Properties

Label 1072.2.g.b.1071.1
Level $1072$
Weight $2$
Character 1072.1071
Analytic conductor $8.560$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1072,2,Mod(1071,1072)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1072, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1072.1071"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1072 = 2^{4} \cdot 67 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1072.g (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.55996309668\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{13})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 7x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1071.1
Root \(2.30278i\) of defining polynomial
Character \(\chi\) \(=\) 1072.1071
Dual form 1072.2.g.b.1071.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.30278 q^{3} -3.00000i q^{5} -0.697224 q^{7} +2.30278 q^{9} -3.00000 q^{11} -3.90833i q^{13} +6.90833i q^{15} -2.60555 q^{17} -1.69722i q^{19} +1.60555 q^{21} +0.394449i q^{23} -4.00000 q^{25} +1.60555 q^{27} -0.394449 q^{29} +1.60555 q^{31} +6.90833 q^{33} +2.09167i q^{35} +5.30278 q^{37} +9.00000i q^{39} +6.90833i q^{41} -8.30278 q^{43} -6.90833i q^{45} +7.30278i q^{47} -6.51388 q^{49} +6.00000 q^{51} +3.00000i q^{53} +9.00000i q^{55} +3.90833i q^{57} +5.21110i q^{59} +3.90833i q^{61} -1.60555 q^{63} -11.7250 q^{65} +(-3.69722 - 7.30278i) q^{67} -0.908327i q^{69} +5.60555i q^{71} -1.39445 q^{73} +9.21110 q^{75} +2.09167 q^{77} -8.30278 q^{79} -10.6056 q^{81} +10.3028i q^{83} +7.81665i q^{85} +0.908327 q^{87} +11.6056 q^{89} +2.72498i q^{91} -3.69722 q^{93} -5.09167 q^{95} +16.8167i q^{97} -6.90833 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{3} - 10 q^{7} + 2 q^{9} - 12 q^{11} + 4 q^{17} - 8 q^{21} - 16 q^{25} - 8 q^{27} - 16 q^{29} - 8 q^{31} + 6 q^{33} + 14 q^{37} - 26 q^{43} + 10 q^{49} + 24 q^{51} + 8 q^{63} + 18 q^{65} - 22 q^{67}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1072\mathbb{Z}\right)^\times\).

\(n\) \(337\) \(671\) \(805\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.30278 −1.32951 −0.664754 0.747062i \(-0.731464\pi\)
−0.664754 + 0.747062i \(0.731464\pi\)
\(4\) 0 0
\(5\) 3.00000i 1.34164i −0.741620 0.670820i \(-0.765942\pi\)
0.741620 0.670820i \(-0.234058\pi\)
\(6\) 0 0
\(7\) −0.697224 −0.263526 −0.131763 0.991281i \(-0.542064\pi\)
−0.131763 + 0.991281i \(0.542064\pi\)
\(8\) 0 0
\(9\) 2.30278 0.767592
\(10\) 0 0
\(11\) −3.00000 −0.904534 −0.452267 0.891883i \(-0.649385\pi\)
−0.452267 + 0.891883i \(0.649385\pi\)
\(12\) 0 0
\(13\) 3.90833i 1.08397i −0.840387 0.541987i \(-0.817672\pi\)
0.840387 0.541987i \(-0.182328\pi\)
\(14\) 0 0
\(15\) 6.90833i 1.78372i
\(16\) 0 0
\(17\) −2.60555 −0.631939 −0.315970 0.948769i \(-0.602330\pi\)
−0.315970 + 0.948769i \(0.602330\pi\)
\(18\) 0 0
\(19\) 1.69722i 0.389370i −0.980866 0.194685i \(-0.937632\pi\)
0.980866 0.194685i \(-0.0623685\pi\)
\(20\) 0 0
\(21\) 1.60555 0.350360
\(22\) 0 0
\(23\) 0.394449i 0.0822482i 0.999154 + 0.0411241i \(0.0130939\pi\)
−0.999154 + 0.0411241i \(0.986906\pi\)
\(24\) 0 0
\(25\) −4.00000 −0.800000
\(26\) 0 0
\(27\) 1.60555 0.308988
\(28\) 0 0
\(29\) −0.394449 −0.0732473 −0.0366236 0.999329i \(-0.511660\pi\)
−0.0366236 + 0.999329i \(0.511660\pi\)
\(30\) 0 0
\(31\) 1.60555 0.288366 0.144183 0.989551i \(-0.453945\pi\)
0.144183 + 0.989551i \(0.453945\pi\)
\(32\) 0 0
\(33\) 6.90833 1.20259
\(34\) 0 0
\(35\) 2.09167i 0.353557i
\(36\) 0 0
\(37\) 5.30278 0.871771 0.435885 0.900002i \(-0.356435\pi\)
0.435885 + 0.900002i \(0.356435\pi\)
\(38\) 0 0
\(39\) 9.00000i 1.44115i
\(40\) 0 0
\(41\) 6.90833i 1.07890i 0.842018 + 0.539450i \(0.181368\pi\)
−0.842018 + 0.539450i \(0.818632\pi\)
\(42\) 0 0
\(43\) −8.30278 −1.26616 −0.633081 0.774086i \(-0.718210\pi\)
−0.633081 + 0.774086i \(0.718210\pi\)
\(44\) 0 0
\(45\) 6.90833i 1.02983i
\(46\) 0 0
\(47\) 7.30278i 1.06522i 0.846361 + 0.532610i \(0.178789\pi\)
−0.846361 + 0.532610i \(0.821211\pi\)
\(48\) 0 0
\(49\) −6.51388 −0.930554
\(50\) 0 0
\(51\) 6.00000 0.840168
\(52\) 0 0
\(53\) 3.00000i 0.412082i 0.978543 + 0.206041i \(0.0660580\pi\)
−0.978543 + 0.206041i \(0.933942\pi\)
\(54\) 0 0
\(55\) 9.00000i 1.21356i
\(56\) 0 0
\(57\) 3.90833i 0.517671i
\(58\) 0 0
\(59\) 5.21110i 0.678428i 0.940709 + 0.339214i \(0.110161\pi\)
