Properties

Label 357.2.f.a.169.3
Level $357$
Weight $2$
Character 357.169
Analytic conductor $2.851$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [357,2,Mod(169,357)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(357, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("357.169"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 357 = 3 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 357.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.85065935216\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.350464.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} + 2x^{3} + 4x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 169.3
Root \(1.45161 - 1.45161i\) of defining polynomial
Character \(\chi\) \(=\) 357.169
Dual form 357.2.f.a.169.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.688892 q^{2} -1.00000i q^{3} -1.52543 q^{4} +3.21432i q^{5} -0.688892i q^{6} +1.00000i q^{7} -2.42864 q^{8} -1.00000 q^{9} +2.21432i q^{10} +3.90321i q^{11} +1.52543i q^{12} -2.59210 q^{13} +0.688892i q^{14} +3.21432 q^{15} +1.37778 q^{16} +(0.214320 + 4.11753i) q^{17} -0.688892 q^{18} +2.31111 q^{19} -4.90321i q^{20} +1.00000 q^{21} +2.68889i q^{22} -3.62222i q^{23} +2.42864i q^{24} -5.33185 q^{25} -1.78568 q^{26} +1.00000i q^{27} -1.52543i q^{28} +2.90321i q^{29} +2.21432 q^{30} +1.59210i q^{31} +5.80642 q^{32} +3.90321 q^{33} +(0.147643 + 2.83654i) q^{34} -3.21432 q^{35} +1.52543 q^{36} -1.73975i q^{37} +1.59210 q^{38} +2.59210i q^{39} -7.80642i q^{40} -2.31111i q^{41} +0.688892 q^{42} -4.18421 q^{43} -5.95407i q^{44} -3.21432i q^{45} -2.49532i q^{46} +11.2652 q^{47} -1.37778i q^{48} -1.00000 q^{49} -3.67307 q^{50} +(4.11753 - 0.214320i) q^{51} +3.95407 q^{52} -6.49532 q^{53} +0.688892i q^{54} -12.5462 q^{55} -2.42864i q^{56} -2.31111i q^{57} +2.00000i q^{58} +6.96989 q^{59} -4.90321 q^{60} +0.0809666i q^{61} +1.09679i q^{62} -1.00000i q^{63} +1.24443 q^{64} -8.33185i q^{65} +2.68889 q^{66} -15.0049 q^{67} +(-0.326929 - 6.28100i) q^{68} -3.62222 q^{69} -2.21432 q^{70} -5.03657i q^{71} +2.42864 q^{72} -11.2859i q^{73} -1.19850i q^{74} +5.33185i q^{75} -3.52543 q^{76} -3.90321 q^{77} +1.78568i q^{78} +17.1590i q^{79} +4.42864i q^{80} +1.00000 q^{81} -1.59210i q^{82} +14.2351 q^{83} -1.52543 q^{84} +(-13.2351 + 0.688892i) q^{85} -2.88247 q^{86} +2.90321 q^{87} -9.47949i q^{88} +1.67307 q^{89} -2.21432i q^{90} -2.59210i q^{91} +5.52543i q^{92} +1.59210 q^{93} +7.76049 q^{94} +7.42864i q^{95} -5.80642i q^{96} +5.57136i q^{97} -0.688892 q^{98} -3.90321i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 4 q^{2} + 4 q^{4} + 12 q^{8} - 6 q^{9} - 2 q^{13} + 6 q^{15} + 8 q^{16} - 12 q^{17} - 4 q^{18} + 14 q^{19} + 6 q^{21} + 8 q^{25} - 24 q^{26} + 8 q^{32} + 10 q^{33} - 12 q^{34} - 6 q^{35} - 4 q^{36}+ \cdots - 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/357\mathbb{Z}\right)^\times\).

\(n\) \(52\) \(190\) \(239\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.688892 0.487120 0.243560 0.969886i \(-0.421685\pi\)
0.243560 + 0.969886i \(0.421685\pi\)
\(3\) 1.00000i 0.577350i
\(4\) −1.52543 −0.762714
\(5\) 3.21432i 1.43749i 0.695275 + 0.718744i \(0.255283\pi\)
−0.695275 + 0.718744i \(0.744717\pi\)
\(6\) 0.688892i 0.281239i
\(7\) 1.00000i 0.377964i
\(8\) −2.42864 −0.858654
\(9\) −1.00000 −0.333333
\(10\) 2.21432i 0.700229i
\(11\) 3.90321i 1.17686i 0.808547 + 0.588431i \(0.200254\pi\)
−0.808547 + 0.588431i \(0.799746\pi\)
\(12\) 1.52543i 0.440353i
\(13\) −2.59210 −0.718920 −0.359460 0.933160i \(-0.617039\pi\)
−0.359460 + 0.933160i \(0.617039\pi\)
\(14\) 0.688892i 0.184114i
\(15\) 3.21432 0.829934
\(16\) 1.37778 0.344446
\(17\) 0.214320 + 4.11753i 0.0519802 + 0.998648i
\(18\) −0.688892 −0.162373
\(19\) 2.31111 0.530204 0.265102 0.964220i \(-0.414594\pi\)
0.265102 + 0.964220i \(0.414594\pi\)
\(20\) 4.90321i 1.09639i
\(21\) 1.00000 0.218218
\(22\) 2.68889i 0.573274i
\(23\) 3.62222i 0.755284i −0.925952 0.377642i \(-0.876735\pi\)
0.925952 0.377642i \(-0.123265\pi\)
\(24\) 2.42864i 0.495744i
\(25\) −5.33185 −1.06637
\(26\) −1.78568 −0.350201
\(27\) 1.00000i 0.192450i
\(28\) 1.52543i 0.288279i
\(29\) 2.90321i 0.539113i 0.962985 + 0.269556i \(0.0868771\pi\)
−0.962985 + 0.269556i \(0.913123\pi\)
\(30\) 2.21432 0.404278
\(31\) 1.59210i 0.285950i 0.989726 + 0.142975i \(0.0456669\pi\)
−0.989726 + 0.142975i \(0.954333\pi\)
\(32\) 5.80642 1.02644
\(33\) 3.90321 0.679462
\(34\) 0.147643 + 2.83654i 0.0253206 + 0.486462i
\(35\) −3.21432 −0.543319
\(36\) 1.52543 0.254238
\(37\) 1.73975i 0.286013i −0.989722 0.143006i \(-0.954323\pi\)
0.989722 0.143006i \(-0.0456769\pi\)
\(38\) 1.59210 0.258273
\(39\) 2.59210i 0.415069i
\(40\) 7.80642i 1.23430i
\(41\) 2.31111i 0.360934i −0.983581 0.180467i \(-0.942239\pi\)
0.983581 0.180467i \(-0.0577610\pi\)
\(42\) 0.688892 0.106298
\(43\) −4.18421 −0.638086 −0.319043 0.947740i \(-0.603361\pi\)
−0.319043 + 0.947740i \(0.603361\pi\)
\(44\) 5.95407i 0.897609i
\(45\) 3.21432i 0.479162i
\(46\) 2.49532i 0.367914i
\(47\) 11.2652 1.64319 0.821597 0.570068i \(-0.193083\pi\)
0.821597 + 0.570068i \(0.193083\pi\)
\(48\) 1.37778i 0.198866i
\(49\) −1.00000 −0.142857
\(50\) −3.67307 −0.519451
\(51\) 4.11753 0.214320i 0.576570 0.0300108i
\(52\) 3.95407 0.548330
\(53\) −6.49532 −0.892200 −0.446100 0.894983i \(-0.647187\pi\)
−0.446100 + 0.894983i \(0.647187\pi\)
\(54\) 0.688892i 0.0937464i
\(55\) −12.5462 −1.69173
\(56\) 2.42864i 0.324541i
\(57\) 2.31111i 0.306114i
\(58\) 2.00000i 0.262613i
