Properties

Label 1072.2.g
Level $1072$
Weight $2$
Character orbit 1072.g
Rep. character $\chi_{1072}(1071,\cdot)$
Character field $\Q$
Dimension $34$
Newform subspaces $5$
Sturm bound $272$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1072 = 2^{4} \cdot 67 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1072.g (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 268 \)
Character field: \(\Q\)
Newform subspaces: \( 5 \)
Sturm bound: \(272\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\), \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1072, [\chi])\).

Total New Old
Modular forms 142 34 108
Cusp forms 130 34 96
Eisenstein series 12 0 12

Trace form

\( 34 q + 22 q^{9} + 12 q^{17} - 16 q^{21} - 34 q^{25} - 24 q^{29} - 8 q^{37} + 42 q^{49} + 44 q^{73} + 24 q^{77} - 14 q^{81} - 12 q^{89} - 32 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1072, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1072.2.g.a 1072.g 268.d $2$ $8.560$ \(\Q(\sqrt{-67}) \) \(\Q(\sqrt{-67}) \) 1072.2.g.a \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-3q^{9}-q^{17}-\beta q^{19}-\beta q^{23}+5q^{25}+\cdots\)
1072.2.g.b 1072.g 268.d $4$ $8.560$ \(\Q(i, \sqrt{13})\) None 1072.2.g.b \(0\) \(-2\) \(0\) \(-10\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-1+\beta _{3})q^{3}-\beta _{2}q^{5}+(-2-\beta _{3})q^{7}+\cdots\)
1072.2.g.c 1072.g 268.d $4$ $8.560$ \(\Q(\sqrt{-3}, \sqrt{-67})\) \(\Q(\sqrt{-67}) \) 1072.2.g.c \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-3q^{9}+(1-\beta _{2})q^{17}+(-2\beta _{1}-\beta _{3})q^{19}+\cdots\)
1072.2.g.d 1072.g 268.d $4$ $8.560$ \(\Q(i, \sqrt{13})\) None 1072.2.g.b \(0\) \(2\) \(0\) \(10\) $\mathrm{SU}(2)[C_{2}]$ \(q+(1-\beta _{3})q^{3}-\beta _{2}q^{5}+(2+\beta _{3})q^{7}+\cdots\)
1072.2.g.e 1072.g 268.d $20$ $8.560$ \(\mathbb{Q}[x]/(x^{20} + \cdots)\) None 1072.2.g.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{6}q^{3}+\beta _{8}q^{5}-\beta _{13}q^{7}+(2-\beta _{2}+\cdots)q^{9}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1072, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1072, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(268, [\chi])\)\(^{\oplus 3}\)