−0.940709 + 0.339214i \(0.889839\pi\)
\(60\) 0 0
\(61\) 3.90833i 0.500410i 0.968193 + 0.250205i \(0.0804980\pi\)
−0.968193 + 0.250205i \(0.919502\pi\)
\(62\) 0 0
\(63\) −1.60555 −0.202280
\(64\) 0 0
\(65\) −11.7250 −1.45430
\(66\) 0 0
\(67\) −3.69722 7.30278i −0.451688 0.892176i
\(68\) 0 0
\(69\) 0.908327i 0.109350i
\(70\) 0 0
\(71\) 5.60555i 0.665257i 0.943058 + 0.332628i \(0.107935\pi\)
−0.943058 + 0.332628i \(0.892065\pi\)
\(72\) 0 0
\(73\) −1.39445 −0.163208 −0.0816039 0.996665i \(-0.526004\pi\)
−0.0816039 + 0.996665i \(0.526004\pi\)
\(74\) 0 0
\(75\) 9.21110 1.06361
\(76\) 0 0
\(77\) 2.09167 0.238368
\(78\) 0 0
\(79\) −8.30278 −0.934135 −0.467068 0.884222i \(-0.654690\pi\)
−0.467068 + 0.884222i \(0.654690\pi\)
\(80\) 0 0
\(81\) −10.6056 −1.17839
\(82\) 0 0
\(83\) 10.3028i 1.13088i 0.824791 + 0.565438i \(0.191293\pi\)
−0.824791 + 0.565438i \(0.808707\pi\)
\(84\) 0 0
\(85\) 7.81665i 0.847835i
\(86\) 0 0
\(87\) 0.908327 0.0973829
\(88\) 0 0
\(89\) 11.6056 1.23019 0.615093 0.788455i \(-0.289118\pi\)
0.615093 + 0.788455i \(0.289118\pi\)
\(90\) 0 0
\(91\) 2.72498i 0.285656i
\(92\) 0 0
\(93\) −3.69722 −0.383384
\(94\) 0 0
\(95\) −5.09167 −0.522395
\(96\) 0 0
\(97\) 16.8167i 1.70747i 0.520706 + 0.853736i \(0.325669\pi\)
−0.520706 + 0.853736i \(0.674331\pi\)
\(98\) 0 0
\(99\) −6.90833 −0.694313
\(100\) 0 0
\(101\) 12.9083i 1.28443i 0.766526 + 0.642213i \(0.221984\pi\)
−0.766526 + 0.642213i \(0.778016\pi\)
\(102\) 0 0
\(103\) 15.1194i 1.48976i −0.667198 0.744881i \(-0.732506\pi\)
0.667198 0.744881i \(-0.267494\pi\)
\(104\) 0 0
\(105\) 4.81665i 0.470057i
\(106\) 0 0
\(107\) 13.4222i 1.29757i −0.760970 0.648787i \(-0.775277\pi\)
0.760970 0.648787i \(-0.224723\pi\)
\(108\) 0 0
\(109\) 5.09167i 0.487694i −0.969814 0.243847i \(-0.921591\pi\)
0.969814 0.243847i \(-0.0784094\pi\)
\(110\) 0 0
\(111\) −12.2111 −1.15903
\(112\) 0 0
\(113\) 3.90833i 0.367664i 0.982958 + 0.183832i \(0.0588503\pi\)
−0.982958 + 0.183832i \(0.941150\pi\)
\(114\) 0 0
\(115\) 1.18335 0.110348
\(116\) 0 0
\(117\) 9.00000i 0.832050i
\(118\) 0 0
\(119\) 1.81665 0.166532
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) 0 0
\(123\) 15.9083i 1.43441i
\(124\) 0 0
\(125\) 3.00000i 0.268328i
\(126\) 0 0
\(127\) 10.6972i 0.949225i −0.880195 0.474613i \(-0.842588\pi\)
0.880195 0.474613i \(-0.157412\pi\)
\(128\) 0 0
\(129\) 19.1194 1.68337
\(130\) 0 0
\(131\) 8.21110i 0.717407i 0.933451 + 0.358704i \(0.116781\pi\)
−0.933451 + 0.358704i \(0.883219\pi\)
\(132\) 0 0
\(133\) 1.18335i 0.102609i
\(134\) 0 0
\(135\) 4.81665i 0.414552i
\(136\) 0 0
\(137\) 4.81665i 0.411515i −0.978603 0.205757i \(-0.934034\pi\)
0.978603 0.205757i \(-0.0659657\pi\)
\(138\) 0 0
\(139\) −9.42221 −0.799181 −0.399591 0.916694i \(-0.630848\pi\)
−0.399591 + 0.916694i \(0.630848\pi\)
\(140\) 0 0
\(141\) 16.8167i 1.41622i
\(142\) 0 0
\(143\) 11.7250i 0.980492i
\(144\) 0 0
\(145\) 1.18335i 0.0982716i
\(146\) 0 0
\(147\) 15.0000 1.23718
\(148\) 0 0
\(149\) −7.69722 −0.630581 −0.315291 0.948995i \(-0.602102\pi\)
−0.315291 + 0.948995i \(0.602102\pi\)
\(150\) 0 0
\(151\) 16.8167i 1.36852i 0.729238 + 0.684260i \(0.239875\pi\)
−0.729238 + 0.684260i \(0.760125\pi\)
\(152\) 0 0
\(153\) −6.00000 −0.485071
\(154\) 0 0
\(155\) 4.81665i 0.386883i
\(156\) 0 0
\(157\) −4.51388 −0.360247 −0.180123 0.983644i \(-0.557650\pi\)
−0.180123 + 0.983644i \(0.557650\pi\)
\(158\) 0 0
\(159\) 6.90833i 0.547866i
\(160\) 0 0
\(161\) 0.275019i 0.0216746i
\(162\) 0 0
\(163\) 12.9083i 1.01106i −0.862810 0.505529i \(-0.831297\pi\)
0.862810 0.505529i \(-0.168703\pi\)
\(164\) 0 0
\(165\) 20.7250i 1.61344i
\(166\) 0 0
\(167\) 10.4222i 0.806494i 0.915091 + 0.403247i \(0.132119\pi\)
−0.915091 + 0.403247i \(0.867881\pi\)
\(168\) 0 0
\(169\) −2.27502 −0.175001
\(170\) 0 0
\(171\) 3.90833i 0.298877i
\(172\) 0 0
\(173\) 12.1194 0.921423 0.460712 0.887550i \(-0.347594\pi\)
0.460712 + 0.887550i \(0.347594\pi\)
\(174\) 0 0
\(175\) 2.78890 0.210821
\(176\) 0 0
\(177\) 12.0000i 0.901975i
\(178\) 0 0
\(179\) 19.8167 1.48117 0.740583 0.671965i \(-0.234549\pi\)
0.740583 + 0.671965i \(0.234549\pi\)
\(180\) 0 0
\(181\) −8.11943 −0.603512 −0.301756 0.953385i \(-0.597573\pi\)
−0.301756 + 0.953385i \(0.597573\pi\)
\(182\) 0 0
\(183\) 9.00000i 0.665299i
\(184\) 0 0
\(185\) 15.9083i 1.16960i
\(186\) 0 0