\(59\) 6.96989 0.907402 0.453701 0.891154i \(-0.350103\pi\)
0.453701 + 0.891154i \(0.350103\pi\)
\(60\) −4.90321 −0.633002
\(61\) 0.0809666i 0.0103667i 0.999987 + 0.00518336i \(0.00164992\pi\)
−0.999987 + 0.00518336i \(0.998350\pi\)
\(62\) 1.09679i 0.139292i
\(63\) 1.00000i 0.125988i
\(64\) 1.24443 0.155554
\(65\) 8.33185i 1.03344i
\(66\) 2.68889 0.330980
\(67\) −15.0049 −1.83314 −0.916572 0.399871i \(-0.869055\pi\)
−0.916572 + 0.399871i \(0.869055\pi\)
\(68\) −0.326929 6.28100i −0.0396460 0.761683i
\(69\) −3.62222 −0.436064
\(70\) −2.21432 −0.264662
\(71\) 5.03657i 0.597730i −0.954295 0.298865i \(-0.903392\pi\)
0.954295 0.298865i \(-0.0966081\pi\)
\(72\) 2.42864 0.286218
\(73\) 11.2859i 1.32092i −0.750863 0.660458i \(-0.770362\pi\)
0.750863 0.660458i \(-0.229638\pi\)
\(74\) 1.19850i 0.139323i
\(75\) 5.33185i 0.615669i
\(76\) −3.52543 −0.404394
\(77\) −3.90321 −0.444812
\(78\) 1.78568i 0.202188i
\(79\) 17.1590i 1.93054i 0.261254 + 0.965270i \(0.415864\pi\)
−0.261254 + 0.965270i \(0.584136\pi\)
\(80\) 4.42864i 0.495137i
\(81\) 1.00000 0.111111
\(82\) 1.59210i 0.175818i
\(83\) 14.2351 1.56250 0.781251 0.624218i \(-0.214582\pi\)
0.781251 + 0.624218i \(0.214582\pi\)
\(84\) −1.52543 −0.166438
\(85\) −13.2351 + 0.688892i −1.43554 + 0.0747208i
\(86\) −2.88247 −0.310825
\(87\) 2.90321 0.311257
\(88\) 9.47949i 1.01052i
\(89\) 1.67307 0.177345 0.0886726 0.996061i \(-0.471738\pi\)
0.0886726 + 0.996061i \(0.471738\pi\)
\(90\) 2.21432i 0.233410i
\(91\) 2.59210i 0.271726i
\(92\) 5.52543i 0.576066i
\(93\) 1.59210 0.165094
\(94\) 7.76049 0.800434
\(95\) 7.42864i 0.762162i
\(96\) 5.80642i 0.592616i
\(97\) 5.57136i 0.565686i 0.959166 + 0.282843i \(0.0912775\pi\)
−0.959166 + 0.282843i \(0.908722\pi\)
\(98\) −0.688892 −0.0695886
\(99\) 3.90321i 0.392288i
\(100\) 8.13335 0.813335
\(101\) 14.5827 1.45104 0.725518 0.688203i \(-0.241600\pi\)
0.725518 + 0.688203i \(0.241600\pi\)
\(102\) 2.83654 0.147643i 0.280859 0.0146189i
\(103\) 11.5827 1.14128 0.570640 0.821200i \(-0.306695\pi\)
0.570640 + 0.821200i \(0.306695\pi\)
\(104\) 6.29529 0.617304
\(105\) 3.21432i 0.313685i
\(106\) −4.47457 −0.434609
\(107\) 17.3368i 1.67601i 0.545663 + 0.838005i \(0.316278\pi\)
−0.545663 + 0.838005i \(0.683722\pi\)
\(108\) 1.52543i 0.146784i
\(109\) 15.9748i 1.53011i −0.643965 0.765055i \(-0.722712\pi\)
0.643965 0.765055i \(-0.277288\pi\)
\(110\) −8.64296 −0.824074
\(111\) −1.73975 −0.165130
\(112\) 1.37778i 0.130188i
\(113\) 3.01429i 0.283561i 0.989898 + 0.141780i \(0.0452826\pi\)
−0.989898 + 0.141780i \(0.954717\pi\)
\(114\) 1.59210i 0.149114i
\(115\) 11.6430 1.08571
\(116\) 4.42864i 0.411189i
\(117\) 2.59210 0.239640
\(118\) 4.80150 0.442014
\(119\) −4.11753 + 0.214320i −0.377454 + 0.0196467i
\(120\) −7.80642 −0.712626
\(121\) −4.23506 −0.385006
\(122\) 0.0557773i 0.00504984i
\(123\) −2.31111 −0.208386
\(124\) 2.42864i 0.218098i
\(125\) 1.06668i 0.0954065i
\(126\) 0.688892i 0.0613714i
\(127\) 14.3319 1.27175 0.635873 0.771794i \(-0.280640\pi\)
0.635873 + 0.771794i \(0.280640\pi\)
\(128\) −10.7556 −0.950667
\(129\) 4.18421i 0.368399i
\(130\) 5.73975i 0.503409i
\(131\) 1.44938i 0.126633i 0.997993 + 0.0633166i \(0.0201678\pi\)
−0.997993 + 0.0633166i \(0.979832\pi\)
\(132\) −5.95407 −0.518235
\(133\) 2.31111i 0.200398i
\(134\) −10.3368 −0.892961
\(135\) −3.21432 −0.276645
\(136\) −0.520505 10.0000i −0.0446330 0.857493i
\(137\) −6.36196 −0.543539 −0.271770 0.962362i \(-0.587609\pi\)
−0.271770 + 0.962362i \(0.587609\pi\)
\(138\) −2.49532 −0.212415
\(139\) 7.93978i 0.673443i 0.941604 + 0.336722i \(0.109318\pi\)
−0.941604 + 0.336722i \(0.890682\pi\)
\(140\) 4.90321 0.414397
\(141\) 11.2652i 0.948699i
\(142\) 3.46965i 0.291167i
\(143\) 10.1175i 0.846071i
\(144\) −1.37778 −0.114815
\(145\) −9.33185 −0.774968
\(146\) 7.77478i 0.643445i
\(147\) 1.00000i 0.0824786i
\(148\) 2.65386i 0.218146i
\(149\) 15.7748 1.29232 0.646160 0.763202i \(-0.276374\pi\)
0.646160 + 0.763202i \(0.276374\pi\)
\(150\) 3.67307i 0.299905i
\(151\) 20.9032 1.70108 0.850540 0.525911i \(-0.176275\pi\)
0.850540 + 0.525911i \(0.176275\pi\)
\(152\) −5.61285 −0.455262
\(153\) −0.214320 4.11753i −0.0173267 0.332883i
\(154\) −2.68889 −0.216677
\(155\) −5.11753 −0.411050
\(156\) 3.95407i 0.316579i
\(157\) −15.9842 −1.27568 −0.637838 0.770170i \(-0.720171\pi\)
−0.637838 + 0.770170i \(0.720171\pi\)
\(158\) 11.8207i 0.940406i
\(159\) 6.49532i 0.515112i
\(160\) 18.6637i 1.47550i
\(161\) 3.62222 0.285471
\(162\) 0.688892 0.0541245
\(163\) 17.9081i 1.40267i 0.712830 + 0.701337i \(0.247413\pi\)
−0.712830 + 0.701337i \(0.752587\pi\)
\(164\) 3.52543i 0.275290i
\(165\) 12.5462i 0.976718i
\(166\) 9.80642 0.761126
\(167\) 3.79060i 0.293326i −0.989187 0.146663i \(-0.953147\pi\)
0.989187 0.146663i \(-0.0468532\pi\)
\(168\) −2.42864 −0.187374
\(169\) −6.28100 −0.483154
\(170\) −9.11753 + 0.474572i −0.699283 + 0.0363980i
\(171\) −2.31111 −0.176735
\(172\) 6.38271 0.486677
\(173\) 8.20495i 0.623811i 0.950113 + 0.311905i \(0.100967\pi\)
−0.950113 + 0.311905i \(0.899033\pi\)
\(174\) 2.00000 0.151620
\(175\) 5.33185i 0.403050i
\(176\) 5.37778i 0.405366i
\(177\) 6.96989i 0.523889i
\(178\) 1.15257 0.0863884
\(179\) −16.6035 −1.24100 −0.620501 0.784206i \(-0.713071\pi\)
−0.620501 + 0.784206i \(0.713071\pi\)
\(180\) 4.90321i 0.365464i
\(181\) 6.36842i 0.473361i 0.971588 + 0.236680i \(0.0760594\pi\)
−0.971588 + 0.236680i \(0.923941\pi\)
\(182\) 1.78568i 0.132363i
\(183\) 0.0809666 0.00598523
\(184\) 8.79706i 0.648528i
\(185\) 5.59210 0.411140
