Properties

Label 1071.2.f.a.883.3
Level $1071$
Weight $2$
Character 1071.883
Analytic conductor $8.552$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1071,2,Mod(883,1071)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1071, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1071.883"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1071 = 3^{2} \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1071.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.55197805648\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.350464.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 357)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 883.3
Root \(1.45161 + 1.45161i\) of defining polynomial
Character \(\chi\) \(=\) 1071.883
Dual form 1071.2.f.a.883.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.688892 q^{2} -1.52543 q^{4} -3.21432i q^{5} +1.00000i q^{7} +2.42864 q^{8} +2.21432i q^{10} -3.90321i q^{11} -2.59210 q^{13} -0.688892i q^{14} +1.37778 q^{16} +(-0.214320 - 4.11753i) q^{17} +2.31111 q^{19} +4.90321i q^{20} +2.68889i q^{22} +3.62222i q^{23} -5.33185 q^{25} +1.78568 q^{26} -1.52543i q^{28} -2.90321i q^{29} +1.59210i q^{31} -5.80642 q^{32} +(0.147643 + 2.83654i) q^{34} +3.21432 q^{35} -1.73975i q^{37} -1.59210 q^{38} -7.80642i q^{40} +2.31111i q^{41} -4.18421 q^{43} +5.95407i q^{44} -2.49532i q^{46} -11.2652 q^{47} -1.00000 q^{49} +3.67307 q^{50} +3.95407 q^{52} +6.49532 q^{53} -12.5462 q^{55} +2.42864i q^{56} +2.00000i q^{58} -6.96989 q^{59} +0.0809666i q^{61} -1.09679i q^{62} +1.24443 q^{64} +8.33185i q^{65} -15.0049 q^{67} +(0.326929 + 6.28100i) q^{68} -2.21432 q^{70} +5.03657i q^{71} -11.2859i q^{73} +1.19850i q^{74} -3.52543 q^{76} +3.90321 q^{77} +17.1590i q^{79} -4.42864i q^{80} -1.59210i q^{82} -14.2351 q^{83} +(-13.2351 + 0.688892i) q^{85} +2.88247 q^{86} -9.47949i q^{88} -1.67307 q^{89} -2.59210i q^{91} -5.52543i q^{92} +7.76049 q^{94} -7.42864i q^{95} +5.57136i q^{97} +0.688892 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 4 q^{2} + 4 q^{4} - 12 q^{8} - 2 q^{13} + 8 q^{16} + 12 q^{17} + 14 q^{19} + 8 q^{25} + 24 q^{26} - 8 q^{32} - 12 q^{34} + 6 q^{35} + 4 q^{38} + 2 q^{43} - 28 q^{47} - 6 q^{49} - 4 q^{50} - 16 q^{52}+ \cdots + 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1071\mathbb{Z}\right)^\times\).

\(n\) \(190\) \(596\) \(766\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.688892 −0.487120 −0.243560 0.969886i \(-0.578315\pi\)
−0.243560 + 0.969886i \(0.578315\pi\)
\(3\) 0 0
\(4\) −1.52543 −0.762714
\(5\) 3.21432i 1.43749i −0.695275 0.718744i \(-0.744717\pi\)
0.695275 0.718744i \(-0.255283\pi\)
\(6\) 0 0
\(7\) 1.00000i 0.377964i
\(8\) 2.42864 0.858654
\(9\) 0 0
\(10\) 2.21432i 0.700229i
\(11\) 3.90321i 1.17686i −0.808547 0.588431i \(-0.799746\pi\)
0.808547 0.588431i \(-0.200254\pi\)
\(12\) 0 0
\(13\) −2.59210 −0.718920 −0.359460 0.933160i \(-0.617039\pi\)
−0.359460 + 0.933160i \(0.617039\pi\)
\(14\) 0.688892i 0.184114i
\(15\) 0 0
\(16\) 1.37778 0.344446
\(17\) −0.214320 4.11753i −0.0519802 0.998648i
\(18\) 0 0
\(19\) 2.31111 0.530204 0.265102 0.964220i \(-0.414594\pi\)
0.265102 + 0.964220i \(0.414594\pi\)
\(20\) 4.90321i 1.09639i
\(21\) 0 0
\(22\) 2.68889i 0.573274i
\(23\) 3.62222i 0.755284i 0.925952 + 0.377642i \(0.123265\pi\)
−0.925952 + 0.377642i \(0.876735\pi\)
\(24\) 0 0
\(25\) −5.33185 −1.06637
\(26\) 1.78568 0.350201
\(27\) 0 0
\(28\) 1.52543i 0.288279i
\(29\) 2.90321i 0.539113i −0.962985 0.269556i \(-0.913123\pi\)
0.962985 0.269556i \(-0.0868771\pi\)
\(30\) 0 0
\(31\) 1.59210i 0.285950i 0.989726 + 0.142975i \(0.0456669\pi\)
−0.989726 + 0.142975i \(0.954333\pi\)
\(32\) −5.80642 −1.02644
\(33\) 0 0
\(34\) 0.147643 + 2.83654i 0.0253206 + 0.486462i
\(35\) 3.21432 0.543319
\(36\) 0 0
\(37\) 1.73975i 0.286013i −0.989722 0.143006i \(-0.954323\pi\)
0.989722 0.143006i \(-0.0456769\pi\)
\(38\) −1.59210 −0.258273
\(39\) 0 0
\(40\) 7.80642i 1.23430i
\(41\) 2.31111i 0.360934i 0.983581 + 0.180467i \(0.0577610\pi\)
−0.983581 + 0.180467i \(0.942239\pi\)
\(42\) 0 0
\(43\) −4.18421 −0.638086 −0.319043 0.947740i \(-0.603361\pi\)
−0.319043 + 0.947740i \(0.603361\pi\)
\(44\) 5.95407i 0.897609i
\(45\) 0 0
\(46\) 2.49532i 0.367914i
\(47\) −11.2652 −1.64319 −0.821597 0.570068i \(-0.806917\pi\)
−0.821597 + 0.570068i \(0.806917\pi\)
\(48\) 0 0
\(49\) −1.00000 −0.142857
\(50\) 3.67307 0.519451
\(51\) 0 0
\(52\) 3.95407 0.548330
\(53\) 6.49532 0.892200 0.446100 0.894983i \(-0.352813\pi\)
0.446100 + 0.894983i \(0.352813\pi\)
\(54\) 0 0
\(55\) −12.5462 −1.69173
\(56\) 2.42864i 0.324541i
\(57\) 0 0
\(58\) 2.00000i 0.262613i
\(59\) −6.96989 −0.907402 −0.453701 0.891154i \(-0.649897\pi\)
−0.453701 + 0.891154i \(0.649897\pi\)
\(60\) 0 0
