Properties

Label 1078.4.a.p
Level $1078$
Weight $4$
Character orbit 1078.a
Self dual yes
Analytic conductor $63.604$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1078,4,Mod(1,1078)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1078.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1078, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1078 = 2 \cdot 7^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1078.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,6,-6,12,-26,-12,0,24,59] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.6040589862\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.7636.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 16x - 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 154)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 q^{2} + (\beta_1 - 2) q^{3} + 4 q^{4} + (\beta_{2} - 9) q^{5} + (2 \beta_1 - 4) q^{6} + 8 q^{8} + (2 \beta_{2} + 19) q^{9} + (2 \beta_{2} - 18) q^{10} + 11 q^{11} + (4 \beta_1 - 8) q^{12} + ( - 6 \beta_{2} - 5 \beta_1 - 22) q^{13}+ \cdots + (22 \beta_{2} + 209) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 6 q^{2} - 6 q^{3} + 12 q^{4} - 26 q^{5} - 12 q^{6} + 24 q^{8} + 59 q^{9} - 52 q^{10} + 33 q^{11} - 24 q^{12} - 72 q^{13} + 12 q^{15} + 48 q^{16} - 56 q^{17} + 118 q^{18} + 48 q^{19} - 104 q^{20} + 66 q^{22}+ \cdots + 649 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 16x - 18 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 2\nu^{2} - 4\nu - 21 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{2} + 2\beta _1 + 21 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−3.22881
−1.24586
4.47467
2.00000 −8.45761 4.00000 3.76558 −16.9152 0 8.00000 44.5312 7.53117
1.2 2.00000 −4.49172 4.00000 −21.9122 −8.98345 0 8.00000 −6.82442 −43.8244
1.3 2.00000 6.94933 4.00000 −7.85338 13.8987 0 8.00000 21.2932 −15.7068
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( -1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1078.4.a.p 3
7.b odd 2 1 154.4.a.i 3
21.c even 2 1 1386.4.a.bc 3
28.d even 2 1 1232.4.a.q 3
77.b even 2 1 1694.4.a.s 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
154.4.a.i 3 7.b odd 2 1
1078.4.a.p 3 1.a even 1 1 trivial
1232.4.a.q 3 28.d even 2 1
1386.4.a.bc 3 21.c even 2 1
1694.4.a.s 3 77.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} + 6T_{3}^{2} - 52T_{3} - 264 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1078))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 2)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} + 6 T^{2} + \cdots - 264 \) Copy content Toggle raw display
$5$ \( T^{3} + 26 T^{2} + \cdots - 648 \) Copy content Toggle raw display
$7$ \( T^{3} \) Copy content Toggle raw display
$11$ \( (T - 11)^{3} \) Copy content Toggle raw display
$13$ \( T^{3} + 72 T^{2} + \cdots - 331632 \) Copy content Toggle raw display
$17$ \( T^{3} + 56 T^{2} + \cdots - 88976 \) Copy content Toggle raw display
$19$ \( T^{3} - 48 T^{2} + \cdots - 28512 \) Copy content Toggle raw display
$23$ \( T^{3} + 244 T^{2} + \cdots + 219584 \) Copy content Toggle raw display
$29$ \( T^{3} - 198 T^{2} + \cdots + 3523896 \) Copy content Toggle raw display
$31$ \( T^{3} + 374 T^{2} + \cdots - 15721176 \) Copy content Toggle raw display
$37$ \( T^{3} - 110 T^{2} + \cdots + 5981784 \) Copy content Toggle raw display
$41$ \( T^{3} - 648 T^{2} + \cdots + 28837872 \) Copy content Toggle raw display
$43$ \( T^{3} + 500 T^{2} + \cdots - 2503232 \) Copy content Toggle raw display
$47$ \( T^{3} - 326 T^{2} + \cdots + 136297368 \) Copy content Toggle raw display
$53$ \( T^{3} - 206 T^{2} + \cdots + 863064 \) Copy content Toggle raw display
$59$ \( T^{3} - 266 T^{2} + \cdots + 4809816 \) Copy content Toggle raw display
$61$ \( T^{3} + 308 T^{2} + \cdots - 81057168 \) Copy content Toggle raw display
$67$ \( T^{3} - 256 T^{2} + \cdots - 1711488 \) Copy content Toggle raw display
$71$ \( T^{3} + 484 T^{2} + \cdots - 19953216 \) Copy content Toggle raw display
$73$ \( T^{3} - 1028 T^{2} + \cdots + 550878192 \) Copy content Toggle raw display
$79$ \( T^{3} + 1072 T^{2} + \cdots - 148401792 \) Copy content Toggle raw display
$83$ \( T^{3} + 912 T^{2} + \cdots - 33774048 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots + 1452062376 \) Copy content Toggle raw display
$97$ \( T^{3} + 2042 T^{2} + \cdots + 259709688 \) Copy content Toggle raw display
show more
show less