\(186\) 1.09679 0.0804204
\(187\) −16.0716 + 0.836535i −1.17527 + 0.0611735i
\(188\) −17.1842 −1.25329
\(189\) −1.00000 −0.0727393
\(190\) 5.11753i 0.371265i
\(191\) 7.61285 0.550846 0.275423 0.961323i \(-0.411182\pi\)
0.275423 + 0.961323i \(0.411182\pi\)
\(192\) 1.24443i 0.0898091i
\(193\) 3.21924i 0.231726i −0.993265 0.115863i \(-0.963037\pi\)
0.993265 0.115863i \(-0.0369634\pi\)
\(194\) 3.83807i 0.275557i
\(195\) −8.33185 −0.596656
\(196\) 1.52543 0.108959
\(197\) 6.13828i 0.437334i −0.975800 0.218667i \(-0.929829\pi\)
0.975800 0.218667i \(-0.0701708\pi\)
\(198\) 2.68889i 0.191091i
\(199\) 3.65233i 0.258907i −0.991586 0.129453i \(-0.958678\pi\)
0.991586 0.129453i \(-0.0413222\pi\)
\(200\) 12.9491 0.915643
\(201\) 15.0049i 1.05837i
\(202\) 10.0459 0.706829
\(203\) −2.90321 −0.203766
\(204\) −6.28100 + 0.326929i −0.439758 + 0.0228896i
\(205\) 7.42864 0.518839
\(206\) 7.97926 0.555941
\(207\) 3.62222i 0.251761i
\(208\) −3.57136 −0.247629
\(209\) 9.02074i 0.623978i
\(210\) 2.21432i 0.152803i
\(211\) 13.4445i 0.925555i −0.886475 0.462777i \(-0.846853\pi\)
0.886475 0.462777i \(-0.153147\pi\)
\(212\) 9.90813 0.680493
\(213\) −5.03657 −0.345100
\(214\) 11.9432i 0.816418i
\(215\) 13.4494i 0.917240i
\(216\) 2.42864i 0.165248i
\(217\) −1.59210 −0.108079
\(218\) 11.0049i 0.745347i
\(219\) −11.2859 −0.762632
\(220\) 19.1383 1.29030
\(221\) −0.555539 10.6731i −0.0373696 0.717948i
\(222\) −1.19850 −0.0804379
\(223\) 10.0716 0.674444 0.337222 0.941425i \(-0.390513\pi\)
0.337222 + 0.941425i \(0.390513\pi\)
\(224\) 5.80642i 0.387958i
\(225\) 5.33185 0.355457
\(226\) 2.07652i 0.138128i
\(227\) 22.2192i 1.47474i 0.675487 + 0.737371i \(0.263933\pi\)
−0.675487 + 0.737371i \(0.736067\pi\)
\(228\) 3.52543i 0.233477i
\(229\) 22.3225 1.47511 0.737556 0.675286i \(-0.235980\pi\)
0.737556 + 0.675286i \(0.235980\pi\)
\(230\) 8.02074 0.528872
\(231\) 3.90321i 0.256812i
\(232\) 7.05086i 0.462911i
\(233\) 27.5116i 1.80235i −0.433460 0.901173i \(-0.642707\pi\)
0.433460 0.901173i \(-0.357293\pi\)
\(234\) 1.78568 0.116734
\(235\) 36.2099i 2.36207i
\(236\) −10.6321 −0.692088
\(237\) 17.1590 1.11460
\(238\) −2.83654 + 0.147643i −0.183865 + 0.00957029i
\(239\) −8.22861 −0.532265 −0.266132 0.963937i \(-0.585746\pi\)
−0.266132 + 0.963937i \(0.585746\pi\)
\(240\) 4.42864 0.285867
\(241\) 16.2953i 1.04967i 0.851203 + 0.524836i \(0.175873\pi\)
−0.851203 + 0.524836i \(0.824127\pi\)
\(242\) −2.91750 −0.187544
\(243\) 1.00000i 0.0641500i
\(244\) 0.123509i 0.00790684i
\(245\) 3.21432i 0.205355i
\(246\) −1.59210 −0.101509
\(247\) −5.99063 −0.381175
\(248\) 3.86665i 0.245532i
\(249\) 14.2351i 0.902110i
\(250\) 0.734825i 0.0464744i
\(251\) −28.7862 −1.81697 −0.908483 0.417922i \(-0.862759\pi\)
−0.908483 + 0.417922i \(0.862759\pi\)
\(252\) 1.52543i 0.0960929i
\(253\) 14.1383 0.888866
\(254\) 9.87310 0.619493
\(255\) 0.688892 + 13.2351i 0.0431401 + 0.828812i
\(256\) −9.89829 −0.618643
\(257\) 15.2050 0.948459 0.474229 0.880401i \(-0.342727\pi\)
0.474229 + 0.880401i \(0.342727\pi\)
\(258\) 2.88247i 0.179455i
\(259\) 1.73975 0.108103
\(260\) 12.7096i 0.788218i
\(261\) 2.90321i 0.179704i
\(262\) 0.998469i 0.0616856i
\(263\) −16.9906 −1.04769 −0.523844 0.851814i \(-0.675502\pi\)
−0.523844 + 0.851814i \(0.675502\pi\)
\(264\) −9.47949 −0.583423
\(265\) 20.8780i 1.28253i
\(266\) 1.59210i 0.0976182i
\(267\) 1.67307i 0.102390i
\(268\) 22.8889 1.39816
\(269\) 9.49532i 0.578940i 0.957187 + 0.289470i \(0.0934790\pi\)
−0.957187 + 0.289470i \(0.906521\pi\)
\(270\) −2.21432 −0.134759
\(271\) −10.8316 −0.657974 −0.328987 0.944335i \(-0.606707\pi\)
−0.328987 + 0.944335i \(0.606707\pi\)
\(272\) 0.295286 + 5.67307i 0.0179044 + 0.343980i
\(273\) −2.59210 −0.156881
\(274\) −4.38271 −0.264769
\(275\) 20.8113i 1.25497i
\(276\) 5.52543 0.332592
\(277\) 29.3590i 1.76401i −0.471236 0.882007i \(-0.656192\pi\)
0.471236 0.882007i \(-0.343808\pi\)
\(278\) 5.46965i 0.328048i
\(279\) 1.59210i 0.0953168i
\(280\) 7.80642 0.466523
\(281\) −7.76494 −0.463217 −0.231609 0.972809i \(-0.574399\pi\)
−0.231609 + 0.972809i \(0.574399\pi\)
\(282\) 7.76049i 0.462131i
\(283\) 32.3575i 1.92345i −0.274008 0.961727i \(-0.588350\pi\)
0.274008 0.961727i \(-0.411650\pi\)
\(284\) 7.68292i 0.455897i
\(285\) 7.42864 0.440035
\(286\) 6.96989i 0.412138i
\(287\) 2.31111 0.136420
\(288\) −5.80642 −0.342147
\(289\) −16.9081 + 1.76494i −0.994596 + 0.103820i
\(290\) −6.42864 −0.377503
\(291\) 5.57136 0.326599
\(292\) 17.2159i 1.00748i
\(293\) −27.6731 −1.61668 −0.808339 0.588717i \(-0.799633\pi\)
−0.808339 + 0.588717i \(0.799633\pi\)
\(294\) 0.688892i 0.0401770i
\(295\) 22.4035i 1.30438i
\(296\) 4.22522i 0.245586i
\(297\) −3.90321 −0.226487
\(298\) 10.8671 0.629516
\(299\) 9.38916i 0.542989i
\(300\) 8.13335i 0.469579i
\(301\) 4.18421i 0.241174i
\(302\) 14.4001 0.828630
\(303\) 14.5827i 0.837756i
\(304\) 3.18421 0.182627
\(305\) −0.260253 −0.0149020
\(306\) −0.147643 2.83654i −0.00844020 0.162154i
\(307\) −23.3876 −1.33480 −0.667401 0.744698i \(-0.732593\pi\)
−0.667401 + 0.744698i \(0.732593\pi\)
\(308\) 5.95407 0.339264
\(309\) 11.5827i 0.658919i
\(310\) −3.52543 −0.200231
\(311\) 2.71408i 0.153901i 0.997035 + 0.0769507i \(0.0245184\pi\)
−0.997035 + 0.0769507i \(0.975482\pi\)
\(312\) 6.29529i 0.356400i
\(313\) 31.6019i 1.78625i −0.449811 0.893124i \(-0.648509\pi\)
0.449811 0.893124i \(-0.351491\pi\)
\(314\) −11.0114 −0.621408
\(315\) 3.21432 0.181106
\(316\) 26.1748i 1.47245i
\(317\) 8.91750i 0.500857i 0.968135 + 0.250428i \(0.0805715\pi\)