\(187\) 7.81665 0.571610
\(188\) 0 0
\(189\) −1.11943 −0.0814265
\(190\) 0 0
\(191\) 10.8167 0.782666 0.391333 0.920249i \(-0.372014\pi\)
0.391333 + 0.920249i \(0.372014\pi\)
\(192\) 0 0
\(193\) 16.7250 1.20389 0.601945 0.798537i \(-0.294393\pi\)
0.601945 + 0.798537i \(0.294393\pi\)
\(194\) 0 0
\(195\) 27.0000 1.93351
\(196\) 0 0
\(197\) 10.8167i 0.770655i 0.922780 + 0.385327i \(0.125911\pi\)
−0.922780 + 0.385327i \(0.874089\pi\)
\(198\) 0 0
\(199\) 1.69722i 0.120313i −0.998189 0.0601565i \(-0.980840\pi\)
0.998189 0.0601565i \(-0.0191600\pi\)
\(200\) 0 0
\(201\) 8.51388 + 16.8167i 0.600523 + 1.18616i
\(202\) 0 0
\(203\) 0.275019 0.0193026
\(204\) 0 0
\(205\) 20.7250 1.44750
\(206\) 0 0
\(207\) 0.908327i 0.0631331i
\(208\) 0 0
\(209\) 5.09167i 0.352198i
\(210\) 0 0
\(211\) 26.3305i 1.81267i −0.422561 0.906334i \(-0.638869\pi\)
0.422561 0.906334i \(-0.361131\pi\)
\(212\) 0 0
\(213\) 12.9083i 0.884464i
\(214\) 0 0
\(215\) 24.9083i 1.69873i
\(216\) 0 0
\(217\) −1.11943 −0.0759918
\(218\) 0 0
\(219\) 3.21110 0.216986
\(220\) 0 0
\(221\) 10.1833i 0.685006i
\(222\) 0 0
\(223\) 15.6333i 1.04688i −0.852061 0.523442i \(-0.824648\pi\)
0.852061 0.523442i \(-0.175352\pi\)
\(224\) 0 0
\(225\) −9.21110 −0.614074
\(226\) 0 0
\(227\) 24.5139i 1.62704i −0.581535 0.813522i \(-0.697548\pi\)
0.581535 0.813522i \(-0.302452\pi\)
\(228\) 0 0
\(229\) 12.9083i 0.853006i 0.904486 + 0.426503i \(0.140255\pi\)
−0.904486 + 0.426503i \(0.859745\pi\)
\(230\) 0 0
\(231\) −4.81665 −0.316913
\(232\) 0 0
\(233\) 27.6333i 1.81032i −0.425073 0.905159i \(-0.639752\pi\)
0.425073 0.905159i \(-0.360248\pi\)
\(234\) 0 0
\(235\) 21.9083 1.42914
\(236\) 0 0
\(237\) 19.1194 1.24194
\(238\) 0 0
\(239\) −27.9083 −1.80524 −0.902620 0.430439i \(-0.858359\pi\)
−0.902620 + 0.430439i \(0.858359\pi\)
\(240\) 0 0
\(241\) −19.7250 −1.27060 −0.635299 0.772266i \(-0.719123\pi\)
−0.635299 + 0.772266i \(0.719123\pi\)
\(242\) 0 0
\(243\) 19.6056 1.25770
\(244\) 0 0
\(245\) 19.5416i 1.24847i
\(246\) 0 0
\(247\) −6.63331 −0.422067
\(248\) 0 0
\(249\) 23.7250i 1.50351i
\(250\) 0 0
\(251\) −7.81665 −0.493383 −0.246691 0.969094i \(-0.579343\pi\)
−0.246691 + 0.969094i \(0.579343\pi\)
\(252\) 0 0
\(253\) 1.18335i 0.0743963i
\(254\) 0 0
\(255\) 18.0000i 1.12720i
\(256\) 0 0
\(257\) 5.60555 0.349665 0.174832 0.984598i \(-0.444062\pi\)
0.174832 + 0.984598i \(0.444062\pi\)
\(258\) 0 0
\(259\) −3.69722 −0.229734
\(260\) 0 0
\(261\) −0.908327 −0.0562240
\(262\) 0 0
\(263\) 3.51388i 0.216675i 0.994114 + 0.108338i \(0.0345527\pi\)
−0.994114 + 0.108338i \(0.965447\pi\)
\(264\) 0 0
\(265\) 9.00000 0.552866
\(266\) 0 0
\(267\) −26.7250 −1.63554
\(268\) 0 0
\(269\) −21.1194 −1.28767 −0.643837 0.765163i \(-0.722659\pi\)
−0.643837 + 0.765163i \(0.722659\pi\)
\(270\) 0 0
\(271\) 18.2111 1.10625 0.553123 0.833100i \(-0.313436\pi\)
0.553123 + 0.833100i \(0.313436\pi\)
\(272\) 0 0
\(273\) 6.27502i 0.379781i
\(274\) 0 0
\(275\) 12.0000 0.723627
\(276\) 0 0
\(277\) −29.0278 −1.74411 −0.872054 0.489409i \(-0.837213\pi\)
−0.872054 + 0.489409i \(0.837213\pi\)
\(278\) 0 0
\(279\) 3.69722 0.221347
\(280\) 0 0
\(281\) 14.0917i 0.840639i 0.907376 + 0.420319i \(0.138082\pi\)
−0.907376 + 0.420319i \(0.861918\pi\)
\(282\) 0 0
\(283\) 1.18335i 0.0703426i −0.999381 0.0351713i \(-0.988802\pi\)
0.999381 0.0351713i \(-0.0111977\pi\)
\(284\) 0 0
\(285\) 11.7250 0.694528
\(286\) 0 0
\(287\) 4.81665i 0.284318i
\(288\) 0 0
\(289\) −10.2111 −0.600653
\(290\) 0 0
\(291\) 38.7250i 2.27010i
\(292\) 0 0
\(293\) −11.6056 −0.678004 −0.339002 0.940786i \(-0.610089\pi\)
−0.339002 + 0.940786i \(0.610089\pi\)
\(294\) 0 0
\(295\) 15.6333 0.910206
\(296\) 0 0
\(297\) −4.81665 −0.279491
\(298\) 0 0
\(299\) 1.54163 0.0891550
\(300\) 0 0
\(301\) 5.78890 0.333667
\(302\) 0 0
\(303\) 29.7250i 1.70766i
\(304\) 0 0
\(305\) 11.7250 0.671370
\(306\) 0 0
\(307\) 7.81665i 0.446120i 0.974805 + 0.223060i \(0.0716046\pi\)
−0.974805 + 0.223060i \(0.928395\pi\)
\(308\) 0 0
\(309\) 34.8167i 1.98065i
\(310\) 0 0
\(311\) −24.0000 −1.36092 −0.680458 0.732787i \(-0.738219\pi\)
−0.680458 + 0.732787i \(0.738219\pi\)
\(312\) 0 0
\(313\) 29.7250i 1.68016i −0.542466 0.840078i \(-0.682509\pi\)
0.542466 0.840078i \(-0.317491\pi\)
\(314\) 0 0
\(315\) 4.81665i 0.271388i
\(316\) 0 0
