Properties

Label 108.9
Level 108
Weight 9
Dimension 1179
Nonzero newspaces 6
Sturm bound 5832
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 108 = 2^{2} \cdot 3^{3} \)
Weight: \( k \) = \( 9 \)
Nonzero newspaces: \( 6 \)
Sturm bound: \(5832\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{9}(\Gamma_1(108))\).

Total New Old
Modular forms 2667 1211 1456
Cusp forms 2517 1179 1338
Eisenstein series 150 32 118

Trace form

\( 1179 q - 5 q^{2} + 231 q^{4} - 892 q^{5} - 6 q^{6} + 3384 q^{7} + 9955 q^{8} - 12966 q^{9} - 20481 q^{10} + 10980 q^{11} - 12921 q^{12} + 48246 q^{13} + 35847 q^{14} - 176535 q^{15} - 340605 q^{16} - 27550 q^{17}+ \cdots - 549573633 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{9}^{\mathrm{new}}(\Gamma_1(108))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
108.9.c \(\chi_{108}(53, \cdot)\) 108.9.c.a 1 1
108.9.c.b 2
108.9.c.c 2
108.9.c.d 6
108.9.d \(\chi_{108}(55, \cdot)\) 108.9.d.a 32 1
108.9.d.b 32
108.9.f \(\chi_{108}(19, \cdot)\) 108.9.f.a 92 2
108.9.g \(\chi_{108}(17, \cdot)\) 108.9.g.a 16 2
108.9.j \(\chi_{108}(7, \cdot)\) n/a 852 6
108.9.k \(\chi_{108}(5, \cdot)\) n/a 144 6

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{9}^{\mathrm{old}}(\Gamma_1(108))\) into lower level spaces

\( S_{9}^{\mathrm{old}}(\Gamma_1(108)) \cong \) \(S_{9}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 9}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 6}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(27))\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 2}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(\Gamma_1(54))\)\(^{\oplus 2}\)