i \(-0.0726127\pi\)
\(762\) 0 0
\(763\) −7.74729e8 −0.00228587
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 8.10448e9i − 0.0234177i
\(768\) 0 0
\(769\) −3.99244e11 −1.14165 −0.570825 0.821072i \(-0.693377\pi\)
−0.570825 + 0.821072i \(0.693377\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 6.32593e11i − 1.77177i −0.463909 0.885883i \(-0.653554\pi\)
0.463909 0.885883i \(-0.346446\pi\)
\(774\) 0 0
\(775\) 3.05160e10 0.0845902
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 6.08950e10i 0.165361i
\(780\) 0 0
\(781\) 2.48929e11 0.669069
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 8.23204e10i 0.216785i
\(786\) 0 0
\(787\) 6.79091e11 1.77023 0.885114 0.465374i \(-0.154080\pi\)
0.885114 + 0.465374i \(0.154080\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) − 1.01996e9i − 0.00260541i
\(792\) 0 0
\(793\) 1.36061e10 0.0344065
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 4.84277e11i − 1.20022i −0.799918 0.600110i \(-0.795124\pi\)
0.799918 0.600110i \(-0.204876\pi\)
\(798\) 0 0
\(799\) 3.25425e11 0.798481
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 3.35517e11i 0.806962i
\(804\) 0 0
\(805\) −2.23375e8 −0.000531927 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1.06645e11i 0.248970i 0.992222 + 0.124485i \(0.0397278\pi\)
−0.992222 + 0.124485i \(0.960272\pi\)
\(810\) 0 0
\(811\) 4.87943e10 0.112794 0.0563970 0.998408i \(-0.482039\pi\)
0.0563970 + 0.998408i \(0.482039\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) − 9.62611e11i − 2.18183i
\(816\) 0 0
\(817\) 3.27038e10 0.0734025
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 2.32476e11i − 0.511688i −0.966718 0.255844i \(-0.917647\pi\)
0.966718 0.255844i \(-0.0823534\pi\)
\(822\) 0 0
\(823\) 6.54441e11 1.42650 0.713249 0.700911i \(-0.247223\pi\)
0.713249 + 0.700911i \(0.247223\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 2.24792e11i 0.480573i 0.970702 + 0.240286i \(0.0772414\pi\)
−0.970702 + 0.240286i \(0.922759\pi\)
\(828\) 0 0
\(829\) 2.89004e11 0.611908 0.305954 0.952046i \(-0.401025\pi\)
0.305954 + 0.952046i \(0.401025\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 4.01822e11i 0.834552i
\(834\) 0 0
\(835\) 4.37238e11 0.899439
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 6.66131e11i 1.34435i 0.740393 + 0.672175i \(0.234640\pi\)
−0.740393 + 0.672175i \(0.765360\pi\)
\(840\) 0 0
\(841\) −5.40180e11 −1.07983
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 5.62552e11i 1.10341i
\(846\) 0 0
\(847\) −2.96953e8 −0.000576970 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 4.86029e10i − 0.0926710i
\(852\) 0 0
\(853\) 6.81076e11 1.28647 0.643235 0.765669i \(-0.277592\pi\)
0.643235 + 0.765669i \(0.277592\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 1.46083e10i 0.0270817i 0.999908 + 0.0135409i \(0.00431032\pi\)
−0.999908 + 0.0135409i \(0.995690\pi\)
\(858\) 0 0
\(859\) 8.44458e11 1.55098 0.775488 0.631362i \(-0.217504\pi\)
0.775488 + 0.631362i \(0.217504\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 4.33171e11i − 0.780937i −0.920616 0.390469i \(-0.872313\pi\)
0.920616 0.390469i \(-0.127687\pi\)
\(864\) 0 0
\(865\) −3.99164e11 −0.712995
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 5.46262e11i 0.957904i
\(870\) 0 0
\(871\) 1.84992e10 0.0321426
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1.47328e9i 0.00251336i
\(876\) 0 0
\(877\) −2.79400e10 −0.0472311 −0.0236155 0.999721i \(-0.507518\pi\)
−0.0236155 + 0.999721i \(0.507518\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 1.09316e11i − 0.181460i −0.995876 0.0907298i \(-0.971080\pi\)
0.995876 0.0907298i \(-0.0289200\pi\)
\(882\) 0 0
\(883\) −5.39725e11 −0.887829 −0.443915 0.896069i \(-0.646411\pi\)
−0.443915 + 0.896069i \(0.646411\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 7.82837e11i 1.26467i 0.774695 + 0.632335i \(0.217903\pi\)