−0.968135 + 0.250428i \(0.919429\pi\)
\(318\) 4.47457i 0.250922i
\(319\) −11.3319 −0.634462
\(320\) 4.00000i 0.223607i
\(321\) 17.3368 0.967644
\(322\) 2.49532 0.139059
\(323\) 0.495316 + 9.51606i 0.0275601 + 0.529488i
\(324\) −1.52543 −0.0847460
\(325\) 13.8207 0.766635
\(326\) 12.3368i 0.683271i
\(327\) −15.9748 −0.883409
\(328\) 5.61285i 0.309918i
\(329\) 11.2652i 0.621069i
\(330\) 8.64296i 0.475779i
\(331\) 11.9634 0.657570 0.328785 0.944405i \(-0.393361\pi\)
0.328785 + 0.944405i \(0.393361\pi\)
\(332\) −21.7146 −1.19174
\(333\) 1.73975i 0.0953376i
\(334\) 2.61132i 0.142885i
\(335\) 48.2306i 2.63512i
\(336\) 1.37778 0.0751643
\(337\) 10.7620i 0.586245i 0.956075 + 0.293122i \(0.0946943\pi\)
−0.956075 + 0.293122i \(0.905306\pi\)
\(338\) −4.32693 −0.235354
\(339\) 3.01429 0.163714
\(340\) 20.1891 1.05086i 1.09491 0.0569906i
\(341\) −6.21432 −0.336524
\(342\) −1.59210 −0.0860911
\(343\) 1.00000i 0.0539949i
\(344\) 10.1619 0.547895
\(345\) 11.6430i 0.626836i
\(346\) 5.65233i 0.303871i
\(347\) 14.4844i 0.777564i −0.921330 0.388782i \(-0.872896\pi\)
0.921330 0.388782i \(-0.127104\pi\)
\(348\) −4.42864 −0.237400
\(349\) 31.7402 1.69902 0.849508 0.527576i \(-0.176899\pi\)
0.849508 + 0.527576i \(0.176899\pi\)
\(350\) 3.67307i 0.196334i
\(351\) 2.59210i 0.138356i
\(352\) 22.6637i 1.20798i
\(353\) 3.32540 0.176993 0.0884965 0.996076i \(-0.471794\pi\)
0.0884965 + 0.996076i \(0.471794\pi\)
\(354\) 4.80150i 0.255197i
\(355\) 16.1891 0.859230
\(356\) −2.55215 −0.135264
\(357\) 0.214320 + 4.11753i 0.0113430 + 0.217923i
\(358\) −11.4380 −0.604517
\(359\) 17.5462 0.926051 0.463026 0.886345i \(-0.346764\pi\)
0.463026 + 0.886345i \(0.346764\pi\)
\(360\) 7.80642i 0.411435i
\(361\) −13.6588 −0.718883
\(362\) 4.38715i 0.230584i
\(363\) 4.23506i 0.222283i
\(364\) 3.95407i 0.207249i
\(365\) 36.2766 1.89880
\(366\) 0.0557773 0.00291553
\(367\) 29.5941i 1.54480i −0.635136 0.772400i \(-0.719056\pi\)
0.635136 0.772400i \(-0.280944\pi\)
\(368\) 4.99063i 0.260155i
\(369\) 2.31111i 0.120311i
\(370\) 3.85236 0.200274
\(371\) 6.49532i 0.337220i
\(372\) −2.42864 −0.125919
\(373\) −7.85236 −0.406580 −0.203290 0.979119i \(-0.565163\pi\)
−0.203290 + 0.979119i \(0.565163\pi\)
\(374\) −11.0716 + 0.576283i −0.572499 + 0.0297989i
\(375\) −1.06668 −0.0550829
\(376\) −27.3590 −1.41094
\(377\) 7.52543i 0.387579i
\(378\) −0.688892 −0.0354328
\(379\) 5.22570i 0.268426i 0.990953 + 0.134213i \(0.0428506\pi\)
−0.990953 + 0.134213i \(0.957149\pi\)
\(380\) 11.3319i 0.581312i
\(381\) 14.3319i 0.734243i
\(382\) 5.24443 0.268328
\(383\) 22.3575 1.14242 0.571208 0.820805i \(-0.306475\pi\)
0.571208 + 0.820805i \(0.306475\pi\)
\(384\) 10.7556i 0.548868i
\(385\) 12.5462i 0.639412i
\(386\) 2.21771i 0.112878i
\(387\) 4.18421 0.212695
\(388\) 8.49871i 0.431456i
\(389\) 38.4385 1.94891 0.974454 0.224586i \(-0.0721030\pi\)
0.974454 + 0.224586i \(0.0721030\pi\)
\(390\) −5.73975 −0.290643
\(391\) 14.9146 0.776312i 0.754263 0.0392598i
\(392\) 2.42864 0.122665
\(393\) 1.44938 0.0731117
\(394\) 4.22861i 0.213034i
\(395\) −55.1546 −2.77513
\(396\) 5.95407i 0.299203i
\(397\) 24.2973i 1.21945i −0.792614 0.609723i \(-0.791281\pi\)
0.792614 0.609723i \(-0.208719\pi\)
\(398\) 2.51606i 0.126119i
\(399\) 2.31111 0.115700
\(400\) −7.34614 −0.367307
\(401\) 14.0651i 0.702380i −0.936304 0.351190i \(-0.885777\pi\)
0.936304 0.351190i \(-0.114223\pi\)
\(402\) 10.3368i 0.515551i
\(403\) 4.12690i 0.205576i
\(404\) −22.2449 −1.10673
\(405\) 3.21432i 0.159721i
\(406\) −2.00000 −0.0992583
\(407\) 6.79060 0.336598
\(408\) −10.0000 + 0.520505i −0.495074 + 0.0257689i
\(409\) −18.7353 −0.926401 −0.463201 0.886254i \(-0.653299\pi\)
−0.463201 + 0.886254i \(0.653299\pi\)
\(410\) 5.11753 0.252737
\(411\) 6.36196i 0.313812i
\(412\) −17.6686 −0.870471
\(413\) 6.96989i 0.342966i
\(414\) 2.49532i 0.122638i
\(415\) 45.7560i 2.24608i
\(416\) −15.0509 −0.737929
\(417\) 7.93978 0.388813
\(418\) 6.21432i 0.303952i
\(419\) 34.2908i 1.67522i 0.546271 + 0.837609i \(0.316047\pi\)
−0.546271 + 0.837609i \(0.683953\pi\)
\(420\) 4.90321i 0.239252i
\(421\) −6.07805 −0.296226 −0.148113 0.988970i \(-0.547320\pi\)
−0.148113 + 0.988970i \(0.547320\pi\)
\(422\) 9.26178i 0.450857i
\(423\) −11.2652 −0.547732
\(424\) 15.7748 0.766091
\(425\) −1.14272 21.9541i −0.0554301 1.06493i
\(426\) −3.46965 −0.168105
\(427\) −0.0809666 −0.00391825
\(428\) 26.4460i 1.27832i
\(429\) −10.1175 −0.488479
\(430\) 9.26517i 0.446806i
\(431\) 1.04101i 0.0501437i 0.999686 + 0.0250719i \(0.00798146\pi\)
−0.999686 + 0.0250719i \(0.992019\pi\)
\(432\) 1.37778i 0.0662887i
\(433\) 0.771390 0.0370706 0.0185353 0.999828i \(-0.494100\pi\)
0.0185353 + 0.999828i \(0.494100\pi\)
\(434\) −1.09679 −0.0526475
\(435\) 9.33185i 0.447428i
\(436\) 24.3684i 1.16704i
\(437\) 8.37133i 0.400455i
\(438\) −7.77478 −0.371493
\(439\) 16.9097i 0.807054i −0.914968 0.403527i \(-0.867784\pi\)
0.914968 0.403527i \(-0.132216\pi\)
\(440\) 30.4701 1.45261
\(441\) 1.00000 0.0476190
\(442\) −0.382707 7.35260i −0.0182035 0.349727i
\(443\) −8.40345 −0.399260 −0.199630 0.979871i \(-0.563974\pi\)
−0.199630 + 0.979871i \(0.563974\pi\)
\(444\) 2.65386 0.125947
\(445\) 5.37778i 0.254931i
\(446\) 6.93825 0.328535
\(447\) 15.7748i 0.746122i
\(448\) 1.24443i 0.0587939i
\(449\) 8.44293i 0.398446i 0.979954 + 0.199223i \(0.0638419\pi\)
−0.979954 + 0.199223i \(0.936158\pi\)
\(450\) 3.67307 0.173150
\(451\) 9.02074 0.424770
\(452\) 4.59808i 0.216276i
\(453\) 20.9032i 0.982119i
\(454\) 15.3067i 0.718377i