\(317\) −9.78890 −0.549799 −0.274900 0.961473i \(-0.588645\pi\)
−0.274900 + 0.961473i \(0.588645\pi\)
\(318\) 0 0
\(319\) 1.18335 0.0662547
\(320\) 0 0
\(321\) 30.9083i 1.72513i
\(322\) 0 0
\(323\) 4.42221i 0.246058i
\(324\) 0 0
\(325\) 15.6333i 0.867180i
\(326\) 0 0
\(327\) 11.7250i 0.648393i
\(328\) 0 0
\(329\) 5.09167i 0.280713i
\(330\) 0 0
\(331\) −11.0278 −0.606140 −0.303070 0.952968i \(-0.598012\pi\)
−0.303070 + 0.952968i \(0.598012\pi\)
\(332\) 0 0
\(333\) 12.2111 0.669164
\(334\) 0 0
\(335\) −21.9083 + 11.0917i −1.19698 + 0.606003i
\(336\) 0 0
\(337\) 23.0917i 1.25788i 0.777452 + 0.628942i \(0.216512\pi\)
−0.777452 + 0.628942i \(0.783488\pi\)
\(338\) 0 0
\(339\) 9.00000i 0.488813i
\(340\) 0 0
\(341\) −4.81665 −0.260836
\(342\) 0 0
\(343\) 9.42221 0.508751
\(344\) 0 0
\(345\) −2.72498 −0.146708
\(346\) 0 0
\(347\) −18.6333 −1.00029 −0.500144 0.865942i \(-0.666720\pi\)
−0.500144 + 0.865942i \(0.666720\pi\)
\(348\) 0 0
\(349\) 3.21110 0.171886 0.0859432 0.996300i \(-0.472610\pi\)
0.0859432 + 0.996300i \(0.472610\pi\)
\(350\) 0 0
\(351\) 6.27502i 0.334936i
\(352\) 0 0
\(353\) 6.90833i 0.367693i −0.982955 0.183847i \(-0.941145\pi\)
0.982955 0.183847i \(-0.0588550\pi\)
\(354\) 0 0
\(355\) 16.8167 0.892535
\(356\) 0 0
\(357\) −4.18335 −0.221406
\(358\) 0 0
\(359\) 27.3944i 1.44582i 0.690940 + 0.722912i \(0.257197\pi\)
−0.690940 + 0.722912i \(0.742803\pi\)
\(360\) 0 0
\(361\) 16.1194 0.848391
\(362\) 0 0
\(363\) 4.60555 0.241729
\(364\) 0 0
\(365\) 4.18335i 0.218966i
\(366\) 0 0
\(367\) 22.6056 1.18000 0.590000 0.807403i \(-0.299128\pi\)
0.590000 + 0.807403i \(0.299128\pi\)
\(368\) 0 0
\(369\) 15.9083i 0.828154i
\(370\) 0 0
\(371\) 2.09167i 0.108594i
\(372\) 0 0
\(373\) 23.0917i 1.19564i 0.801630 + 0.597821i \(0.203967\pi\)
−0.801630 + 0.597821i \(0.796033\pi\)
\(374\) 0 0
\(375\) 6.90833i 0.356744i
\(376\) 0 0
\(377\) 1.54163i 0.0793982i
\(378\) 0 0
\(379\) −8.78890 −0.451455 −0.225728 0.974190i \(-0.572476\pi\)
−0.225728 + 0.974190i \(0.572476\pi\)
\(380\) 0 0
\(381\) 24.6333i 1.26200i
\(382\) 0 0
\(383\) −31.5416 −1.61170 −0.805851 0.592118i \(-0.798292\pi\)
−0.805851 + 0.592118i \(0.798292\pi\)
\(384\) 0 0
\(385\) 6.27502i 0.319805i
\(386\) 0 0
\(387\) −19.1194 −0.971895
\(388\) 0 0
\(389\) −21.3944 −1.08474 −0.542371 0.840139i \(-0.682473\pi\)
−0.542371 + 0.840139i \(0.682473\pi\)
\(390\) 0 0
\(391\) 1.02776i 0.0519759i
\(392\) 0 0
\(393\) 18.9083i 0.953799i
\(394\) 0 0
\(395\) 24.9083i 1.25327i
\(396\) 0 0
\(397\) −28.3305 −1.42187 −0.710934 0.703258i \(-0.751728\pi\)
−0.710934 + 0.703258i \(0.751728\pi\)
\(398\) 0 0
\(399\) 2.72498i 0.136420i
\(400\) 0 0
\(401\) 8.09167i 0.404079i 0.979377 + 0.202039i \(0.0647569\pi\)
−0.979377 + 0.202039i \(0.935243\pi\)
\(402\) 0 0
\(403\) 6.27502i 0.312581i
\(404\) 0 0
\(405\) 31.8167i 1.58098i
\(406\) 0 0
\(407\) −15.9083 −0.788546
\(408\) 0 0
\(409\) 18.0000i 0.890043i −0.895520 0.445021i \(-0.853196\pi\)
0.895520 0.445021i \(-0.146804\pi\)
\(410\) 0 0
\(411\) 11.0917i 0.547112i
\(412\) 0 0
\(413\) 3.63331i 0.178783i
\(414\) 0 0
\(415\) 30.9083 1.51723
\(416\) 0 0
\(417\) 21.6972 1.06252
\(418\) 0 0
\(419\) 2.60555i 0.127290i 0.997973 + 0.0636448i \(0.0202725\pi\)
−0.997973 + 0.0636448i \(0.979728\pi\)
\(420\) 0 0
\(421\) 1.88057 0.0916534 0.0458267 0.998949i \(-0.485408\pi\)
0.0458267 + 0.998949i \(0.485408\pi\)
\(422\) 0 0
\(423\) 16.8167i 0.817654i
\(424\) 0 0
\(425\) 10.4222 0.505551
\(426\) 0 0
\(427\) 2.72498i 0.131871i
\(428\) 0 0
\(429\) 27.0000i 1.30357i
\(430\) 0 0
\(431\) 16.0278i 0.772030i −0.922493 0.386015i \(-0.873851\pi\)
0.922493 0.386015i \(-0.126149\pi\)
\(432\) 0 0
\(433\) 21.9083i 1.05285i −0.850222 0.526424i \(-0.823533\pi\)
0.850222 0.526424i \(-0.176467\pi\)
\(434\) 0 0
\(435\) 2.72498i 0.130653i
\(436\) 0 0
\(437\) 0.669468 0.0320250
\(438\) 0 0
\(439\) 18.5139i 0.883619i 0.897109 + 0.441810i \(0.145663\pi\)
−0.897109 + 0.441810i \(0.854337\pi\)
\(440\) 0 0
\(441\) −15.0000 −0.714286
\(442\) 0 0
\(443\) −16.8167 −0.798983 −0.399492 0.916737i \(-0.630813\pi\)
−0.399492 + 0.916737i \(0.630813\pi\)
\(444\) 0 0
\(445\) 34.8167i 1.65047i
\(446\) 0 0
\(447\) 17.7250 0.838363
\(448\) 0 0
\(449\) −29.3305 −1.38419 −0.692097 0.721805i \(-0.743313\pi\)
−0.692097 + 0.721805i \(0.743313\pi\)
\(450\) 0 0
\(451\) 20.7250i 0.975901i
\(452\) 0 0