\(61\) 0.0809666i 0.0103667i 0.999987 + 0.00518336i \(0.00164992\pi\)
−0.999987 + 0.00518336i \(0.998350\pi\)
\(62\) 1.09679i 0.139292i
\(63\) 0 0
\(64\) 1.24443 0.155554
\(65\) 8.33185i 1.03344i
\(66\) 0 0
\(67\) −15.0049 −1.83314 −0.916572 0.399871i \(-0.869055\pi\)
−0.916572 + 0.399871i \(0.869055\pi\)
\(68\) 0.326929 + 6.28100i 0.0396460 + 0.761683i
\(69\) 0 0
\(70\) −2.21432 −0.264662
\(71\) 5.03657i 0.597730i 0.954295 + 0.298865i \(0.0966081\pi\)
−0.954295 + 0.298865i \(0.903392\pi\)
\(72\) 0 0
\(73\) 11.2859i 1.32092i −0.750863 0.660458i \(-0.770362\pi\)
0.750863 0.660458i \(-0.229638\pi\)
\(74\) 1.19850i 0.139323i
\(75\) 0 0
\(76\) −3.52543 −0.404394
\(77\) 3.90321 0.444812
\(78\) 0 0
\(79\) 17.1590i 1.93054i 0.261254 + 0.965270i \(0.415864\pi\)
−0.261254 + 0.965270i \(0.584136\pi\)
\(80\) 4.42864i 0.495137i
\(81\) 0 0
\(82\) 1.59210i 0.175818i
\(83\) −14.2351 −1.56250 −0.781251 0.624218i \(-0.785418\pi\)
−0.781251 + 0.624218i \(0.785418\pi\)
\(84\) 0 0
\(85\) −13.2351 + 0.688892i −1.43554 + 0.0747208i
\(86\) 2.88247 0.310825
\(87\) 0 0
\(88\) 9.47949i 1.01052i
\(89\) −1.67307 −0.177345 −0.0886726 0.996061i \(-0.528262\pi\)
−0.0886726 + 0.996061i \(0.528262\pi\)
\(90\) 0 0
\(91\) 2.59210i 0.271726i
\(92\) 5.52543i 0.576066i
\(93\) 0 0
\(94\) 7.76049 0.800434
\(95\) 7.42864i 0.762162i
\(96\) 0 0
\(97\) 5.57136i 0.565686i 0.959166 + 0.282843i \(0.0912775\pi\)
−0.959166 + 0.282843i \(0.908722\pi\)
\(98\) 0.688892 0.0695886
\(99\) 0 0
\(100\) 8.13335 0.813335
\(101\) −14.5827 −1.45104 −0.725518 0.688203i \(-0.758400\pi\)
−0.725518 + 0.688203i \(0.758400\pi\)
\(102\) 0 0
\(103\) 11.5827 1.14128 0.570640 0.821200i \(-0.306695\pi\)
0.570640 + 0.821200i \(0.306695\pi\)
\(104\) −6.29529 −0.617304
\(105\) 0 0
\(106\) −4.47457 −0.434609
\(107\) 17.3368i 1.67601i −0.545663 0.838005i \(-0.683722\pi\)
0.545663 0.838005i \(-0.316278\pi\)
\(108\) 0 0
\(109\) 15.9748i 1.53011i −0.643965 0.765055i \(-0.722712\pi\)
0.643965 0.765055i \(-0.277288\pi\)
\(110\) 8.64296 0.824074
\(111\) 0 0
\(112\) 1.37778i 0.130188i
\(113\) 3.01429i 0.283561i −0.989898 0.141780i \(-0.954717\pi\)
0.989898 0.141780i \(-0.0452826\pi\)
\(114\) 0 0
\(115\) 11.6430 1.08571
\(116\) 4.42864i 0.411189i
\(117\) 0 0
\(118\) 4.80150 0.442014
\(119\) 4.11753 0.214320i 0.377454 0.0196467i
\(120\) 0 0
\(121\) −4.23506 −0.385006
\(122\) 0.0557773i 0.00504984i
\(123\) 0 0
\(124\) 2.42864i 0.218098i
\(125\) 1.06668i 0.0954065i
\(126\) 0 0
\(127\) 14.3319 1.27175 0.635873 0.771794i \(-0.280640\pi\)
0.635873 + 0.771794i \(0.280640\pi\)
\(128\) 10.7556 0.950667
\(129\) 0 0
\(130\) 5.73975i 0.503409i
\(131\) 1.44938i 0.126633i −0.997993 0.0633166i \(-0.979832\pi\)
0.997993 0.0633166i \(-0.0201678\pi\)
\(132\) 0 0
\(133\) 2.31111i 0.200398i
\(134\) 10.3368 0.892961
\(135\) 0 0
\(136\) −0.520505 10.0000i −0.0446330 0.857493i
\(137\) 6.36196 0.543539 0.271770 0.962362i \(-0.412391\pi\)
0.271770 + 0.962362i \(0.412391\pi\)
\(138\) 0 0
\(139\) 7.93978i 0.673443i 0.941604 + 0.336722i \(0.109318\pi\)
−0.941604 + 0.336722i \(0.890682\pi\)
\(140\) −4.90321 −0.414397
\(141\) 0 0
\(142\) 3.46965i 0.291167i
\(143\) 10.1175i 0.846071i
\(144\) 0 0
\(145\) −9.33185 −0.774968
\(146\) 7.77478i 0.643445i
\(147\) 0 0
\(148\) 2.65386i 0.218146i
\(149\) −15.7748 −1.29232 −0.646160 0.763202i \(-0.723626\pi\)
−0.646160 + 0.763202i \(0.723626\pi\)
\(150\) 0 0
\(151\) 20.9032 1.70108 0.850540 0.525911i \(-0.176275\pi\)
0.850540 + 0.525911i \(0.176275\pi\)
\(152\) 5.61285 0.455262
\(153\) 0 0
\(154\) −2.68889 −0.216677
\(155\) 5.11753 0.411050
\(156\) 0 0
\(157\) −15.9842 −1.27568 −0.637838 0.770170i \(-0.720171\pi\)
−0.637838 + 0.770170i \(0.720171\pi\)
\(158\) 11.8207i 0.940406i
\(159\) 0 0
\(160\) 18.6637i 1.47550i
\(161\) −3.62222 −0.285471
\(162\) 0 0
\(163\) 17.9081i 1.40267i 0.712830 + 0.701337i \(0.247413\pi\)
−0.712830 + 0.701337i \(0.752587\pi\)
\(164\) 3.52543i 0.275290i
\(165\) 0 0
\(166\) 9.80642 0.761126
\(167\) 3.79060i 0.293326i 0.989187 + 0.146663i \(0.0468532\pi\)
−0.989187 + 0.146663i \(0.953147\pi\)
\(168\) 0 0
\(169\) −6.28100 −0.483154
\(170\) 9.11753 0.474572i 0.699283 0.0363980i
\(171\) 0 0
\(172\) 6.38271 0.486677
\(173\) 8.20495i 0.623811i −0.950113 0.311905i \(-0.899033\pi\)
0.950113 0.311905i \(-0.100967\pi\)
\(174\) 0 0
\(175\) 5.33185i 0.403050i
\(176\) 5.37778i 0.405366i
\(177\) 0 0
\(178\) 1.15257 0.0863884
\(179\) 16.6035 1.24100 0.620501 0.784206i \(-0.286929\pi\)
0.620501 + 0.784206i \(0.286929\pi\)
\(180\) 0 0
\(181\) 6.36842i 0.473361i 0.971588 + 0.236680i \(0.0760594\pi\)
−0.971588 + 0.236680i \(0.923941\pi\)
\(182\) 1.78568i 0.132363i
\(183\) 0 0
\(184\) 8.79706i 0.648528i
\(185\) −5.59210 −0.411140
\(186\) 0 0
\(187\) −16.0716 + 0.836535i −1.17527 + 0.0611735i