\(455\) 8.33185 0.390603
\(456\) 5.61285i 0.262846i
\(457\) −35.4558 −1.65855 −0.829277 0.558838i \(-0.811247\pi\)
−0.829277 + 0.558838i \(0.811247\pi\)
\(458\) 15.3778 0.718557
\(459\) −4.11753 + 0.214320i −0.192190 + 0.0100036i
\(460\) −17.7605 −0.828087
\(461\) −14.3763 −0.669569 −0.334784 0.942295i \(-0.608663\pi\)
−0.334784 + 0.942295i \(0.608663\pi\)
\(462\) 2.68889i 0.125099i
\(463\) 35.0464 1.62874 0.814372 0.580343i \(-0.197081\pi\)
0.814372 + 0.580343i \(0.197081\pi\)
\(464\) 4.00000i 0.185695i
\(465\) 5.11753i 0.237320i
\(466\) 18.9525i 0.877959i
\(467\) 28.4701 1.31744 0.658720 0.752388i \(-0.271098\pi\)
0.658720 + 0.752388i \(0.271098\pi\)
\(468\) −3.95407 −0.182777
\(469\) 15.0049i 0.692863i
\(470\) 24.9447i 1.15061i
\(471\) 15.9842i 0.736512i
\(472\) −16.9273 −0.779144
\(473\) 16.3319i 0.750939i
\(474\) 11.8207 0.542943
\(475\) −12.3225 −0.565394
\(476\) 6.28100 0.326929i 0.287889 0.0149848i
\(477\) 6.49532 0.297400
\(478\) −5.66862 −0.259277
\(479\) 3.12690i 0.142872i 0.997445 + 0.0714358i \(0.0227581\pi\)
−0.997445 + 0.0714358i \(0.977242\pi\)
\(480\) 18.6637 0.851878
\(481\) 4.50961i 0.205620i
\(482\) 11.2257i 0.511316i
\(483\) 3.62222i 0.164817i
\(484\) 6.46028 0.293649
\(485\) −17.9081 −0.813166
\(486\) 0.688892i 0.0312488i
\(487\) 10.2667i 0.465229i 0.972569 + 0.232614i \(0.0747280\pi\)
−0.972569 + 0.232614i \(0.925272\pi\)
\(488\) 0.196639i 0.00890142i
\(489\) 17.9081 0.809834
\(490\) 2.21432i 0.100033i
\(491\) −0.663703 −0.0299525 −0.0149762 0.999888i \(-0.504767\pi\)
−0.0149762 + 0.999888i \(0.504767\pi\)
\(492\) 3.52543 0.158939
\(493\) −11.9541 + 0.622216i −0.538384 + 0.0280232i
\(494\) −4.12690 −0.185678
\(495\) 12.5462 0.563908
\(496\) 2.19358i 0.0984945i
\(497\) 5.03657 0.225921
\(498\) 9.80642i 0.439436i
\(499\) 3.99355i 0.178776i −0.995997 0.0893878i \(-0.971509\pi\)
0.995997 0.0893878i \(-0.0284911\pi\)
\(500\) 1.62714i 0.0727678i
\(501\) −3.79060 −0.169352
\(502\) −19.8306 −0.885081
\(503\) 14.8588i 0.662522i 0.943539 + 0.331261i \(0.107474\pi\)
−0.943539 + 0.331261i \(0.892526\pi\)
\(504\) 2.42864i 0.108180i
\(505\) 46.8736i 2.08585i
\(506\) 9.73975 0.432985
\(507\) 6.28100i 0.278949i
\(508\) −21.8622 −0.969978
\(509\) −12.5018 −0.554131 −0.277066 0.960851i \(-0.589362\pi\)
−0.277066 + 0.960851i \(0.589362\pi\)
\(510\) 0.474572 + 9.11753i 0.0210144 + 0.403731i
\(511\) 11.2859 0.499260
\(512\) 14.6923 0.649313
\(513\) 2.31111i 0.102038i
\(514\) 10.4746 0.462014
\(515\) 37.2306i 1.64058i
\(516\) 6.38271i 0.280983i
\(517\) 43.9704i 1.93381i
\(518\) 1.19850 0.0526590
\(519\) 8.20495 0.360157
\(520\) 20.2351i 0.887366i
\(521\) 29.5970i 1.29667i 0.761356 + 0.648335i \(0.224534\pi\)
−0.761356 + 0.648335i \(0.775466\pi\)
\(522\) 2.00000i 0.0875376i
\(523\) 27.8163 1.21632 0.608160 0.793814i \(-0.291908\pi\)
0.608160 + 0.793814i \(0.291908\pi\)
\(524\) 2.21093i 0.0965849i
\(525\) −5.33185 −0.232701
\(526\) −11.7047 −0.510350
\(527\) −6.55554 + 0.341219i −0.285564 + 0.0148637i
\(528\) 5.37778 0.234038
\(529\) 9.87955 0.429546
\(530\) 14.3827i 0.624745i
\(531\) −6.96989 −0.302467
\(532\) 3.52543i 0.152847i
\(533\) 5.99063i 0.259483i
\(534\) 1.15257i 0.0498764i
\(535\) −55.7259 −2.40924
\(536\) 36.4415 1.57404
\(537\) 16.6035i 0.716493i
\(538\) 6.54125i 0.282013i
\(539\) 3.90321i 0.168123i
\(540\) 4.90321 0.211001
\(541\) 3.18421i 0.136900i −0.997655 0.0684499i \(-0.978195\pi\)
0.997655 0.0684499i \(-0.0218053\pi\)
\(542\) −7.46181 −0.320512
\(543\) 6.36842 0.273295
\(544\) 1.24443 + 23.9081i 0.0533546 + 1.02505i
\(545\) 51.3481 2.19951
\(546\) −1.78568 −0.0764201
\(547\) 11.8415i 0.506304i 0.967426 + 0.253152i \(0.0814673\pi\)
−0.967426 + 0.253152i \(0.918533\pi\)
\(548\) 9.70471 0.414565
\(549\) 0.0809666i 0.00345557i
\(550\) 14.3368i 0.611322i
\(551\) 6.70964i 0.285840i
\(552\) 8.79706 0.374428
\(553\) −17.1590 −0.729676
\(554\) 20.2252i 0.859287i
\(555\) 5.59210i 0.237372i
\(556\) 12.1116i 0.513644i
\(557\) 10.4035 0.440808 0.220404 0.975409i \(-0.429262\pi\)
0.220404 + 0.975409i \(0.429262\pi\)
\(558\) 1.09679i 0.0464307i
\(559\) 10.8459 0.458733
\(560\) −4.42864 −0.187144
\(561\) 0.836535 + 16.0716i 0.0353186 + 0.678543i
\(562\) −5.34920 −0.225643
\(563\) 23.3176 0.982718 0.491359 0.870957i \(-0.336500\pi\)
0.491359 + 0.870957i \(0.336500\pi\)
\(564\) 17.1842i 0.723586i
\(565\) −9.68889 −0.407615
\(566\) 22.2908i 0.936954i
\(567\) 1.00000i 0.0419961i
\(568\) 12.2320i 0.513243i
\(569\) −18.7239 −0.784948 −0.392474 0.919763i \(-0.628381\pi\)
−0.392474 + 0.919763i \(0.628381\pi\)
\(570\) 5.11753 0.214350
\(571\) 33.7431i 1.41211i 0.708159 + 0.706053i \(0.249526\pi\)
−0.708159 + 0.706053i \(0.750474\pi\)
\(572\) 15.4336i 0.645310i
\(573\) 7.61285i 0.318031i
\(574\) 1.59210 0.0664531
\(575\) 19.3131i 0.805413i
\(576\) −1.24443 −0.0518513
\(577\) −34.9101 −1.45333 −0.726664 0.686993i \(-0.758930\pi\)
−0.726664 + 0.686993i \(0.758930\pi\)
\(578\) −11.6479 + 1.21585i −0.484488 + 0.0505727i
\(579\) −3.21924 −0.133787
\(580\) 14.2351 0.591079
\(581\) 14.2351i 0.590570i
\(582\) 3.83807 0.159093
\(583\) 25.3526i 1.05000i
\(584\) 27.4094i 1.13421i
\(585\) 8.33185i 0.344480i
\(586\) −19.0638 −0.787517
\(587\) 27.1635 1.12116 0.560578 0.828102i \(-0.310579\pi\)
0.560578 + 0.828102i \(0.310579\pi\)
\(588\) 1.52543i 0.0629076i
\(589\) 3.67952i 0.151612i
\(590\) 15.4336i 0.635390i
\(591\) −6.13828 −0.252495
\(592\) 2.39700i 0.0985160i
\(593\) −23.6019 −0.969216 −0.484608 0.874731i \(-0.661038\pi\)