\(453\) 38.7250i 1.81946i
\(454\) 0 0
\(455\) 8.17494 0.383247
\(456\) 0 0
\(457\) 5.42221 0.253640 0.126820 0.991926i \(-0.459523\pi\)
0.126820 + 0.991926i \(0.459523\pi\)
\(458\) 0 0
\(459\) −4.18335 −0.195262
\(460\) 0 0
\(461\) −26.3305 −1.22634 −0.613168 0.789953i \(-0.710105\pi\)
−0.613168 + 0.789953i \(0.710105\pi\)
\(462\) 0 0
\(463\) 37.1194 1.72509 0.862543 0.505984i \(-0.168870\pi\)
0.862543 + 0.505984i \(0.168870\pi\)
\(464\) 0 0
\(465\) 11.0917i 0.514364i
\(466\) 0 0
\(467\) 30.3944i 1.40649i 0.710949 + 0.703244i \(0.248266\pi\)
−0.710949 + 0.703244i \(0.751734\pi\)
\(468\) 0 0
\(469\) 2.57779 + 5.09167i 0.119032 + 0.235112i
\(470\) 0 0
\(471\) 10.3944 0.478951
\(472\) 0 0
\(473\) 24.9083 1.14529
\(474\) 0 0
\(475\) 6.78890i 0.311496i
\(476\) 0 0
\(477\) 6.90833i 0.316311i
\(478\) 0 0
\(479\) 23.2111i 1.06054i 0.847828 + 0.530271i \(0.177910\pi\)
−0.847828 + 0.530271i \(0.822090\pi\)
\(480\) 0 0
\(481\) 20.7250i 0.944978i
\(482\) 0 0
\(483\) 0.633308i 0.0288165i
\(484\) 0 0
\(485\) 50.4500 2.29081
\(486\) 0 0
\(487\) 15.4222 0.698847 0.349423 0.936965i \(-0.386377\pi\)
0.349423 + 0.936965i \(0.386377\pi\)
\(488\) 0 0
\(489\) 29.7250i 1.34421i
\(490\) 0 0
\(491\) 7.42221i 0.334959i 0.985876 + 0.167480i \(0.0535629\pi\)
−0.985876 + 0.167480i \(0.946437\pi\)
\(492\) 0 0
\(493\) 1.02776 0.0462878
\(494\) 0 0
\(495\) 20.7250i 0.931519i
\(496\) 0 0
\(497\) 3.90833i 0.175312i
\(498\) 0 0
\(499\) 1.60555 0.0718743 0.0359372 0.999354i \(-0.488558\pi\)
0.0359372 + 0.999354i \(0.488558\pi\)
\(500\) 0 0
\(501\) 24.0000i 1.07224i
\(502\) 0 0
\(503\) 38.4500 1.71440 0.857200 0.514984i \(-0.172202\pi\)
0.857200 + 0.514984i \(0.172202\pi\)
\(504\) 0 0
\(505\) 38.7250 1.72324
\(506\) 0 0
\(507\) 5.23886 0.232666
\(508\) 0 0
\(509\) 20.6056 0.913325 0.456663 0.889640i \(-0.349045\pi\)
0.456663 + 0.889640i \(0.349045\pi\)
\(510\) 0 0
\(511\) 0.972244 0.0430095
\(512\) 0 0
\(513\) 2.72498i 0.120311i
\(514\) 0 0
\(515\) −45.3583 −1.99872
\(516\) 0 0
\(517\) 21.9083i 0.963527i
\(518\) 0 0
\(519\) −27.9083 −1.22504
\(520\) 0 0
\(521\) 7.81665i 0.342454i −0.985232 0.171227i \(-0.945227\pi\)
0.985232 0.171227i \(-0.0547731\pi\)
\(522\) 0 0
\(523\) 25.3028i 1.10641i 0.833044 + 0.553207i \(0.186596\pi\)
−0.833044 + 0.553207i \(0.813404\pi\)
\(524\) 0 0
\(525\) −6.42221 −0.280288
\(526\) 0 0
\(527\) −4.18335 −0.182229
\(528\) 0 0
\(529\) 22.8444 0.993235
\(530\) 0 0
\(531\) 12.0000i 0.520756i
\(532\) 0 0
\(533\) 27.0000 1.16950
\(534\) 0 0
\(535\) −40.2666 −1.74088
\(536\) 0 0
\(537\) −45.6333 −1.96922
\(538\) 0 0
\(539\) 19.5416 0.841718
\(540\) 0 0
\(541\) 18.0000i 0.773880i −0.922105 0.386940i \(-0.873532\pi\)
0.922105 0.386940i \(-0.126468\pi\)
\(542\) 0 0
\(543\) 18.6972 0.802375
\(544\) 0 0
\(545\) −15.2750 −0.654310
\(546\) 0 0
\(547\) −43.3305 −1.85268 −0.926340 0.376689i \(-0.877063\pi\)
−0.926340 + 0.376689i \(0.877063\pi\)
\(548\) 0 0
\(549\) 9.00000i 0.384111i
\(550\) 0 0
\(551\) 0.669468i 0.0285203i
\(552\) 0 0
\(553\) 5.78890 0.246169
\(554\) 0 0
\(555\) 36.6333i 1.55500i
\(556\) 0 0
\(557\) 21.7527 0.921693 0.460847 0.887480i \(-0.347546\pi\)
0.460847 + 0.887480i \(0.347546\pi\)
\(558\) 0 0
\(559\) 32.4500i 1.37249i
\(560\) 0 0
\(561\) −18.0000 −0.759961
\(562\) 0 0
\(563\) 3.63331 0.153126 0.0765628 0.997065i \(-0.475605\pi\)
0.0765628 + 0.997065i \(0.475605\pi\)
\(564\) 0 0
\(565\) 11.7250 0.493274
\(566\) 0 0
\(567\) 7.39445 0.310538
\(568\) 0 0
\(569\) 19.0278 0.797685 0.398843 0.917019i \(-0.369412\pi\)
0.398843 + 0.917019i \(0.369412\pi\)
\(570\) 0 0
\(571\) 28.5416i 1.19443i 0.802081 + 0.597215i \(0.203726\pi\)
−0.802081 + 0.597215i \(0.796274\pi\)
\(572\) 0 0
\(573\) −24.9083 −1.04056
\(574\) 0 0
\(575\) 1.57779i 0.0657986i
\(576\) 0 0
\(577\) 16.8167i 0.700086i 0.936734 + 0.350043i \(0.113833\pi\)
−0.936734 + 0.350043i \(0.886167\pi\)
\(578\) 0 0
\(579\) −38.5139 −1.60058
\(580\) 0 0
\(581\) 7.18335i 0.298015i
\(582\) 0 0
\(583\) 9.00000i 0.372742i
\(584\) 0 0
\(585\) −27.0000 −1.11631
\(586\) 0 0
\(587\) 9.90833 0.408960 0.204480 0.978871i \(-0.434450\pi\)
0.204480 + 0.978871i \(0.434450\pi\)
\(588\) 0 0
\(589\) 2.72498i 0.112281i
\(590\) 0 0
\(591\) 24.9083i 1.02459i
\(592\) 0 0
\(593\) 21.6333i 0.888373i −0.895934 0.444187i \(-0.853493\pi\)