\(188\) 17.1842 1.25329
\(189\) 0 0
\(190\) 5.11753i 0.371265i
\(191\) −7.61285 −0.550846 −0.275423 0.961323i \(-0.588818\pi\)
−0.275423 + 0.961323i \(0.588818\pi\)
\(192\) 0 0
\(193\) 3.21924i 0.231726i −0.993265 0.115863i \(-0.963037\pi\)
0.993265 0.115863i \(-0.0369634\pi\)
\(194\) 3.83807i 0.275557i
\(195\) 0 0
\(196\) 1.52543 0.108959
\(197\) 6.13828i 0.437334i 0.975800 + 0.218667i \(0.0701708\pi\)
−0.975800 + 0.218667i \(0.929829\pi\)
\(198\) 0 0
\(199\) 3.65233i 0.258907i −0.991586 0.129453i \(-0.958678\pi\)
0.991586 0.129453i \(-0.0413222\pi\)
\(200\) −12.9491 −0.915643
\(201\) 0 0
\(202\) 10.0459 0.706829
\(203\) 2.90321 0.203766
\(204\) 0 0
\(205\) 7.42864 0.518839
\(206\) −7.97926 −0.555941
\(207\) 0 0
\(208\) −3.57136 −0.247629
\(209\) 9.02074i 0.623978i
\(210\) 0 0
\(211\) 13.4445i 0.925555i −0.886475 0.462777i \(-0.846853\pi\)
0.886475 0.462777i \(-0.153147\pi\)
\(212\) −9.90813 −0.680493
\(213\) 0 0
\(214\) 11.9432i 0.816418i
\(215\) 13.4494i 0.917240i
\(216\) 0 0
\(217\) −1.59210 −0.108079
\(218\) 11.0049i 0.745347i
\(219\) 0 0
\(220\) 19.1383 1.29030
\(221\) 0.555539 + 10.6731i 0.0373696 + 0.717948i
\(222\) 0 0
\(223\) 10.0716 0.674444 0.337222 0.941425i \(-0.390513\pi\)
0.337222 + 0.941425i \(0.390513\pi\)
\(224\) 5.80642i 0.387958i
\(225\) 0 0
\(226\) 2.07652i 0.138128i
\(227\) 22.2192i 1.47474i −0.675487 0.737371i \(-0.736067\pi\)
0.675487 0.737371i \(-0.263933\pi\)
\(228\) 0 0
\(229\) 22.3225 1.47511 0.737556 0.675286i \(-0.235980\pi\)
0.737556 + 0.675286i \(0.235980\pi\)
\(230\) −8.02074 −0.528872
\(231\) 0 0
\(232\) 7.05086i 0.462911i
\(233\) 27.5116i 1.80235i 0.433460 + 0.901173i \(0.357293\pi\)
−0.433460 + 0.901173i \(0.642707\pi\)
\(234\) 0 0
\(235\) 36.2099i 2.36207i
\(236\) 10.6321 0.692088
\(237\) 0 0
\(238\) −2.83654 + 0.147643i −0.183865 + 0.00957029i
\(239\) 8.22861 0.532265 0.266132 0.963937i \(-0.414254\pi\)
0.266132 + 0.963937i \(0.414254\pi\)
\(240\) 0 0
\(241\) 16.2953i 1.04967i 0.851203 + 0.524836i \(0.175873\pi\)
−0.851203 + 0.524836i \(0.824127\pi\)
\(242\) 2.91750 0.187544
\(243\) 0 0
\(244\) 0.123509i 0.00790684i
\(245\) 3.21432i 0.205355i
\(246\) 0 0
\(247\) −5.99063 −0.381175
\(248\) 3.86665i 0.245532i
\(249\) 0 0
\(250\) 0.734825i 0.0464744i
\(251\) 28.7862 1.81697 0.908483 0.417922i \(-0.137241\pi\)
0.908483 + 0.417922i \(0.137241\pi\)
\(252\) 0 0
\(253\) 14.1383 0.888866
\(254\) −9.87310 −0.619493
\(255\) 0 0
\(256\) −9.89829 −0.618643
\(257\) −15.2050 −0.948459 −0.474229 0.880401i \(-0.657273\pi\)
−0.474229 + 0.880401i \(0.657273\pi\)
\(258\) 0 0
\(259\) 1.73975 0.108103
\(260\) 12.7096i 0.788218i
\(261\) 0 0
\(262\) 0.998469i 0.0616856i
\(263\) 16.9906 1.04769 0.523844 0.851814i \(-0.324498\pi\)
0.523844 + 0.851814i \(0.324498\pi\)
\(264\) 0 0
\(265\) 20.8780i 1.28253i
\(266\) 1.59210i 0.0976182i
\(267\) 0 0
\(268\) 22.8889 1.39816
\(269\) 9.49532i 0.578940i −0.957187 0.289470i \(-0.906521\pi\)
0.957187 0.289470i \(-0.0934790\pi\)
\(270\) 0 0
\(271\) −10.8316 −0.657974 −0.328987 0.944335i \(-0.606707\pi\)
−0.328987 + 0.944335i \(0.606707\pi\)
\(272\) −0.295286 5.67307i −0.0179044 0.343980i
\(273\) 0 0
\(274\) −4.38271 −0.264769
\(275\) 20.8113i 1.25497i
\(276\) 0 0
\(277\) 29.3590i 1.76401i −0.471236 0.882007i \(-0.656192\pi\)
0.471236 0.882007i \(-0.343808\pi\)
\(278\) 5.46965i 0.328048i
\(279\) 0 0
\(280\) 7.80642 0.466523
\(281\) 7.76494 0.463217 0.231609 0.972809i \(-0.425601\pi\)
0.231609 + 0.972809i \(0.425601\pi\)
\(282\) 0 0
\(283\) 32.3575i 1.92345i −0.274008 0.961727i \(-0.588350\pi\)
0.274008 0.961727i \(-0.411650\pi\)
\(284\) 7.68292i 0.455897i
\(285\) 0 0
\(286\) 6.96989i 0.412138i
\(287\) −2.31111 −0.136420
\(288\) 0 0
\(289\) −16.9081 + 1.76494i −0.994596 + 0.103820i
\(290\) 6.42864 0.377503
\(291\) 0 0
\(292\) 17.2159i 1.00748i
\(293\) 27.6731 1.61668 0.808339 0.588717i \(-0.200367\pi\)
0.808339 + 0.588717i \(0.200367\pi\)
\(294\) 0 0
\(295\) 22.4035i 1.30438i
\(296\) 4.22522i 0.245586i
\(297\) 0 0
\(298\) 10.8671 0.629516
\(299\) 9.38916i 0.542989i
\(300\) 0 0
\(301\) 4.18421i 0.241174i
\(302\) −14.4001 −0.828630
\(303\) 0 0
\(304\) 3.18421 0.182627
\(305\) 0.260253 0.0149020
\(306\) 0 0
\(307\) −23.3876 −1.33480 −0.667401 0.744698i \(-0.732593\pi\)
−0.667401 + 0.744698i \(0.732593\pi\)
\(308\) −5.95407 −0.339264
\(309\) 0 0
\(310\) −3.52543 −0.200231
\(311\) 2.71408i 0.153901i −0.997035 0.0769507i \(-0.975482\pi\)
0.997035 0.0769507i \(-0.0245184\pi\)
\(312\) 0 0
\(313\) 31.6019i 1.78625i −0.449811 0.893124i \(-0.648509\pi\)
0.449811 0.893124i \(-0.351491\pi\)
\(314\) 11.0114 0.621408
\(315\) 0 0
\(316\) 26.1748i 1.47245i
\(317\) 8.91750i 0.500857i −0.968135 0.250428i \(-0.919429\pi\)
0.968135 0.250428i \(-0.0805715\pi\)