−0.484608 + 0.874731i \(0.661038\pi\)
\(594\) −2.68889 −0.110327
\(595\) −0.688892 13.2351i −0.0282418 0.542585i
\(596\) −24.0633 −0.985671
\(597\) −3.65233 −0.149480
\(598\) 6.46812i 0.264501i
\(599\) −31.2257 −1.27585 −0.637924 0.770100i \(-0.720206\pi\)
−0.637924 + 0.770100i \(0.720206\pi\)
\(600\) 12.9491i 0.528647i
\(601\) 20.1541i 0.822103i −0.911612 0.411051i \(-0.865162\pi\)
0.911612 0.411051i \(-0.134838\pi\)
\(602\) 2.88247i 0.117481i
\(603\) 15.0049 0.611048
\(604\) −31.8863 −1.29744
\(605\) 13.6128i 0.553441i
\(606\) 10.0459i 0.408088i
\(607\) 34.1354i 1.38551i −0.721172 0.692756i \(-0.756396\pi\)
0.721172 0.692756i \(-0.243604\pi\)
\(608\) 13.4193 0.544223
\(609\) 2.90321i 0.117644i
\(610\) −0.179286 −0.00725908
\(611\) −29.2005 −1.18133
\(612\) 0.326929 + 6.28100i 0.0132153 + 0.253894i
\(613\) −16.0923 −0.649964 −0.324982 0.945720i \(-0.605358\pi\)
−0.324982 + 0.945720i \(0.605358\pi\)
\(614\) −16.1116 −0.650209
\(615\) 7.42864i 0.299552i
\(616\) 9.47949 0.381940
\(617\) 23.8020i 0.958232i −0.877752 0.479116i \(-0.840957\pi\)
0.877752 0.479116i \(-0.159043\pi\)
\(618\) 7.97926i 0.320973i
\(619\) 6.58274i 0.264583i 0.991211 + 0.132291i \(0.0422334\pi\)
−0.991211 + 0.132291i \(0.957767\pi\)
\(620\) 7.80642 0.313514
\(621\) 3.62222 0.145355
\(622\) 1.86971i 0.0749685i
\(623\) 1.67307i 0.0670302i
\(624\) 3.57136i 0.142969i
\(625\) −23.2306 −0.929225
\(626\) 21.7703i 0.870118i
\(627\) 9.02074 0.360254
\(628\) 24.3827 0.972976
\(629\) 7.16346 0.372862i 0.285626 0.0148670i
\(630\) 2.21432 0.0882206
\(631\) 3.20648 0.127648 0.0638240 0.997961i \(-0.479670\pi\)
0.0638240 + 0.997961i \(0.479670\pi\)
\(632\) 41.6731i 1.65767i
\(633\) −13.4445 −0.534369
\(634\) 6.14320i 0.243978i
\(635\) 46.0672i 1.82812i
\(636\) 9.90813i 0.392883i
\(637\) 2.59210 0.102703
\(638\) −7.80642 −0.309059
\(639\) 5.03657i 0.199243i
\(640\) 34.5718i 1.36657i
\(641\) 28.7275i 1.13467i 0.823488 + 0.567333i \(0.192025\pi\)
−0.823488 + 0.567333i \(0.807975\pi\)
\(642\) 11.9432 0.471359
\(643\) 39.2543i 1.54804i −0.633163 0.774019i \(-0.718244\pi\)
0.633163 0.774019i \(-0.281756\pi\)
\(644\) −5.52543 −0.217732
\(645\) −13.4494 −0.529569
\(646\) 0.341219 + 6.55554i 0.0134251 + 0.257924i
\(647\) 6.25380 0.245862 0.122931 0.992415i \(-0.460771\pi\)
0.122931 + 0.992415i \(0.460771\pi\)
\(648\) −2.42864 −0.0954060
\(649\) 27.2050i 1.06789i
\(650\) 9.52098 0.373444
\(651\) 1.59210i 0.0623995i
\(652\) 27.3176i 1.06984i
\(653\) 47.5303i 1.86001i 0.367552 + 0.930003i \(0.380196\pi\)
−0.367552 + 0.930003i \(0.619804\pi\)
\(654\) −11.0049 −0.430327
\(655\) −4.65878 −0.182034
\(656\) 3.18421i 0.124322i
\(657\) 11.2859i 0.440306i
\(658\) 7.76049i 0.302535i
\(659\) 25.8227 1.00591 0.502955 0.864312i \(-0.332246\pi\)
0.502955 + 0.864312i \(0.332246\pi\)
\(660\) 19.1383i 0.744956i
\(661\) −28.0672 −1.09169 −0.545843 0.837888i \(-0.683790\pi\)
−0.545843 + 0.837888i \(0.683790\pi\)
\(662\) 8.24152 0.320316
\(663\) −10.6731 + 0.555539i −0.414508 + 0.0215754i
\(664\) −34.5718 −1.34165
\(665\) −7.42864 −0.288070
\(666\) 1.19850i 0.0464409i
\(667\) 10.5161 0.407183
\(668\) 5.78229i 0.223723i
\(669\) 10.0716i 0.389391i
\(670\) 33.2257i 1.28362i
\(671\) −0.316030 −0.0122002
\(672\) 5.80642 0.223988
\(673\) 23.3907i 0.901645i −0.892614 0.450822i \(-0.851131\pi\)
0.892614 0.450822i \(-0.148869\pi\)
\(674\) 7.41387i 0.285572i
\(675\) 5.33185i 0.205223i
\(676\) 9.58120 0.368508
\(677\) 3.46674i 0.133237i −0.997779 0.0666187i \(-0.978779\pi\)
0.997779 0.0666187i \(-0.0212211\pi\)
\(678\) 2.07652 0.0797483
\(679\) −5.57136 −0.213809
\(680\) 32.1432 1.67307i 1.23264 0.0641593i
\(681\) 22.2192 0.851443
\(682\) −4.28100 −0.163928
\(683\) 42.7101i 1.63426i −0.576456 0.817129i \(-0.695565\pi\)
0.576456 0.817129i \(-0.304435\pi\)
\(684\) 3.52543 0.134798
\(685\) 20.4494i 0.781331i
\(686\) 0.688892i 0.0263020i
\(687\) 22.3225i 0.851656i
\(688\) −5.76494 −0.219786
\(689\) 16.8365 0.641421
\(690\) 8.02074i 0.305344i
\(691\) 30.1037i 1.14520i 0.819835 + 0.572600i \(0.194065\pi\)
−0.819835 + 0.572600i \(0.805935\pi\)
\(692\) 12.5161i 0.475789i
\(693\) 3.90321 0.148271
\(694\) 9.97820i 0.378767i
\(695\) −25.5210 −0.968066
\(696\) −7.05086 −0.267262
\(697\) 9.51606 0.495316i 0.360446 0.0187614i
\(698\) 21.8656 0.827625
\(699\) −27.5116 −1.04058
\(700\) 8.13335i 0.307412i
\(701\) −6.32693 −0.238965 −0.119482 0.992836i \(-0.538124\pi\)
−0.119482 + 0.992836i \(0.538124\pi\)
\(702\) 1.78568i 0.0673962i
\(703\) 4.02074i 0.151645i
\(704\) 4.85728i 0.183066i
\(705\) 36.2099 1.36374
\(706\) 2.29084 0.0862169
\(707\) 14.5827i 0.548440i
\(708\) 10.6321i 0.399577i
\(709\) 2.48886i 0.0934712i 0.998907 + 0.0467356i \(0.0148818\pi\)
−0.998907 + 0.0467356i \(0.985118\pi\)
\(710\) 11.1526 0.418548
\(711\) 17.1590i 0.643513i
\(712\) −4.06329 −0.152278
\(713\) 5.76694 0.215974
\(714\) 0.147643 + 2.83654i 0.00552541 + 0.106155i
\(715\) 32.5210 1.21622
\(716\) 25.3274 0.946530
\(717\) 8.22861i 0.307303i
\(718\) 12.0874 0.451099
\(719\) 25.6113i 0.955141i 0.878593 + 0.477570i \(0.158482\pi\)
−0.878593 + 0.477570i \(0.841518\pi\)
\(720\) 4.42864i 0.165046i
\(721\) 11.5827i 0.431364i
\(722\) −9.40943 −0.350183
\(723\) 16.2953 0.606028
\(724\) 9.71456i 0.361039i
\(725\) 15.4795i 0.574894i
\(726\) 2.91750i 0.108279i
\(727\) −0.612371 −0.0227116 −0.0113558 0.999936i \(-0.503615\pi\)
−0.0113558 + 0.999936i \(0.503615\pi\)
\(728\) 6.29529i 0.233319i
\(729\) −1.00000 −0.0370370
\(730\) 24.9906 0.924945