0.895934 0.444187i \(-0.146507\pi\)
\(594\) 0 0
\(595\) 5.44996i 0.223427i
\(596\) 0 0
\(597\) 3.90833i 0.159957i
\(598\) 0 0
\(599\) −35.4500 −1.44845 −0.724223 0.689566i \(-0.757801\pi\)
−0.724223 + 0.689566i \(0.757801\pi\)
\(600\) 0 0
\(601\) 3.21110 0.130984 0.0654918 0.997853i \(-0.479138\pi\)
0.0654918 + 0.997853i \(0.479138\pi\)
\(602\) 0 0
\(603\) −8.51388 16.8167i −0.346712 0.684827i
\(604\) 0 0
\(605\) 6.00000i 0.243935i
\(606\) 0 0
\(607\) 12.9083i 0.523933i 0.965077 + 0.261966i \(0.0843710\pi\)
−0.965077 + 0.261966i \(0.915629\pi\)
\(608\) 0 0
\(609\) −0.633308 −0.0256629
\(610\) 0 0
\(611\) 28.5416 1.15467
\(612\) 0 0
\(613\) 19.8444 0.801508 0.400754 0.916186i \(-0.368748\pi\)
0.400754 + 0.916186i \(0.368748\pi\)
\(614\) 0 0
\(615\) −47.7250 −1.92446
\(616\) 0 0
\(617\) −12.5139 −0.503790 −0.251895 0.967755i \(-0.581054\pi\)
−0.251895 + 0.967755i \(0.581054\pi\)
\(618\) 0 0
\(619\) 2.36669i 0.0951254i 0.998868 + 0.0475627i \(0.0151454\pi\)
−0.998868 + 0.0475627i \(0.984855\pi\)
\(620\) 0 0
\(621\) 0.633308i 0.0254138i
\(622\) 0 0
\(623\) −8.09167 −0.324186
\(624\) 0 0
\(625\) −29.0000 −1.16000
\(626\) 0 0
\(627\) 11.7250i 0.468251i
\(628\) 0 0
\(629\) −13.8167 −0.550906
\(630\) 0 0
\(631\) −22.8806 −0.910861 −0.455431 0.890271i \(-0.650515\pi\)
−0.455431 + 0.890271i \(0.650515\pi\)
\(632\) 0 0
\(633\) 60.6333i 2.40996i
\(634\) 0 0
\(635\) −32.0917 −1.27352
\(636\) 0 0
\(637\) 25.4584i 1.00870i
\(638\) 0 0
\(639\) 12.9083i 0.510646i
\(640\) 0 0
\(641\) 3.00000i 0.118493i −0.998243 0.0592464i \(-0.981130\pi\)
0.998243 0.0592464i \(-0.0188698\pi\)
\(642\) 0 0
\(643\) 11.8806i 0.468524i −0.972174 0.234262i \(-0.924733\pi\)
0.972174 0.234262i \(-0.0752674\pi\)
\(644\) 0 0
\(645\) 57.3583i 2.25848i
\(646\) 0 0
\(647\) −19.8167 −0.779073 −0.389537 0.921011i \(-0.627365\pi\)
−0.389537 + 0.921011i \(0.627365\pi\)
\(648\) 0 0
\(649\) 15.6333i 0.613661i
\(650\) 0 0
\(651\) 2.57779 0.101032
\(652\) 0 0
\(653\) 45.6333i 1.78577i −0.450285 0.892885i \(-0.648678\pi\)
0.450285 0.892885i \(-0.351322\pi\)
\(654\) 0 0
\(655\) 24.6333 0.962503
\(656\) 0 0
\(657\) −3.21110 −0.125277
\(658\) 0 0
\(659\) 35.0555i 1.36557i 0.730620 + 0.682784i \(0.239231\pi\)
−0.730620 + 0.682784i \(0.760769\pi\)
\(660\) 0 0
\(661\) 24.6333i 0.958125i 0.877781 + 0.479062i \(0.159023\pi\)
−0.877781 + 0.479062i \(0.840977\pi\)
\(662\) 0 0
\(663\) 23.4500i 0.910721i
\(664\) 0 0
\(665\) 3.55004 0.137665
\(666\) 0 0
\(667\) 0.155590i 0.00602446i
\(668\) 0 0
\(669\) 36.0000i 1.39184i
\(670\) 0 0
\(671\) 11.7250i 0.452638i
\(672\) 0 0
\(673\) 12.9083i 0.497579i −0.968558 0.248790i \(-0.919967\pi\)
0.968558 0.248790i \(-0.0800328\pi\)
\(674\) 0 0
\(675\) −6.42221 −0.247191
\(676\) 0 0
\(677\) 28.8167i 1.10751i −0.832678 0.553757i \(-0.813194\pi\)
0.832678 0.553757i \(-0.186806\pi\)
\(678\) 0 0
\(679\) 11.7250i 0.449963i
\(680\) 0 0
\(681\) 56.4500i 2.16317i
\(682\) 0 0
\(683\) −3.90833 −0.149548 −0.0747740 0.997201i \(-0.523824\pi\)
−0.0747740 + 0.997201i \(0.523824\pi\)
\(684\) 0 0
\(685\) −14.4500 −0.552105
\(686\) 0 0
\(687\) 29.7250i 1.13408i
\(688\) 0 0
\(689\) 11.7250 0.446686
\(690\) 0 0
\(691\) 29.2111i 1.11124i −0.831435 0.555621i \(-0.812480\pi\)
0.831435 0.555621i \(-0.187520\pi\)
\(692\) 0 0
\(693\) 4.81665 0.182970
\(694\) 0 0
\(695\) 28.2666i 1.07221i
\(696\) 0 0
\(697\) 18.0000i 0.681799i
\(698\) 0 0
\(699\) 63.6333i 2.40683i
\(700\) 0 0
\(701\) 3.63331i 0.137228i 0.997643 + 0.0686141i \(0.0218577\pi\)
−0.997643 + 0.0686141i \(0.978142\pi\)
\(702\) 0 0
\(703\) 9.00000i 0.339441i
\(704\) 0 0
\(705\) −50.4500 −1.90006
\(706\) 0 0
\(707\) 9.00000i 0.338480i
\(708\) 0 0
\(709\) 4.60555 0.172965 0.0864826 0.996253i \(-0.472437\pi\)
0.0864826 + 0.996253i \(0.472437\pi\)
\(710\) 0 0
\(711\) −19.1194 −0.717035
\(712\) 0 0
\(713\) 0.633308i 0.0237176i
\(714\) 0 0
\(715\) 35.1749 1.31547
\(716\) 0 0
\(717\) 64.2666 2.40008
\(718\) 0 0
\(719\) 50.2111i 1.87256i 0.351257 + 0.936279i \(0.385754\pi\)
−0.351257 + 0.936279i \(0.614246\pi\)
\(720\) 0 0
\(721\) 10.5416i 0.392591i
\(722\) 0 0
\(723\) 45.4222 1.68927
\(724\) 0 0
\(725\) 1.57779 0.0585978
\(726\) 0 0
\(727\) 12.4222 0.460714 0.230357 0.973106i \(-0.426011\pi\)
0.230357 + 0.973106i \(0.426011\pi\)
\(728\) 0 0
\(729\) −13.3305 −0.493723
\(730\) 0 0
