Properties

Label 108.j
Modulus $108$
Conductor $108$
Order $18$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(108, base_ring=CyclotomicField(18))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([9,16]))
 
sage: chi.galois_orbit()
 
pari: [g,chi] = znchar(Mod(7,108))
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(108\)
Conductor: \(108\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(18\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: 18.0.258151783382020583032356864.7

Characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(7\) \(11\) \(13\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\)
\(\chi_{108}(7,\cdot)\) \(-1\) \(1\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{5}{18}\right)\)
\(\chi_{108}(31,\cdot)\) \(-1\) \(1\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{13}{18}\right)\)
\(\chi_{108}(43,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{17}{18}\right)\)
\(\chi_{108}(67,\cdot)\) \(-1\) \(1\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{7}{18}\right)\)
\(\chi_{108}(79,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{11}{18}\right)\)
\(\chi_{108}(103,\cdot)\) \(-1\) \(1\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{1}{18}\right)\)