\(731\) −0.896758 17.2286i −0.0331678 0.637223i
\(732\) −0.123509 −0.00456502
\(733\) 33.9496 1.25396 0.626979 0.779036i \(-0.284291\pi\)
0.626979 + 0.779036i \(0.284291\pi\)
\(734\) 20.3872i 0.752504i
\(735\) −3.21432 −0.118562
\(736\) 21.0321i 0.775254i
\(737\) 58.5674i 2.15736i
\(738\) 1.59210i 0.0586062i
\(739\) 14.3907 0.529370 0.264685 0.964335i \(-0.414732\pi\)
0.264685 + 0.964335i \(0.414732\pi\)
\(740\) −8.53035 −0.313582
\(741\) 5.99063i 0.220071i
\(742\) 4.47457i 0.164267i
\(743\) 45.4938i 1.66901i −0.551004 0.834503i \(-0.685755\pi\)
0.551004 0.834503i \(-0.314245\pi\)
\(744\) −3.86665 −0.141758
\(745\) 50.7052i 1.85769i
\(746\) −5.40943 −0.198053
\(747\) −14.2351 −0.520834
\(748\) 24.5161 1.27607i 0.896396 0.0466579i
\(749\) −17.3368 −0.633472
\(750\) −0.734825 −0.0268320
\(751\) 39.9017i 1.45603i −0.685560 0.728017i \(-0.740442\pi\)
0.685560 0.728017i \(-0.259558\pi\)
\(752\) 15.5210 0.565992
\(753\) 28.7862i 1.04903i
\(754\) 5.18421i 0.188798i
\(755\) 67.1896i 2.44528i
\(756\) 1.52543 0.0554793
\(757\) −23.1388 −0.840992 −0.420496 0.907294i \(-0.638144\pi\)
−0.420496 + 0.907294i \(0.638144\pi\)
\(758\) 3.59994i 0.130756i
\(759\) 14.1383i 0.513187i
\(760\) 18.0415i 0.654434i
\(761\) −31.2958 −1.13447 −0.567235 0.823556i \(-0.691987\pi\)
−0.567235 + 0.823556i \(0.691987\pi\)
\(762\) 9.87310i 0.357665i
\(763\) 15.9748 0.578327
\(764\) −11.6128 −0.420138
\(765\) 13.2351 0.688892i 0.478515 0.0249069i
\(766\) 15.4019 0.556494
\(767\) −18.0667 −0.652350
\(768\) 9.89829i 0.357174i
\(769\) 19.3446 0.697584 0.348792 0.937200i \(-0.386592\pi\)
0.348792 + 0.937200i \(0.386592\pi\)
\(770\) 8.64296i 0.311471i
\(771\) 15.2050i 0.547593i
\(772\) 4.91072i 0.176741i
\(773\) −5.56046 −0.199996 −0.0999979 0.994988i \(-0.531884\pi\)
−0.0999979 + 0.994988i \(0.531884\pi\)
\(774\) 2.88247 0.103608
\(775\) 8.48886i 0.304929i
\(776\) 13.5308i 0.485728i
\(777\) 1.73975i 0.0624131i
\(778\) 26.4800 0.949353
\(779\) 5.34122i 0.191369i
\(780\) 12.7096 0.455078
\(781\) 19.6588 0.703446
\(782\) 10.2745 0.534795i 0.367417 0.0191242i
\(783\) −2.90321 −0.103752
\(784\) −1.37778 −0.0492066
\(785\) 51.3783i 1.83377i
\(786\) 0.998469 0.0356142
\(787\) 22.4177i 0.799106i 0.916710 + 0.399553i \(0.130835\pi\)
−0.916710 + 0.399553i \(0.869165\pi\)
\(788\) 9.36349i 0.333561i
\(789\) 16.9906i 0.604883i
\(790\) −37.9956 −1.35182
\(791\) −3.01429 −0.107176
\(792\) 9.47949i 0.336839i
\(793\) 0.209874i 0.00745284i
\(794\) 16.7382i 0.594017i
\(795\) −20.8780 −0.740467
\(796\) 5.57136i 0.197472i
\(797\) 11.5812 0.410227 0.205114 0.978738i \(-0.434244\pi\)
0.205114 + 0.978738i \(0.434244\pi\)
\(798\) 1.59210 0.0563599
\(799\) 2.41435 + 46.3847i 0.0854135 + 1.64097i
\(800\) −30.9590 −1.09457
\(801\) −1.67307 −0.0591150
\(802\) 9.68937i 0.342143i
\(803\) 44.0513 1.55454
\(804\) 22.8889i 0.807230i
\(805\) 11.6430i 0.410360i
\(806\) 2.84299i 0.100140i
\(807\) 9.49532 0.334251
\(808\) −35.4162 −1.24594
\(809\) 40.6084i 1.42772i −0.700291 0.713858i \(-0.746946\pi\)
0.700291 0.713858i \(-0.253054\pi\)
\(810\) 2.21432i 0.0778033i
\(811\) 43.7431i 1.53603i 0.640432 + 0.768015i \(0.278755\pi\)
−0.640432 + 0.768015i \(0.721245\pi\)
\(812\) 4.42864 0.155415
\(813\) 10.8316i 0.379881i
\(814\) 4.67799 0.163964
\(815\) −57.5625 −2.01633
\(816\) 5.67307 0.295286i 0.198597 0.0103371i
\(817\) −9.67016 −0.338316
\(818\) −12.9066 −0.451269
\(819\) 2.59210i 0.0905754i
\(820\) −11.3319 −0.395725
\(821\) 21.8889i 0.763929i 0.924177 + 0.381964i \(0.124752\pi\)
−0.924177 + 0.381964i \(0.875248\pi\)
\(822\) 4.38271i 0.152864i
\(823\) 54.4449i 1.89783i −0.315530 0.948916i \(-0.602182\pi\)
0.315530 0.948916i \(-0.397818\pi\)
\(824\) −28.1303 −0.979965
\(825\) −20.8113 −0.724558
\(826\) 4.80150i 0.167066i
\(827\) 13.6593i 0.474979i −0.971390 0.237489i \(-0.923675\pi\)
0.971390 0.237489i \(-0.0763245\pi\)
\(828\) 5.52543i 0.192022i
\(829\) 43.2070 1.50064 0.750320 0.661075i \(-0.229899\pi\)
0.750320 + 0.661075i \(0.229899\pi\)
\(830\) 31.5210i 1.09411i
\(831\) −29.3590 −1.01845
\(832\) −3.22570 −0.111831
\(833\) −0.214320 4.11753i −0.00742574 0.142664i
\(834\) 5.46965 0.189398
\(835\) 12.1842 0.421652
\(836\) 13.7605i 0.475917i
\(837\) −1.59210 −0.0550312
\(838\) 23.6227i 0.816032i
\(839\) 13.8352i 0.477643i −0.971064 0.238821i \(-0.923239\pi\)
0.971064 0.238821i \(-0.0767610\pi\)
\(840\) 7.80642i 0.269347i
\(841\) 20.5714 0.709357
\(842\) −4.18712 −0.144298
\(843\) 7.76494i 0.267439i
\(844\) 20.5086i 0.705933i
\(845\) 20.1891i 0.694527i
\(846\) −7.76049 −0.266811
\(847\) 4.23506i 0.145518i
\(848\) −8.94914 −0.307315
\(849\) −32.3575 −1.11051
\(850\) −0.787212 15.1240i −0.0270011 0.518748i
\(851\) −6.30174 −0.216021
\(852\) 7.68292 0.263212
\(853\) 30.7991i 1.05454i 0.849698 + 0.527270i \(0.176784\pi\)
−0.849698 + 0.527270i \(0.823216\pi\)
\(854\) −0.0557773 −0.00190866
\(855\) 7.42864i 0.254054i
\(856\) 42.1048i 1.43911i
\(857\) 41.7877i 1.42744i −0.700431 0.713720i \(-0.747009\pi\)
0.700431 0.713720i \(-0.252991\pi\)
\(858\) −6.96989 −0.237948
\(859\) 32.7368 1.11697 0.558483 0.829516i \(-0.311384\pi\)
0.558483 + 0.829516i \(0.311384\pi\)
\(860\) 20.5161i 0.699592i
\(861\) 2.31111i 0.0787623i
\(862\) 0.717144i 0.0244260i
\(863\) −20.7205 −0.705335 −0.352668 0.935749i \(-0.614725\pi\)
−0.352668 + 0.935749i \(0.614725\pi\)
\(864\) 5.80642i 0.197539i
\(865\) −26.3733 −0.896720
\(866\) 0.531405 0.0180579
\(867\) 1.76494 + 16.9081i 0.0599404 + 0.574230i
\(868\) 2.42864 0.0824334
\(869\) −66.9753 −2.27198