\(731\) 21.6333 0.800137
\(732\) 0 0
\(733\) 10.1833i 0.376130i −0.982157 0.188065i \(-0.939778\pi\)
0.982157 0.188065i \(-0.0602216\pi\)
\(734\) 0 0
\(735\) 45.0000i 1.65985i
\(736\) 0 0
\(737\) 11.0917 + 21.9083i 0.408567 + 0.807004i
\(738\) 0 0
\(739\) −38.9361 −1.43229 −0.716143 0.697953i \(-0.754094\pi\)
−0.716143 + 0.697953i \(0.754094\pi\)
\(740\) 0 0
\(741\) 15.2750 0.561142
\(742\) 0 0
\(743\) 1.42221i 0.0521756i 0.999660 + 0.0260878i \(0.00830495\pi\)
−0.999660 + 0.0260878i \(0.991695\pi\)
\(744\) 0 0
\(745\) 23.0917i 0.846013i
\(746\) 0 0
\(747\) 23.7250i 0.868052i
\(748\) 0 0
\(749\) 9.35829i 0.341944i
\(750\) 0 0
\(751\) 42.6333i 1.55571i −0.628443 0.777856i \(-0.716307\pi\)
0.628443 0.777856i \(-0.283693\pi\)
\(752\) 0 0
\(753\) 18.0000 0.655956
\(754\) 0 0
\(755\) 50.4500 1.83606
\(756\) 0 0
\(757\) 27.0000i 0.981332i 0.871348 + 0.490666i \(0.163246\pi\)
−0.871348 + 0.490666i \(0.836754\pi\)
\(758\) 0 0
\(759\) 2.72498i 0.0989105i
\(760\) 0 0
\(761\) −6.78890 −0.246097 −0.123049 0.992401i \(-0.539267\pi\)
−0.123049 + 0.992401i \(0.539267\pi\)
\(762\) 0 0
\(763\) 3.55004i 0.128520i
\(764\) 0 0
\(765\) 18.0000i 0.650791i
\(766\) 0 0
\(767\) 20.3667 0.735399
\(768\) 0 0
\(769\) 32.4500i 1.17018i 0.810970 + 0.585088i \(0.198940\pi\)
−0.810970 + 0.585088i \(0.801060\pi\)
\(770\) 0 0
\(771\) −12.9083 −0.464882
\(772\) 0 0
\(773\) −25.6611 −0.922964 −0.461482 0.887149i \(-0.652682\pi\)
−0.461482 + 0.887149i \(0.652682\pi\)
\(774\) 0 0
\(775\) −6.42221 −0.230692
\(776\) 0 0
\(777\) 8.51388 0.305434
\(778\) 0 0
\(779\) 11.7250 0.420091
\(780\) 0 0
\(781\) 16.8167i 0.601747i
\(782\) 0 0
\(783\) −0.633308 −0.0226326
\(784\) 0 0
\(785\) 13.5416i 0.483322i
\(786\) 0 0
\(787\) −21.8444 −0.778669 −0.389335 0.921096i \(-0.627295\pi\)
−0.389335 + 0.921096i \(0.627295\pi\)
\(788\) 0 0
\(789\) 8.09167i 0.288071i
\(790\) 0 0
\(791\) 2.72498i 0.0968892i
\(792\) 0 0
\(793\) 15.2750 0.542432
\(794\) 0 0
\(795\) −20.7250 −0.735039
\(796\) 0 0
\(797\) −26.4861 −0.938187 −0.469093 0.883149i \(-0.655419\pi\)
−0.469093 + 0.883149i \(0.655419\pi\)
\(798\) 0 0
\(799\) 19.0278i 0.673154i
\(800\) 0 0
\(801\) 26.7250 0.944281
\(802\) 0 0
\(803\) 4.18335 0.147627
\(804\) 0 0
\(805\) −0.825058 −0.0290795
\(806\) 0 0
\(807\) 48.6333 1.71197
\(808\) 0 0
\(809\) 44.7250i 1.57245i −0.617943 0.786223i \(-0.712034\pi\)
0.617943 0.786223i \(-0.287966\pi\)
\(810\) 0 0
\(811\) 7.60555 0.267067 0.133534 0.991044i \(-0.457368\pi\)
0.133534 + 0.991044i \(0.457368\pi\)
\(812\) 0 0
\(813\) −41.9361 −1.47076
\(814\) 0 0
\(815\) −38.7250 −1.35648
\(816\) 0 0
\(817\) 14.0917i 0.493005i
\(818\) 0 0
\(819\) 6.27502i 0.219267i
\(820\) 0 0
\(821\) −29.6056 −1.03324 −0.516620 0.856215i \(-0.672810\pi\)
−0.516620 + 0.856215i \(0.672810\pi\)
\(822\) 0 0
\(823\) 42.1194i 1.46819i −0.679046 0.734096i \(-0.737606\pi\)
0.679046 0.734096i \(-0.262394\pi\)
\(824\) 0 0
\(825\) −27.6333 −0.962068
\(826\) 0 0
\(827\) 50.6056i 1.75973i 0.475226 + 0.879864i \(0.342366\pi\)
−0.475226 + 0.879864i \(0.657634\pi\)
\(828\) 0 0
\(829\) −33.8444 −1.17546 −0.587732 0.809055i \(-0.699979\pi\)
−0.587732 + 0.809055i \(0.699979\pi\)
\(830\) 0 0
\(831\) 66.8444 2.31881
\(832\) 0 0
\(833\) 16.9722 0.588053
\(834\) 0 0
\(835\) 31.2666 1.08203
\(836\) 0 0
\(837\) 2.57779 0.0891016
\(838\) 0 0
\(839\) 12.2389i 0.422532i 0.977429 + 0.211266i \(0.0677587\pi\)
−0.977429 + 0.211266i \(0.932241\pi\)
\(840\) 0 0
\(841\) −28.8444 −0.994635
\(842\) 0 0
\(843\) 32.4500i 1.11764i
\(844\) 0 0
\(845\) 6.82506i 0.234789i
\(846\) 0 0
\(847\) 1.39445 0.0479138
\(848\) 0 0
\(849\) 2.72498i 0.0935211i
\(850\) 0 0
\(851\) 2.09167i 0.0717016i
\(852\) 0 0
\(853\) −11.6972 −0.400505 −0.200253 0.979744i \(-0.564176\pi\)
−0.200253 + 0.979744i \(0.564176\pi\)
\(854\) 0 0
\(855\) −11.7250 −0.400986
\(856\) 0 0
\(857\) 48.6333i 1.66128i 0.556808 + 0.830641i \(0.312026\pi\)
−0.556808 + 0.830641i \(0.687974\pi\)
\(858\) 0 0
\(859\) 5.09167i 0.173726i 0.996220 + 0.0868628i \(0.0276842\pi\)
−0.996220 + 0.0868628i \(0.972316\pi\)
\(860\) 0 0
\(861\) 11.0917i 0.378003i
\(862\) 0 0
\(863\) 28.9361i 0.984996i −0.870314 0.492498i \(-0.836084\pi\)
0.870314 0.492498i \(-0.163916\pi\)
\(864\) 0 0
\(865\) 36.3583i 1.23622i
\(866\) 0 0
\(867\) 23.5139 0.798573
\(868\) 0 0