\(318\) 0 0
\(319\) −11.3319 −0.634462
\(320\) 4.00000i 0.223607i
\(321\) 0 0
\(322\) 2.49532 0.139059
\(323\) −0.495316 9.51606i −0.0275601 0.529488i
\(324\) 0 0
\(325\) 13.8207 0.766635
\(326\) 12.3368i 0.683271i
\(327\) 0 0
\(328\) 5.61285i 0.309918i
\(329\) 11.2652i 0.621069i
\(330\) 0 0
\(331\) 11.9634 0.657570 0.328785 0.944405i \(-0.393361\pi\)
0.328785 + 0.944405i \(0.393361\pi\)
\(332\) 21.7146 1.19174
\(333\) 0 0
\(334\) 2.61132i 0.142885i
\(335\) 48.2306i 2.63512i
\(336\) 0 0
\(337\) 10.7620i 0.586245i 0.956075 + 0.293122i \(0.0946943\pi\)
−0.956075 + 0.293122i \(0.905306\pi\)
\(338\) 4.32693 0.235354
\(339\) 0 0
\(340\) 20.1891 1.05086i 1.09491 0.0569906i
\(341\) 6.21432 0.336524
\(342\) 0 0
\(343\) 1.00000i 0.0539949i
\(344\) −10.1619 −0.547895
\(345\) 0 0
\(346\) 5.65233i 0.303871i
\(347\) 14.4844i 0.777564i 0.921330 + 0.388782i \(0.127104\pi\)
−0.921330 + 0.388782i \(0.872896\pi\)
\(348\) 0 0
\(349\) 31.7402 1.69902 0.849508 0.527576i \(-0.176899\pi\)
0.849508 + 0.527576i \(0.176899\pi\)
\(350\) 3.67307i 0.196334i
\(351\) 0 0
\(352\) 22.6637i 1.20798i
\(353\) −3.32540 −0.176993 −0.0884965 0.996076i \(-0.528206\pi\)
−0.0884965 + 0.996076i \(0.528206\pi\)
\(354\) 0 0
\(355\) 16.1891 0.859230
\(356\) 2.55215 0.135264
\(357\) 0 0
\(358\) −11.4380 −0.604517
\(359\) −17.5462 −0.926051 −0.463026 0.886345i \(-0.653236\pi\)
−0.463026 + 0.886345i \(0.653236\pi\)
\(360\) 0 0
\(361\) −13.6588 −0.718883
\(362\) 4.38715i 0.230584i
\(363\) 0 0
\(364\) 3.95407i 0.207249i
\(365\) −36.2766 −1.89880
\(366\) 0 0
\(367\) 29.5941i 1.54480i −0.635136 0.772400i \(-0.719056\pi\)
0.635136 0.772400i \(-0.280944\pi\)
\(368\) 4.99063i 0.260155i
\(369\) 0 0
\(370\) 3.85236 0.200274
\(371\) 6.49532i 0.337220i
\(372\) 0 0
\(373\) −7.85236 −0.406580 −0.203290 0.979119i \(-0.565163\pi\)
−0.203290 + 0.979119i \(0.565163\pi\)
\(374\) 11.0716 0.576283i 0.572499 0.0297989i
\(375\) 0 0
\(376\) −27.3590 −1.41094
\(377\) 7.52543i 0.387579i
\(378\) 0 0
\(379\) 5.22570i 0.268426i 0.990953 + 0.134213i \(0.0428506\pi\)
−0.990953 + 0.134213i \(0.957149\pi\)
\(380\) 11.3319i 0.581312i
\(381\) 0 0
\(382\) 5.24443 0.268328
\(383\) −22.3575 −1.14242 −0.571208 0.820805i \(-0.693525\pi\)
−0.571208 + 0.820805i \(0.693525\pi\)
\(384\) 0 0
\(385\) 12.5462i 0.639412i
\(386\) 2.21771i 0.112878i
\(387\) 0 0
\(388\) 8.49871i 0.431456i
\(389\) −38.4385 −1.94891 −0.974454 0.224586i \(-0.927897\pi\)
−0.974454 + 0.224586i \(0.927897\pi\)
\(390\) 0 0
\(391\) 14.9146 0.776312i 0.754263 0.0392598i
\(392\) −2.42864 −0.122665
\(393\) 0 0
\(394\) 4.22861i 0.213034i
\(395\) 55.1546 2.77513
\(396\) 0 0
\(397\) 24.2973i 1.21945i −0.792614 0.609723i \(-0.791281\pi\)
0.792614 0.609723i \(-0.208719\pi\)
\(398\) 2.51606i 0.126119i
\(399\) 0 0
\(400\) −7.34614 −0.367307
\(401\) 14.0651i 0.702380i 0.936304 + 0.351190i \(0.114223\pi\)
−0.936304 + 0.351190i \(0.885777\pi\)
\(402\) 0 0
\(403\) 4.12690i 0.205576i
\(404\) 22.2449 1.10673
\(405\) 0 0
\(406\) −2.00000 −0.0992583
\(407\) −6.79060 −0.336598
\(408\) 0 0
\(409\) −18.7353 −0.926401 −0.463201 0.886254i \(-0.653299\pi\)
−0.463201 + 0.886254i \(0.653299\pi\)
\(410\) −5.11753 −0.252737
\(411\) 0 0
\(412\) −17.6686 −0.870471
\(413\) 6.96989i 0.342966i
\(414\) 0 0
\(415\) 45.7560i 2.24608i
\(416\) 15.0509 0.737929
\(417\) 0 0
\(418\) 6.21432i 0.303952i
\(419\) 34.2908i 1.67522i −0.546271 0.837609i \(-0.683953\pi\)
0.546271 0.837609i \(-0.316047\pi\)
\(420\) 0 0
\(421\) −6.07805 −0.296226 −0.148113 0.988970i \(-0.547320\pi\)
−0.148113 + 0.988970i \(0.547320\pi\)
\(422\) 9.26178i 0.450857i
\(423\) 0 0
\(424\) 15.7748 0.766091
\(425\) 1.14272 + 21.9541i 0.0554301 + 1.06493i
\(426\) 0 0
\(427\) −0.0809666 −0.00391825
\(428\) 26.4460i 1.27832i
\(429\) 0 0
\(430\) 9.26517i 0.446806i
\(431\) 1.04101i 0.0501437i −0.999686 0.0250719i \(-0.992019\pi\)
0.999686 0.0250719i \(-0.00798146\pi\)
\(432\) 0 0
\(433\) 0.771390 0.0370706 0.0185353 0.999828i \(-0.494100\pi\)
0.0185353 + 0.999828i \(0.494100\pi\)
\(434\) 1.09679 0.0526475
\(435\) 0 0
\(436\) 24.3684i 1.16704i
\(437\) 8.37133i 0.400455i
\(438\) 0 0
\(439\) 16.9097i 0.807054i −0.914968 0.403527i \(-0.867784\pi\)
0.914968 0.403527i \(-0.132216\pi\)
\(440\) −30.4701 −1.45261
\(441\) 0 0
\(442\) −0.382707 7.35260i −0.0182035 0.349727i
\(443\) 8.40345 0.399260 0.199630 0.979871i \(-0.436026\pi\)
0.199630 + 0.979871i \(0.436026\pi\)
\(444\) 0 0
\(445\) 5.37778i 0.254931i
\(446\) −6.93825 −0.328535
\(447\) 0 0
\(448\) 1.24443i 0.0587939i
\(449\) 8.44293i 0.398446i −0.979954 0.199223i \(-0.936158\pi\)
0.979954 0.199223i \(-0.0638419\pi\)
\(450\) 0 0
\(451\) 9.02074 0.424770
\(452\) 4.59808i 0.216276i
\(453\) 0 0
\(454\) 15.3067i 0.718377i
\(455\) −8.33185 −0.390603