−0.774695 + 0.632335i \(0.782097\pi\)
\(888\) 0 0
\(889\) −3.35949e9 −0.00537856
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 5.53852e10i − 0.0870939i
\(894\) 0 0
\(895\) 8.53953e11 1.33089
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 3.63396e11i − 0.556341i
\(900\) 0 0
\(901\) −4.28224e11 −0.649789
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) − 5.66426e11i − 0.844402i
\(906\) 0 0
\(907\) 6.27214e11 0.926801 0.463400 0.886149i \(-0.346629\pi\)
0.463400 + 0.886149i \(0.346629\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) − 9.11957e11i − 1.32404i −0.749487 0.662019i \(-0.769700\pi\)
0.749487 0.662019i \(-0.230300\pi\)
\(912\) 0 0
\(913\) −1.01148e12 −1.45571
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 3.09720e9i 0.00438019i
\(918\) 0 0
\(919\) −4.03048e11 −0.565060 −0.282530 0.959258i \(-0.591174\pi\)
−0.282530 + 0.959258i \(0.591174\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 1.45988e10i − 0.0201145i
\(924\) 0 0
\(925\) 9.00345e10 0.122982
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 8.24710e11i − 1.10723i −0.832772 0.553616i \(-0.813248\pi\)
0.832772 0.553616i \(-0.186752\pi\)
\(930\) 0 0
\(931\) 6.83873e10 0.0910283
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 6.30766e11i 0.825319i
\(936\) 0 0
\(937\) −1.17037e12 −1.51832 −0.759161 0.650903i \(-0.774391\pi\)
−0.759161 + 0.650903i \(0.774391\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 5.67926e11i 0.724324i 0.932115 + 0.362162i \(0.117961\pi\)
−0.932115 + 0.362162i \(0.882039\pi\)
\(942\) 0 0
\(943\) 2.37352e11 0.300156
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 1.05909e12i − 1.31684i −0.752653 0.658418i \(-0.771226\pi\)
0.752653 0.658418i \(-0.228774\pi\)
\(948\) 0 0
\(949\) 1.96769e10 0.0242601
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 2.69349e11i − 0.326546i −0.986581 0.163273i \(-0.947795\pi\)
0.986581 0.163273i \(-0.0522051\pi\)
\(954\) 0 0
\(955\) −1.29005e12 −1.55093
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) − 2.38924e9i − 0.00282478i
\(960\) 0 0
\(961\) −7.25966e11 −0.851182
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1.38020e12i 1.59160i
\(966\) 0 0
\(967\) 6.87113e11 0.785819 0.392909 0.919577i \(-0.371469\pi\)
0.392909 + 0.919577i \(0.371469\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 5.61624e11i 0.631785i 0.948795 + 0.315892i \(0.102304\pi\)
−0.948795 + 0.315892i \(0.897696\pi\)
\(972\) 0 0
\(973\) −1.96453e9 −0.00219183
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 3.86949e11i 0.424693i 0.977194 + 0.212347i \(0.0681106\pi\)
−0.977194 + 0.212347i \(0.931889\pi\)
\(978\) 0 0
\(979\) −1.13307e11 −0.123346
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) − 1.58823e10i − 0.0170098i −0.999964 0.00850491i \(-0.997293\pi\)
0.999964 0.00850491i \(-0.00270723\pi\)
\(984\) 0 0
\(985\) −1.78115e12 −1.89215
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 1.27471e11i − 0.133237i
\(990\) 0 0
\(991\) −1.78722e12 −1.85303 −0.926516 0.376256i \(-0.877211\pi\)
−0.926516 + 0.376256i \(0.877211\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) − 1.31976e12i − 1.34649i
\(996\) 0 0
\(997\) 1.01042e12 1.02263 0.511316 0.859393i \(-0.329158\pi\)
0.511316 + 0.859393i \(0.329158\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 108.9.c.b.53.1 2
3.2 odd 2 inner 108.9.c.b.53.2 yes 2
4.3 odd 2 432.9.e.e.161.1 2
9.2 odd 6 324.9.g.e.53.1 4
9.4 even 3 324.9.g.e.269.1 4
9.5 odd 6 324.9.g.e.269.2 4
9.7 even 3 324.9.g.e.53.2 4
12.11 even 2 432.9.e.e.161.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
108.9.c.b.53.1 2 1.1 even 1 trivial
108.9.c.b.53.2 yes 2 3.2 odd 2 inner
324.9.g.e.53.1 4 9.2 odd 6
324.9.g.e.53.2 4 9.7 even 3
324.9.g.e.269.1 4 9.4 even 3
324.9.g.e.269.2 4 9.5 odd 6
432.9.e.e.161.1 2 4.3 odd 2
432.9.e.e.161.2 2 12.11 even 2