\(869\) 24.9083 0.844957
\(870\) 0 0
\(871\) −28.5416 + 14.4500i −0.967096 + 0.489618i
\(872\) 0 0
\(873\) 38.7250i 1.31064i
\(874\) 0 0
\(875\) 2.09167i 0.0707115i
\(876\) 0 0
\(877\) 14.0278 0.473684 0.236842 0.971548i \(-0.423888\pi\)
0.236842 + 0.971548i \(0.423888\pi\)
\(878\) 0 0
\(879\) 26.7250 0.901411
\(880\) 0 0
\(881\) 27.2389 0.917700 0.458850 0.888514i \(-0.348261\pi\)
0.458850 + 0.888514i \(0.348261\pi\)
\(882\) 0 0
\(883\) −23.6611 −0.796258 −0.398129 0.917329i \(-0.630340\pi\)
−0.398129 + 0.917329i \(0.630340\pi\)
\(884\) 0 0
\(885\) −36.0000 −1.21013
\(886\) 0 0
\(887\) 27.2389i 0.914591i −0.889315 0.457296i \(-0.848818\pi\)
0.889315 0.457296i \(-0.151182\pi\)
\(888\) 0 0
\(889\) 7.45837i 0.250146i
\(890\) 0 0
\(891\) 31.8167 1.06590
\(892\) 0 0
\(893\) 12.3944 0.414764
\(894\) 0 0
\(895\) 59.4500i 1.98719i
\(896\) 0 0
\(897\) −3.55004 −0.118532
\(898\) 0 0
\(899\) −0.633308 −0.0211220
\(900\) 0 0
\(901\) 7.81665i 0.260410i
\(902\) 0 0
\(903\) −13.3305 −0.443612
\(904\) 0 0
\(905\) 24.3583i 0.809697i
\(906\) 0 0
\(907\) 46.5416i 1.54539i 0.634778 + 0.772695i \(0.281092\pi\)
−0.634778 + 0.772695i \(0.718908\pi\)
\(908\) 0 0
\(909\) 29.7250i 0.985915i
\(910\) 0 0
\(911\) 35.3305i 1.17055i 0.810834 + 0.585276i \(0.199014\pi\)
−0.810834 + 0.585276i \(0.800986\pi\)
\(912\) 0 0
\(913\) 30.9083i 1.02292i
\(914\) 0 0
\(915\) −27.0000 −0.892592
\(916\) 0 0
\(917\) 5.72498i 0.189056i
\(918\) 0 0
\(919\) −15.8444 −0.522659 −0.261329 0.965250i \(-0.584161\pi\)
−0.261329 + 0.965250i \(0.584161\pi\)
\(920\) 0 0
\(921\) 18.0000i 0.593120i
\(922\) 0 0
\(923\) 21.9083 0.721121
\(924\) 0 0
\(925\) −21.2111 −0.697417
\(926\) 0 0
\(927\) 34.8167i 1.14353i
\(928\) 0 0
\(929\) 50.4500i 1.65521i −0.561311 0.827605i \(-0.689703\pi\)
0.561311 0.827605i \(-0.310297\pi\)
\(930\) 0 0
\(931\) 11.0555i 0.362330i
\(932\) 0 0
\(933\) 55.2666 1.80935
\(934\) 0 0
\(935\) 23.4500i 0.766896i
\(936\) 0 0
\(937\) 6.63331i 0.216701i 0.994113 + 0.108350i \(0.0345568\pi\)
−0.994113 + 0.108350i \(0.965443\pi\)
\(938\) 0 0
\(939\) 68.4500i 2.23378i
\(940\) 0 0
\(941\) 19.1833i 0.625359i 0.949859 + 0.312680i \(0.101227\pi\)
−0.949859 + 0.312680i \(0.898773\pi\)
\(942\) 0 0
\(943\) −2.72498 −0.0887376
\(944\) 0 0
\(945\) 3.35829i 0.109245i
\(946\) 0 0
\(947\) 38.3305i 1.24557i −0.782391 0.622787i \(-0.786000\pi\)
0.782391 0.622787i \(-0.214000\pi\)
\(948\) 0 0
\(949\) 5.44996i 0.176913i
\(950\) 0 0
\(951\) 22.5416 0.730963
\(952\) 0 0
\(953\) −5.60555 −0.181582 −0.0907908 0.995870i \(-0.528939\pi\)
−0.0907908 + 0.995870i \(0.528939\pi\)
\(954\) 0 0
\(955\) 32.4500i 1.05006i
\(956\) 0 0
\(957\) −2.72498 −0.0880861
\(958\) 0 0
\(959\) 3.35829i 0.108445i
\(960\) 0 0
\(961\) −28.4222 −0.916845
\(962\) 0 0
\(963\) 30.9083i 0.996007i
\(964\) 0 0
\(965\) 50.1749i 1.61519i
\(966\) 0 0
\(967\) 30.3944i 0.977420i −0.872446 0.488710i \(-0.837468\pi\)
0.872446 0.488710i \(-0.162532\pi\)
\(968\) 0 0
\(969\) 10.1833i 0.327136i
\(970\) 0 0
\(971\) 20.2111i 0.648605i −0.945953 0.324303i \(-0.894870\pi\)
0.945953 0.324303i \(-0.105130\pi\)
\(972\) 0 0
\(973\) 6.56939 0.210605
\(974\) 0 0
\(975\) 36.0000i 1.15292i
\(976\) 0 0
\(977\) −17.6056 −0.563251 −0.281626 0.959524i \(-0.590874\pi\)
−0.281626 + 0.959524i \(0.590874\pi\)
\(978\) 0 0
\(979\) −34.8167 −1.11275
\(980\) 0 0
\(981\) 11.7250i 0.374350i
\(982\) 0 0
\(983\) 52.8167 1.68459 0.842295 0.539017i \(-0.181204\pi\)
0.842295 + 0.539017i \(0.181204\pi\)
\(984\) 0 0
\(985\) 32.4500 1.03394
\(986\) 0 0
\(987\) 11.7250i 0.373210i
\(988\) 0 0
\(989\) 3.27502i 0.104140i
\(990\) 0 0
\(991\) 55.7527 1.77104 0.885522 0.464597i \(-0.153801\pi\)
0.885522 + 0.464597i \(0.153801\pi\)
\(992\) 0 0
\(993\) 25.3944 0.805868
\(994\) 0 0
\(995\) −5.09167 −0.161417
\(996\) 0 0
\(997\) 17.6611 0.559332 0.279666 0.960097i \(-0.409776\pi\)
0.279666 + 0.960097i \(0.409776\pi\)
\(998\) 0 0
\(999\) 8.51388 0.269367
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1072.2.g.b.1071.1 4
4.3 odd 2 1072.2.g.d.1071.3 yes 4
67.66 odd 2 1072.2.g.d.1071.4 yes 4
268.267 even 2 inner 1072.2.g.b.1071.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1072.2.g.b.1071.1 4 1.1 even 1 trivial
1072.2.g.b.1071.2 yes 4 268.267 even 2 inner
1072.2.g.d.1071.3 yes 4 4.3 odd 2
1072.2.g.d.1071.4 yes 4 67.66 odd 2