Properties

Label 154.4.a.i
Level $154$
Weight $4$
Character orbit 154.a
Self dual yes
Analytic conductor $9.086$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [154,4,Mod(1,154)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("154.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(154, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 154 = 2 \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 154.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,6,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.08629414088\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.7636.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 16x - 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 2 q^{2} + ( - \beta_1 + 2) q^{3} + 4 q^{4} + ( - \beta_{2} + 9) q^{5} + ( - 2 \beta_1 + 4) q^{6} - 7 q^{7} + 8 q^{8} + (2 \beta_{2} + 19) q^{9} + ( - 2 \beta_{2} + 18) q^{10} + 11 q^{11} + ( - 4 \beta_1 + 8) q^{12}+ \cdots + (22 \beta_{2} + 209) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 6 q^{2} + 6 q^{3} + 12 q^{4} + 26 q^{5} + 12 q^{6} - 21 q^{7} + 24 q^{8} + 59 q^{9} + 52 q^{10} + 33 q^{11} + 24 q^{12} + 72 q^{13} - 42 q^{14} + 12 q^{15} + 48 q^{16} + 56 q^{17} + 118 q^{18} - 48 q^{19}+ \cdots + 649 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - 16x - 18 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( 2\nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 2\nu^{2} - 4\nu - 21 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{2} + 2\beta _1 + 21 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
4.47467
−1.24586
−3.22881
2.00000 −6.94933 4.00000 7.85338 −13.8987 −7.00000 8.00000 21.2932 15.7068
1.2 2.00000 4.49172 4.00000 21.9122 8.98345 −7.00000 8.00000 −6.82442 43.8244
1.3 2.00000 8.45761 4.00000 −3.76558 16.9152 −7.00000 8.00000 44.5312 −7.53117
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(7\) \( +1 \)
\(11\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 154.4.a.i 3
3.b odd 2 1 1386.4.a.bc 3
4.b odd 2 1 1232.4.a.q 3
7.b odd 2 1 1078.4.a.p 3
11.b odd 2 1 1694.4.a.s 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
154.4.a.i 3 1.a even 1 1 trivial
1078.4.a.p 3 7.b odd 2 1
1232.4.a.q 3 4.b odd 2 1
1386.4.a.bc 3 3.b odd 2 1
1694.4.a.s 3 11.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{3} - 6T_{3}^{2} - 52T_{3} + 264 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(154))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 2)^{3} \) Copy content Toggle raw display
$3$ \( T^{3} - 6 T^{2} + \cdots + 264 \) Copy content Toggle raw display
$5$ \( T^{3} - 26 T^{2} + \cdots + 648 \) Copy content Toggle raw display
$7$ \( (T + 7)^{3} \) Copy content Toggle raw display
$11$ \( (T - 11)^{3} \) Copy content Toggle raw display
$13$ \( T^{3} - 72 T^{2} + \cdots + 331632 \) Copy content Toggle raw display
$17$ \( T^{3} - 56 T^{2} + \cdots + 88976 \) Copy content Toggle raw display
$19$ \( T^{3} + 48 T^{2} + \cdots + 28512 \) Copy content Toggle raw display
$23$ \( T^{3} + 244 T^{2} + \cdots + 219584 \) Copy content Toggle raw display
$29$ \( T^{3} - 198 T^{2} + \cdots + 3523896 \) Copy content Toggle raw display
$31$ \( T^{3} - 374 T^{2} + \cdots + 15721176 \) Copy content Toggle raw display
$37$ \( T^{3} - 110 T^{2} + \cdots + 5981784 \) Copy content Toggle raw display
$41$ \( T^{3} + 648 T^{2} + \cdots - 28837872 \) Copy content Toggle raw display
$43$ \( T^{3} + 500 T^{2} + \cdots - 2503232 \) Copy content Toggle raw display
$47$ \( T^{3} + 326 T^{2} + \cdots - 136297368 \) Copy content Toggle raw display
$53$ \( T^{3} - 206 T^{2} + \cdots + 863064 \) Copy content Toggle raw display
$59$ \( T^{3} + 266 T^{2} + \cdots - 4809816 \) Copy content Toggle raw display
$61$ \( T^{3} - 308 T^{2} + \cdots + 81057168 \) Copy content Toggle raw display
$67$ \( T^{3} - 256 T^{2} + \cdots - 1711488 \) Copy content Toggle raw display
$71$ \( T^{3} + 484 T^{2} + \cdots - 19953216 \) Copy content Toggle raw display
$73$ \( T^{3} + 1028 T^{2} + \cdots - 550878192 \) Copy content Toggle raw display
$79$ \( T^{3} + 1072 T^{2} + \cdots - 148401792 \) Copy content Toggle raw display
$83$ \( T^{3} - 912 T^{2} + \cdots + 33774048 \) Copy content Toggle raw display
$89$ \( T^{3} + \cdots - 1452062376 \) Copy content Toggle raw display
$97$ \( T^{3} - 2042 T^{2} + \cdots - 259709688 \) Copy content Toggle raw display
show more
show less