\(456\) 0 0
\(457\) −35.4558 −1.65855 −0.829277 0.558838i \(-0.811247\pi\)
−0.829277 + 0.558838i \(0.811247\pi\)
\(458\) −15.3778 −0.718557
\(459\) 0 0
\(460\) −17.7605 −0.828087
\(461\) 14.3763 0.669569 0.334784 0.942295i \(-0.391337\pi\)
0.334784 + 0.942295i \(0.391337\pi\)
\(462\) 0 0
\(463\) 35.0464 1.62874 0.814372 0.580343i \(-0.197081\pi\)
0.814372 + 0.580343i \(0.197081\pi\)
\(464\) 4.00000i 0.185695i
\(465\) 0 0
\(466\) 18.9525i 0.877959i
\(467\) −28.4701 −1.31744 −0.658720 0.752388i \(-0.728902\pi\)
−0.658720 + 0.752388i \(0.728902\pi\)
\(468\) 0 0
\(469\) 15.0049i 0.692863i
\(470\) 24.9447i 1.15061i
\(471\) 0 0
\(472\) −16.9273 −0.779144
\(473\) 16.3319i 0.750939i
\(474\) 0 0
\(475\) −12.3225 −0.565394
\(476\) −6.28100 + 0.326929i −0.287889 + 0.0149848i
\(477\) 0 0
\(478\) −5.66862 −0.259277
\(479\) 3.12690i 0.142872i −0.997445 0.0714358i \(-0.977242\pi\)
0.997445 0.0714358i \(-0.0227581\pi\)
\(480\) 0 0
\(481\) 4.50961i 0.205620i
\(482\) 11.2257i 0.511316i
\(483\) 0 0
\(484\) 6.46028 0.293649
\(485\) 17.9081 0.813166
\(486\) 0 0
\(487\) 10.2667i 0.465229i 0.972569 + 0.232614i \(0.0747280\pi\)
−0.972569 + 0.232614i \(0.925272\pi\)
\(488\) 0.196639i 0.00890142i
\(489\) 0 0
\(490\) 2.21432i 0.100033i
\(491\) 0.663703 0.0299525 0.0149762 0.999888i \(-0.495233\pi\)
0.0149762 + 0.999888i \(0.495233\pi\)
\(492\) 0 0
\(493\) −11.9541 + 0.622216i −0.538384 + 0.0280232i
\(494\) 4.12690 0.185678
\(495\) 0 0
\(496\) 2.19358i 0.0984945i
\(497\) −5.03657 −0.225921
\(498\) 0 0
\(499\) 3.99355i 0.178776i −0.995997 0.0893878i \(-0.971509\pi\)
0.995997 0.0893878i \(-0.0284911\pi\)
\(500\) 1.62714i 0.0727678i
\(501\) 0 0
\(502\) −19.8306 −0.885081
\(503\) 14.8588i 0.662522i −0.943539 0.331261i \(-0.892526\pi\)
0.943539 0.331261i \(-0.107474\pi\)
\(504\) 0 0
\(505\) 46.8736i 2.08585i
\(506\) −9.73975 −0.432985
\(507\) 0 0
\(508\) −21.8622 −0.969978
\(509\) 12.5018 0.554131 0.277066 0.960851i \(-0.410638\pi\)
0.277066 + 0.960851i \(0.410638\pi\)
\(510\) 0 0
\(511\) 11.2859 0.499260
\(512\) −14.6923 −0.649313
\(513\) 0 0
\(514\) 10.4746 0.462014
\(515\) 37.2306i 1.64058i
\(516\) 0 0
\(517\) 43.9704i 1.93381i
\(518\) −1.19850 −0.0526590
\(519\) 0 0
\(520\) 20.2351i 0.887366i
\(521\) 29.5970i 1.29667i −0.761356 0.648335i \(-0.775466\pi\)
0.761356 0.648335i \(-0.224534\pi\)
\(522\) 0 0
\(523\) 27.8163 1.21632 0.608160 0.793814i \(-0.291908\pi\)
0.608160 + 0.793814i \(0.291908\pi\)
\(524\) 2.21093i 0.0965849i
\(525\) 0 0
\(526\) −11.7047 −0.510350
\(527\) 6.55554 0.341219i 0.285564 0.0148637i
\(528\) 0 0
\(529\) 9.87955 0.429546
\(530\) 14.3827i 0.624745i
\(531\) 0 0
\(532\) 3.52543i 0.152847i
\(533\) 5.99063i 0.259483i
\(534\) 0 0
\(535\) −55.7259 −2.40924
\(536\) −36.4415 −1.57404
\(537\) 0 0
\(538\) 6.54125i 0.282013i
\(539\) 3.90321i 0.168123i
\(540\) 0 0
\(541\) 3.18421i 0.136900i −0.997655 0.0684499i \(-0.978195\pi\)
0.997655 0.0684499i \(-0.0218053\pi\)
\(542\) 7.46181 0.320512
\(543\) 0 0
\(544\) 1.24443 + 23.9081i 0.0533546 + 1.02505i
\(545\) −51.3481 −2.19951
\(546\) 0 0
\(547\) 11.8415i 0.506304i 0.967426 + 0.253152i \(0.0814673\pi\)
−0.967426 + 0.253152i \(0.918533\pi\)
\(548\) −9.70471 −0.414565
\(549\) 0 0
\(550\) 14.3368i 0.611322i
\(551\) 6.70964i 0.285840i
\(552\) 0 0
\(553\) −17.1590 −0.729676
\(554\) 20.2252i 0.859287i
\(555\) 0 0
\(556\) 12.1116i 0.513644i
\(557\) −10.4035 −0.440808 −0.220404 0.975409i \(-0.570738\pi\)
−0.220404 + 0.975409i \(0.570738\pi\)
\(558\) 0 0
\(559\) 10.8459 0.458733
\(560\) 4.42864 0.187144
\(561\) 0 0
\(562\) −5.34920 −0.225643
\(563\) −23.3176 −0.982718 −0.491359 0.870957i \(-0.663500\pi\)
−0.491359 + 0.870957i \(0.663500\pi\)
\(564\) 0 0
\(565\) −9.68889 −0.407615
\(566\) 22.2908i 0.936954i
\(567\) 0 0
\(568\) 12.2320i 0.513243i
\(569\) 18.7239 0.784948 0.392474 0.919763i \(-0.371619\pi\)
0.392474 + 0.919763i \(0.371619\pi\)
\(570\) 0 0
\(571\) 33.7431i 1.41211i 0.708159 + 0.706053i \(0.249526\pi\)
−0.708159 + 0.706053i \(0.750474\pi\)
\(572\) 15.4336i 0.645310i
\(573\) 0 0
\(574\) 1.59210 0.0664531
\(575\) 19.3131i 0.805413i
\(576\) 0 0
\(577\) −34.9101 −1.45333 −0.726664 0.686993i \(-0.758930\pi\)
−0.726664 + 0.686993i \(0.758930\pi\)
\(578\) 11.6479 1.21585i 0.484488 0.0505727i
\(579\) 0 0
\(580\) 14.2351 0.591079
\(581\) 14.2351i 0.590570i
\(582\) 0 0
\(583\) 25.3526i 1.05000i
\(584\) 27.4094i 1.13421i
\(585\) 0 0
\(586\) −19.0638 −0.787517
\(587\) −27.1635 −1.12116 −0.560578 0.828102i \(-0.689421\pi\)
−0.560578 + 0.828102i \(0.689421\pi\)
\(588\) 0 0
\(589\) 3.67952i 0.151612i
\(590\) 15.4336i 0.635390i
\(591\) 0 0
\(592\) 2.39700i 0.0985160i
\(593\) 23.6019 0.969216 0.484608 0.874731i \(-0.338962\pi\)
0.484608 + 0.874731i \(0.338962\pi\)
