Defining parameters
Level: | \( N \) | \(=\) | \( 1072 = 2^{4} \cdot 67 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1072.g (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 268 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(272\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1072, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 142 | 34 | 108 |
Cusp forms | 130 | 34 | 96 |
Eisenstein series | 12 | 0 | 12 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1072, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
1072.2.g.a | $2$ | $8.560$ | \(\Q(\sqrt{-67}) \) | \(\Q(\sqrt{-67}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q-3q^{9}-q^{17}-\beta q^{19}-\beta q^{23}+5q^{25}+\cdots\) |
1072.2.g.b | $4$ | $8.560$ | \(\Q(i, \sqrt{13})\) | None | \(0\) | \(-2\) | \(0\) | \(-10\) | \(q+(-1+\beta _{3})q^{3}-\beta _{2}q^{5}+(-2-\beta _{3})q^{7}+\cdots\) |
1072.2.g.c | $4$ | $8.560$ | \(\Q(\sqrt{-3}, \sqrt{-67})\) | \(\Q(\sqrt{-67}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q-3q^{9}+(1-\beta _{2})q^{17}+(-2\beta _{1}-\beta _{3})q^{19}+\cdots\) |
1072.2.g.d | $4$ | $8.560$ | \(\Q(i, \sqrt{13})\) | None | \(0\) | \(2\) | \(0\) | \(10\) | \(q+(1-\beta _{3})q^{3}-\beta _{2}q^{5}+(2+\beta _{3})q^{7}+\cdots\) |
1072.2.g.e | $20$ | $8.560$ | \(\mathbb{Q}[x]/(x^{20} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{6}q^{3}+\beta _{8}q^{5}-\beta _{13}q^{7}+(2-\beta _{2}+\cdots)q^{9}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(1072, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1072, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(268, [\chi])\)\(^{\oplus 3}\)