\(870\) 6.42864i 0.217951i
\(871\) 38.8943 1.31788
\(872\) 38.7971i 1.31383i
\(873\) 5.57136i 0.188562i
\(874\) 5.76694i 0.195070i
\(875\) 1.06668 0.0360602
\(876\) 17.2159 0.581670
\(877\) 14.1082i 0.476399i 0.971216 + 0.238199i \(0.0765572\pi\)
−0.971216 + 0.238199i \(0.923443\pi\)
\(878\) 11.6489i 0.393133i
\(879\) 27.6731i 0.933390i
\(880\) −17.2859 −0.582708
\(881\) 0.805947i 0.0271531i −0.999908 0.0135765i \(-0.995678\pi\)
0.999908 0.0135765i \(-0.00432168\pi\)
\(882\) 0.688892 0.0231962
\(883\) 6.17976 0.207966 0.103983 0.994579i \(-0.466841\pi\)
0.103983 + 0.994579i \(0.466841\pi\)
\(884\) 0.847435 + 16.2810i 0.0285023 + 0.547589i
\(885\) 22.4035 0.753084
\(886\) −5.78907 −0.194488
\(887\) 1.35212i 0.0453997i 0.999742 + 0.0226998i \(0.00722621\pi\)
−0.999742 + 0.0226998i \(0.992774\pi\)
\(888\) 4.22522 0.141789
\(889\) 14.3319i 0.480675i
\(890\) 3.70471i 0.124182i
\(891\) 3.90321i 0.130763i
\(892\) −15.3635 −0.514408
\(893\) 26.0350 0.871229
\(894\) 10.8671i 0.363451i
\(895\) 53.3689i 1.78393i
\(896\) 10.7556i 0.359318i
\(897\) 9.38916 0.313495
\(898\) 5.81627i 0.194091i
\(899\) −4.62222 −0.154160
\(900\) −8.13335 −0.271112
\(901\) −1.39207 26.7447i −0.0463767 0.890994i
\(902\) 6.21432 0.206914
\(903\) −4.18421 −0.139242
\(904\) 7.32062i 0.243480i
\(905\) −20.4701 −0.680450
\(906\) 14.4001i 0.478410i
\(907\) 9.74620i 0.323617i 0.986822 + 0.161809i \(0.0517327\pi\)
−0.986822 + 0.161809i \(0.948267\pi\)
\(908\) 33.8938i 1.12481i
\(909\) −14.5827 −0.483679
\(910\) 5.73975 0.190271
\(911\) 12.1570i 0.402780i 0.979511 + 0.201390i \(0.0645458\pi\)
−0.979511 + 0.201390i \(0.935454\pi\)
\(912\) 3.18421i 0.105440i
\(913\) 55.5625i 1.83885i
\(914\) −24.4252 −0.807915
\(915\) 0.260253i 0.00860369i
\(916\) −34.0513 −1.12509
\(917\) −1.44938 −0.0478628
\(918\) −2.83654 + 0.147643i −0.0936196 + 0.00487295i
\(919\) 49.8800 1.64539 0.822695 0.568483i \(-0.192469\pi\)
0.822695 + 0.568483i \(0.192469\pi\)
\(920\) −28.2766 −0.932250
\(921\) 23.3876i 0.770649i
\(922\) −9.90369 −0.326161
\(923\) 13.0553i 0.429720i
\(924\) 5.95407i 0.195874i
\(925\) 9.27607i 0.304995i
\(926\) 24.1432 0.793395
\(927\) −11.5827 −0.380427
\(928\) 16.8573i 0.553367i
\(929\) 6.61930i 0.217172i 0.994087 + 0.108586i \(0.0346323\pi\)
−0.994087 + 0.108586i \(0.965368\pi\)
\(930\) 3.52543i 0.115603i
\(931\) −2.31111 −0.0757435
\(932\) 41.9670i 1.37467i
\(933\) 2.71408 0.0888550
\(934\) 19.6128 0.641752
\(935\) −2.68889 51.6593i −0.0879362 1.68944i
\(936\) −6.29529 −0.205768
\(937\) 9.28147 0.303212 0.151606 0.988441i \(-0.451555\pi\)
0.151606 + 0.988441i \(0.451555\pi\)
\(938\) 10.3368i 0.337508i
\(939\) −31.6019 −1.03129
\(940\) 55.2355i 1.80158i
\(941\) 24.7338i 0.806298i 0.915134 + 0.403149i \(0.132084\pi\)
−0.915134 + 0.403149i \(0.867916\pi\)
\(942\) 11.0114i 0.358770i
\(943\) −8.37133 −0.272608
\(944\) 9.60300 0.312551
\(945\) 3.21432i 0.104562i
\(946\) 11.2509i 0.365798i
\(947\) 27.0879i 0.880238i 0.897939 + 0.440119i \(0.145064\pi\)
−0.897939 + 0.440119i \(0.854936\pi\)
\(948\) −26.1748 −0.850119
\(949\) 29.2543i 0.949634i
\(950\) −8.48886 −0.275415
\(951\) 8.91750 0.289170
\(952\) 10.0000 0.520505i 0.324102 0.0168697i
\(953\) 54.1367 1.75366 0.876831 0.480799i \(-0.159654\pi\)
0.876831 + 0.480799i \(0.159654\pi\)
\(954\) 4.47457 0.144870
\(955\) 24.4701i 0.791835i
\(956\) 12.5521 0.405965
\(957\) 11.3319i 0.366307i
\(958\) 2.15410i 0.0695957i
\(959\) 6.36196i 0.205438i
\(960\) 4.00000 0.129099
\(961\) 28.4652 0.918232
\(962\) 3.10663i 0.100162i
\(963\) 17.3368i 0.558670i
\(964\) 24.8573i 0.800599i
\(965\) 10.3477 0.333103
\(966\) 2.49532i 0.0802855i
\(967\) 26.4750 0.851380 0.425690 0.904869i \(-0.360031\pi\)
0.425690 + 0.904869i \(0.360031\pi\)
\(968\) 10.2854 0.330587
\(969\) 9.51606 0.495316i 0.305700 0.0159118i
\(970\) −12.3368 −0.396110
\(971\) −15.4479 −0.495745 −0.247873 0.968793i \(-0.579731\pi\)
−0.247873 + 0.968793i \(0.579731\pi\)
\(972\) 1.52543i 0.0489281i
\(973\) −7.93978 −0.254538
\(974\) 7.07265i 0.226622i
\(975\) 13.8207i 0.442617i
\(976\) 0.111555i 0.00357078i
\(977\) 58.6321 1.87581 0.937903 0.346898i \(-0.112765\pi\)
0.937903 + 0.346898i \(0.112765\pi\)
\(978\) 12.3368 0.394487
\(979\) 6.53035i 0.208711i
\(980\) 4.90321i 0.156627i
\(981\) 15.9748i 0.510036i
\(982\) −0.457220 −0.0145905
\(983\) 1.92396i 0.0613647i −0.999529 0.0306823i \(-0.990232\pi\)
0.999529 0.0306823i \(-0.00976802\pi\)
\(984\) 5.61285 0.178931
\(985\) 19.7304 0.628662
\(986\) −8.23506 + 0.428639i −0.262258 + 0.0136507i
\(987\) 11.2652 0.358574
\(988\) 9.13828 0.290727
\(989\) 15.1561i 0.481936i
\(990\) 8.64296 0.274691
\(991\) 19.6030i 0.622710i −0.950294 0.311355i \(-0.899217\pi\)
0.950294 0.311355i \(-0.100783\pi\)
\(992\) 9.24443i 0.293511i
\(993\) 11.9634i 0.379648i
\(994\) 3.46965 0.110051
\(995\) 11.7397 0.372175
\(996\) 21.7146i 0.688052i
\(997\) 16.6726i 0.528026i −0.964519 0.264013i \(-0.914954\pi\)
0.964519 0.264013i \(-0.0850462\pi\)
\(998\) 2.75112i 0.0870853i
\(999\) 1.73975 0.0550432
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 357.2.f.a.169.3 6
3.2 odd 2 1071.2.f.a.883.3 6
17.4 even 4 6069.2.a.k.1.2 3
17.13 even 4 6069.2.a.m.1.2 3
17.16 even 2 inner 357.2.f.a.169.4 yes 6
51.50 odd 2 1071.2.f.a.883.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
357.2.f.a.169.3 6 1.1 even 1 trivial
357.2.f.a.169.4 yes 6 17.16 even 2 inner
1071.2.f.a.883.3 6 3.2 odd 2
1071.2.f.a.883.4 6 51.50 odd 2
6069.2.a.k.1.2 3 17.4 even 4
6069.2.a.m.1.2 3 17.13 even 4