\(594\) 0 0
\(595\) −0.688892 13.2351i −0.0282418 0.542585i
\(596\) 24.0633 0.985671
\(597\) 0 0
\(598\) 6.46812i 0.264501i
\(599\) 31.2257 1.27585 0.637924 0.770100i \(-0.279794\pi\)
0.637924 + 0.770100i \(0.279794\pi\)
\(600\) 0 0
\(601\) 20.1541i 0.822103i −0.911612 0.411051i \(-0.865162\pi\)
0.911612 0.411051i \(-0.134838\pi\)
\(602\) 2.88247i 0.117481i
\(603\) 0 0
\(604\) −31.8863 −1.29744
\(605\) 13.6128i 0.553441i
\(606\) 0 0
\(607\) 34.1354i 1.38551i −0.721172 0.692756i \(-0.756396\pi\)
0.721172 0.692756i \(-0.243604\pi\)
\(608\) −13.4193 −0.544223
\(609\) 0 0
\(610\) −0.179286 −0.00725908
\(611\) 29.2005 1.18133
\(612\) 0 0
\(613\) −16.0923 −0.649964 −0.324982 0.945720i \(-0.605358\pi\)
−0.324982 + 0.945720i \(0.605358\pi\)
\(614\) 16.1116 0.650209
\(615\) 0 0
\(616\) 9.47949 0.381940
\(617\) 23.8020i 0.958232i 0.877752 + 0.479116i \(0.159043\pi\)
−0.877752 + 0.479116i \(0.840957\pi\)
\(618\) 0 0
\(619\) 6.58274i 0.264583i 0.991211 + 0.132291i \(0.0422334\pi\)
−0.991211 + 0.132291i \(0.957767\pi\)
\(620\) −7.80642 −0.313514
\(621\) 0 0
\(622\) 1.86971i 0.0749685i
\(623\) 1.67307i 0.0670302i
\(624\) 0 0
\(625\) −23.2306 −0.929225
\(626\) 21.7703i 0.870118i
\(627\) 0 0
\(628\) 24.3827 0.972976
\(629\) −7.16346 + 0.372862i −0.285626 + 0.0148670i
\(630\) 0 0
\(631\) 3.20648 0.127648 0.0638240 0.997961i \(-0.479670\pi\)
0.0638240 + 0.997961i \(0.479670\pi\)
\(632\) 41.6731i 1.65767i
\(633\) 0 0
\(634\) 6.14320i 0.243978i
\(635\) 46.0672i 1.82812i
\(636\) 0 0
\(637\) 2.59210 0.102703
\(638\) 7.80642 0.309059
\(639\) 0 0
\(640\) 34.5718i 1.36657i
\(641\) 28.7275i 1.13467i −0.823488 0.567333i \(-0.807975\pi\)
0.823488 0.567333i \(-0.192025\pi\)
\(642\) 0 0
\(643\) 39.2543i 1.54804i −0.633163 0.774019i \(-0.718244\pi\)
0.633163 0.774019i \(-0.281756\pi\)
\(644\) 5.52543 0.217732
\(645\) 0 0
\(646\) 0.341219 + 6.55554i 0.0134251 + 0.257924i
\(647\) −6.25380 −0.245862 −0.122931 0.992415i \(-0.539229\pi\)
−0.122931 + 0.992415i \(0.539229\pi\)
\(648\) 0 0
\(649\) 27.2050i 1.06789i
\(650\) −9.52098 −0.373444
\(651\) 0 0
\(652\) 27.3176i 1.06984i
\(653\) 47.5303i 1.86001i −0.367552 0.930003i \(-0.619804\pi\)
0.367552 0.930003i \(-0.380196\pi\)
\(654\) 0 0
\(655\) −4.65878 −0.182034
\(656\) 3.18421i 0.124322i
\(657\) 0 0
\(658\) 7.76049i 0.302535i
\(659\) −25.8227 −1.00591 −0.502955 0.864312i \(-0.667754\pi\)
−0.502955 + 0.864312i \(0.667754\pi\)
\(660\) 0 0
\(661\) −28.0672 −1.09169 −0.545843 0.837888i \(-0.683790\pi\)
−0.545843 + 0.837888i \(0.683790\pi\)
\(662\) −8.24152 −0.320316
\(663\) 0 0
\(664\) −34.5718 −1.34165
\(665\) 7.42864 0.288070
\(666\) 0 0
\(667\) 10.5161 0.407183
\(668\) 5.78229i 0.223723i
\(669\) 0 0
\(670\) 33.2257i 1.28362i
\(671\) 0.316030 0.0122002
\(672\) 0 0
\(673\) 23.3907i 0.901645i −0.892614 0.450822i \(-0.851131\pi\)
0.892614 0.450822i \(-0.148869\pi\)
\(674\) 7.41387i 0.285572i
\(675\) 0 0
\(676\) 9.58120 0.368508
\(677\) 3.46674i 0.133237i 0.997779 + 0.0666187i \(0.0212211\pi\)
−0.997779 + 0.0666187i \(0.978779\pi\)
\(678\) 0 0
\(679\) −5.57136 −0.213809
\(680\) −32.1432 + 1.67307i −1.23264 + 0.0641593i
\(681\) 0 0
\(682\) −4.28100 −0.163928
\(683\) 42.7101i 1.63426i 0.576456 + 0.817129i \(0.304435\pi\)
−0.576456 + 0.817129i \(0.695565\pi\)
\(684\) 0 0
\(685\) 20.4494i 0.781331i
\(686\) 0.688892i 0.0263020i
\(687\) 0 0
\(688\) −5.76494 −0.219786
\(689\) −16.8365 −0.641421
\(690\) 0 0
\(691\) 30.1037i 1.14520i 0.819835 + 0.572600i \(0.194065\pi\)
−0.819835 + 0.572600i \(0.805935\pi\)
\(692\) 12.5161i 0.475789i
\(693\) 0 0
\(694\) 9.97820i 0.378767i
\(695\) 25.5210 0.968066
\(696\) 0 0
\(697\) 9.51606 0.495316i 0.360446 0.0187614i
\(698\) −21.8656 −0.827625
\(699\) 0 0
\(700\) 8.13335i 0.307412i
\(701\) 6.32693 0.238965 0.119482 0.992836i \(-0.461876\pi\)
0.119482 + 0.992836i \(0.461876\pi\)
\(702\) 0 0
\(703\) 4.02074i 0.151645i
\(704\) 4.85728i 0.183066i
\(705\) 0 0
\(706\) 2.29084 0.0862169
\(707\) 14.5827i 0.548440i
\(708\) 0 0
\(709\) 2.48886i 0.0934712i 0.998907 + 0.0467356i \(0.0148818\pi\)
−0.998907 + 0.0467356i \(0.985118\pi\)
\(710\) −11.1526 −0.418548
\(711\) 0 0
\(712\) −4.06329 −0.152278
\(713\) −5.76694 −0.215974
\(714\) 0 0
\(715\) 32.5210 1.21622
\(716\) −25.3274 −0.946530
\(717\) 0 0
\(718\) 12.0874 0.451099
\(719\) 25.6113i 0.955141i −0.878593 0.477570i \(-0.841518\pi\)
0.878593 0.477570i \(-0.158482\pi\)
\(720\) 0 0
\(721\) 11.5827i 0.431364i
\(722\) 9.40943 0.350183
\(723\) 0 0
\(724\) 9.71456i 0.361039i
\(725\) 15.4795i 0.574894i
\(726\) 0 0
\(727\) −0.612371 −0.0227116 −0.0113558 0.999936i \(-0.503615\pi\)
−0.0113558 + 0.999936i \(0.503615\pi\)
\(728\) 6.29529i 0.233319i
\(729\) 0 0
\(730\) 24.9906 0.924945
\(731\) 0.896758 + 17.2286i 0.0331678 + 0.637223i
\(732\) 0 0
\(733\) 33.9496 1.25396 0.626979 0.779036i \(-0.284291\pi\)
0.626979 + 0.779036i \(0.284291\pi\)
\(734\) 20.3872i 0.752504i
\(735\) 0 0
\(736\) 21.0321i 0.775254i
\(737\) 58.5674i 2.15736i
\(738\) 0 0
\(739\) 14.3907 0.529370 0.264685 0.964335i \(-0.414732\pi\)
0.264685 + 0.964335i \(0.414732\pi\)
\(740\) 8.53035 0.313582
\(741\) 0 0
\(742\) 4.47457i 0.164267i
\(743\) 45.4938i 1.66901i 0.551004 + 0.834503i \(0.314245\pi\)
−0.551004 + 0.834503i \(0.685755\pi\)
\(744\) 0 0
\(745\) 50.7052i 1.85769i
\(746\) 5.40943 0.198053
\(747\) 0 0
\(748\) 24.5161 1.27607i 0.896396 0.0466579i
\(749\) 17.3368 0.633472
\(750\) 0 0
\(751\) 39.9017i 1.45603i −0.685560 0.728017i \(-0.740442\pi\)
0.685560 0.728017i \(-0.259558\pi\)
\(752\) −15.5210 −0.565992
\(753\) 0 0
\(754\) 5.18421i 0.188798i
\(755\) 67.1896i 2.44528i
\(756\) 0 0
\(757\) −23.1388 −0.840992 −0.420496 0.907294i \(-0.638144\pi\)
−0.420496 + 0.907294i \(0.638144\pi\)
\(758\) 3.59994i 0.130756i
\(759\) 0 0
\(760\) 18.0415i 0.654434i
\(761\) 31.2958 1.13447 0.567235 0.823556i \(-0.308013\pi\)
0.567235 + 0.823556i \(0.308013\pi\)
\(762\) 0 0
\(763\) 15.9748 0.578327
\(764\) 11.6128 0.420138
\(765\) 0 0
\(766\) 15.4019 0.556494
\(767\) 18.0667 0.652350
\(768\) 0 0
\(769\) 19.3446 0.697584 0.348792 0.937200i \(-0.386592\pi\)
0.348792 + 0.937200i \(0.386592\pi\)
\(770\) 8.64296i 0.311471i
\(771\) 0 0
\(772\) 4.91072i 0.176741i
\(773\) 5.56046 0.199996 0.0999979 0.994988i \(-0.468116\pi\)
0.0999979 + 0.994988i \(0.468116\pi\)
\(774\) 0 0
\(775\) 8.48886i 0.304929i
\(776\) 13.5308i 0.485728i
\(777\) 0 0
\(778\) 26.4800 0.949353
\(779\) 5.34122i 0.191369i
\(780\) 0 0
\(781\) 19.6588 0.703446
\(782\) −10.2745 + 0.534795i −0.367417 + 0.0191242i
\(783\) 0 0
\(784\) −1.37778 −0.0492066
\(785\) 51.3783i 1.83377i
\(786\) 0 0
\(787\) 22.4177i 0.799106i 0.916710 + 0.399553i \(0.130835\pi\)
−0.916710 + 0.399553i \(0.869165\pi\)
\(788\) 9.36349i 0.333561i
\(789\) 0 0
\(790\) −37.9956 −1.35182
\(791\) 3.01429 0.107176
\(792\) 0 0
\(793\) 0.209874i 0.00745284i
\(794\) 16.7382i 0.594017i
\(795\) 0 0
\(796\) 5.57136i 0.197472i
\(797\) −11.5812 −0.410227 −0.205114 0.978738i \(-0.565756\pi\)
−0.205114 + 0.978738i \(0.565756\pi\)
\(798\) 0 0
\(799\) 2.41435 + 46.3847i 0.0854135 + 1.64097i
\(800\) 30.9590 1.09457
\(801\) 0 0
\(802\) 9.68937i 0.342143i
\(803\) −44.0513 −1.55454
\(804\) 0 0
\(805\) 11.6430i 0.410360i
\(806\) 2.84299i 0.100140i
\(807\) 0 0
\(808\) −35.4162 −1.24594
\(809\) 40.6084i 1.42772i 0.700291 + 0.713858i \(0.253054\pi\)
−0.700291 + 0.713858i \(0.746946\pi\)
\(810\) 0 0
\(811\) 43.7431i 1.53603i 0.640432 + 0.768015i \(0.278755\pi\)
−0.640432 + 0.768015i \(0.721245\pi\)
\(812\) −4.42864 −0.155415
\(813\) 0 0
\(814\) 4.67799 0.163964
\(815\) 57.5625 2.01633
\(816\) 0 0
\(817\) −9.67016 −0.338316
\(818\) 12.9066 0.451269
\(819\) 0 0
\(820\) −11.3319 −0.395725
\(821\) 21.8889i 0.763929i −0.924177 0.381964i \(-0.875248\pi\)
0.924177 0.381964i \(-0.124752\pi\)
\(822\) 0 0
\(823\) 54.4449i 1.89783i −0.315530 0.948916i \(-0.602182\pi\)
0.315530 0.948916i \(-0.397818\pi\)
\(824\) 28.1303 0.979965
\(825\) 0 0
\(826\) 4.80150i 0.167066i
\(827\) 13.6593i 0.474979i 0.971390 + 0.237489i \(0.0763245\pi\)
−0.971390 + 0.237489i \(0.923675\pi\)
\(828\) 0 0
\(829\) 43.2070 1.50064 0.750320 0.661075i \(-0.229899\pi\)
0.750320 + 0.661075i \(0.229899\pi\)
\(830\) 31.5210i 1.09411i
\(831\) 0 0
\(832\) −3.22570 −0.111831
\(833\) 0.214320 + 4.11753i 0.00742574 + 0.142664i
\(834\) 0 0
\(835\) 12.1842 0.421652
\(836\) 13.7605i 0.475917i
\(837\) 0 0
\(838\) 23.6227i 0.816032i
\(839\) 13.8352i 0.477643i 0.971064 + 0.238821i \(0.0767610\pi\)
−0.971064 + 0.238821i \(0.923239\pi\)
\(840\) 0 0
\(841\) 20.5714 0.709357
\(842\) 4.18712 0.144298
\(843\) 0 0
\(844\) 20.5086i 0.705933i
\(845\) 20.1891i 0.694527i
\(846\) 0 0
\(847\) 4.23506i 0.145518i
\(848\) 8.94914 0.307315
\(849\) 0 0
\(850\) −0.787212 15.1240i −0.0270011 0.518748i
\(851\) 6.30174 0.216021
\(852\) 0 0
\(853\) 30.7991i 1.05454i 0.849698 + 0.527270i \(0.176784\pi\)
−0.849698 + 0.527270i \(0.823216\pi\)
\(854\) 0.0557773 0.00190866
\(855\) 0 0
\(856\) 42.1048i 1.43911i
\(857\) 41.7877i 1.42744i 0.700431 + 0.713720i \(0.252991\pi\)
−0.700431 + 0.713720i \(0.747009\pi\)
\(858\) 0 0
\(859\) 32.7368 1.11697 0.558483 0.829516i \(-0.311384\pi\)
0.558483 + 0.829516i \(0.311384\pi\)
\(860\) 20.5161i 0.699592i
\(861\) 0 0
\(862\) 0.717144i 0.0244260i
\(863\) 20.7205 0.705335 0.352668 0.935749i \(-0.385275\pi\)
0.352668 + 0.935749i \(0.385275\pi\)
\(864\) 0 0
\(865\) −26.3733 −0.896720
\(866\) −0.531405 −0.0180579
\(867\) 0 0
\(868\) 2.42864 0.0824334
\(869\) 66.9753 2.27198
\(870\) 0 0
\(871\) 38.8943 1.31788
\(872\) 38.7971i 1.31383i
\(873\) 0 0
\(874\) 5.76694i 0.195070i
\(875\) −1.06668 −0.0360602
\(876\) 0 0
\(877\) 14.1082i 0.476399i 0.971216 + 0.238199i \(0.0765572\pi\)
−0.971216 + 0.238199i \(0.923443\pi\)
\(878\) 11.6489i 0.393133i
\(879\) 0 0
\(880\) −17.2859 −0.582708
\(881\) 0.805947i 0.0271531i 0.999908 + 0.0135765i \(0.00432168\pi\)
−0.999908 + 0.0135765i \(0.995678\pi\)
\(882\) 0 0
\(883\) 6.17976 0.207966 0.103983 0.994579i \(-0.466841\pi\)
0.103983 + 0.994579i \(0.466841\pi\)
\(884\) −0.847435 16.2810i −0.0285023 0.547589i
\(885\) 0 0
\(886\) −5.78907 −0.194488
\(887\) 1.35212i 0.0453997i −0.999742 0.0226998i \(-0.992774\pi\)
0.999742 0.0226998i \(-0.00722621\pi\)
\(888\) 0 0
\(889\) 14.3319i 0.480675i
\(890\) 3.70471i 0.124182i
\(891\) 0 0
\(892\) −15.3635 −0.514408
\(893\) −26.0350 −0.871229
\(894\) 0 0
\(895\) 53.3689i 1.78393i
\(896\) 10.7556i 0.359318i
\(897\) 0 0
\(898\) 5.81627i 0.194091i
\(899\) 4.62222 0.154160
\(900\) 0 0
\(901\) −1.39207 26.7447i −0.0463767 0.890994i
\(902\) −6.21432 −0.206914
\(903\) 0 0
\(904\) 7.32062i 0.243480i
\(905\) 20.4701 0.680450
\(906\) 0 0
\(907\) 9.74620i 0.323617i 0.986822 + 0.161809i \(0.0517327\pi\)
−0.986822 + 0.161809i \(0.948267\pi\)
\(908\) 33.8938i 1.12481i
\(909\) 0 0
\(910\) 5.73975 0.190271
\(911\) 12.1570i 0.402780i −0.979511 0.201390i \(-0.935454\pi\)
0.979511 0.201390i \(-0.0645458\pi\)
\(912\) 0 0
\(913\) 55.5625i 1.83885i
\(914\) 24.4252 0.807915
\(915\) 0 0
\(916\) −34.0513 −1.12509
\(917\) 1.44938 0.0478628
\(918\) 0 0
\(919\) 49.8800 1.64539 0.822695 0.568483i \(-0.192469\pi\)
0.822695 + 0.568483i \(0.192469\pi\)
\(920\) 28.2766 0.932250
\(921\) 0 0
\(922\) −9.90369 −0.326161
\(923\) 13.0553i 0.429720i
\(924\) 0 0
\(925\) 9.27607i 0.304995i
\(926\) −24.1432 −0.793395
\(927\) 0 0
\(928\) 16.8573i 0.553367i
\(929\) 6.61930i 0.217172i −0.994087 0.108586i \(-0.965368\pi\)
0.994087 0.108586i \(-0.0346323\pi\)
\(930\) 0 0
\(931\) −2.31111 −0.0757435
\(932\) 41.9670i 1.37467i
\(933\) 0 0
\(934\) 19.6128 0.641752
\(935\) 2.68889 + 51.6593i 0.0879362 + 1.68944i
\(936\) 0 0
\(937\) 9.28147 0.303212 0.151606 0.988441i \(-0.451555\pi\)
0.151606 + 0.988441i \(0.451555\pi\)
\(938\) 10.3368i 0.337508i
\(939\) 0 0
\(940\) 55.2355i 1.80158i
\(941\) 24.7338i 0.806298i −0.915134 0.403149i \(-0.867916\pi\)
0.915134 0.403149i \(-0.132084\pi\)
\(942\) 0 0
\(943\) −8.37133 −0.272608
\(944\) −9.60300 −0.312551
\(945\) 0 0
\(946\) 11.2509i 0.365798i
\(947\) 27.0879i 0.880238i −0.897939 0.440119i \(-0.854936\pi\)
0.897939 0.440119i \(-0.145064\pi\)
\(948\) 0 0
\(949\) 29.2543i 0.949634i
\(950\) 8.48886 0.275415
\(951\) 0 0
\(952\) 10.0000 0.520505i 0.324102 0.0168697i
\(953\) −54.1367 −1.75366 −0.876831 0.480799i \(-0.840346\pi\)
−0.876831 + 0.480799i \(0.840346\pi\)
\(954\) 0 0
\(955\) 24.4701i 0.791835i
\(956\) −12.5521 −0.405965
\(957\) 0 0
\(958\) 2.15410i 0.0695957i
\(959\) 6.36196i 0.205438i
\(960\) 0 0
\(961\) 28.4652 0.918232
\(962\) 3.10663i 0.100162i
\(963\) 0 0
\(964\) 24.8573i 0.800599i
\(965\) −10.3477 −0.333103
\(966\) 0 0
\(967\) 26.4750 0.851380 0.425690 0.904869i \(-0.360031\pi\)
0.425690 + 0.904869i \(0.360031\pi\)
\(968\) −10.2854 −0.330587
\(969\) 0 0
\(970\) −12.3368 −0.396110
\(971\) 15.4479 0.495745 0.247873 0.968793i \(-0.420269\pi\)
0.247873 + 0.968793i \(0.420269\pi\)
\(972\) 0 0
\(973\) −7.93978 −0.254538
\(974\) 7.07265i 0.226622i
\(975\) 0 0
\(976\) 0.111555i 0.00357078i
\(977\) −58.6321 −1.87581 −0.937903 0.346898i \(-0.887235\pi\)
−0.937903 + 0.346898i \(0.887235\pi\)
\(978\) 0 0
\(979\) 6.53035i 0.208711i
\(980\) 4.90321i 0.156627i
\(981\) 0 0
\(982\) −0.457220 −0.0145905
\(983\) 1.92396i 0.0613647i 0.999529 + 0.0306823i \(0.00976802\pi\)
−0.999529 + 0.0306823i \(0.990232\pi\)
\(984\) 0 0
\(985\) 19.7304 0.628662
\(986\) 8.23506 0.428639i 0.262258 0.0136507i
\(987\) 0 0
\(988\) 9.13828 0.290727
\(989\) 15.1561i 0.481936i
\(990\) 0 0
\(991\) 19.6030i 0.622710i −0.950294 0.311355i \(-0.899217\pi\)
0.950294 0.311355i \(-0.100783\pi\)
\(992\) 9.24443i 0.293511i
\(993\) 0 0
\(994\) 3.46965 0.110051
\(995\) −11.7397 −0.372175
\(996\) 0 0
\(997\) 16.6726i 0.528026i −0.964519 0.264013i \(-0.914954\pi\)
0.964519 0.264013i \(-0.0850462\pi\)
\(998\) 2.75112i 0.0870853i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1071.2.f.a.883.3 6
3.2 odd 2 357.2.f.a.169.3 6
17.16 even 2 inner 1071.2.f.a.883.4 6
51.38 odd 4 6069.2.a.k.1.2 3
51.47 odd 4 6069.2.a.m.1.2 3
51.50 odd 2 357.2.f.a.169.4 yes 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
357.2.f.a.169.3 6 3.2 odd 2
357.2.f.a.169.4 yes 6 51.50 odd 2
1071.2.f.a.883.3 6 1.1 even 1 trivial
1071.2.f.a.883.4 6 17.16 even 2 inner
6069.2.a.k.1.2 3 51.38 odd 4
6069.2.a.m.1.2 3 51.47 odd 4