Properties

Label 1056.2.y.f.289.3
Level $1056$
Weight $2$
Character 1056.289
Analytic conductor $8.432$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1056,2,Mod(97,1056)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1056.97"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1056, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 0, 6])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1056 = 2^{5} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1056.y (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,-3,0,0,0,0,0,-3,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.43220245345\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(3\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} + 4 x^{10} - 44 x^{9} + 108 x^{8} - 177 x^{7} + 639 x^{6} - 1146 x^{5} + 1207 x^{4} + \cdots + 3911 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 5 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 289.3
Root \(-2.03004 - 2.89346i\) of defining polynomial
Character \(\chi\) \(=\) 1056.289
Dual form 1056.2.y.f.961.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.309017 + 0.951057i) q^{3} +(2.62854 + 1.90975i) q^{5} +(0.345109 - 1.06214i) q^{7} +(-0.809017 + 0.587785i) q^{9} +(3.28219 - 0.476705i) q^{11} +(2.68293 - 1.94926i) q^{13} +(-1.00401 + 3.09003i) q^{15} +(3.19018 + 2.31780i) q^{17} +(-1.93354 - 5.95084i) q^{19} +1.11680 q^{21} +0.811018 q^{23} +(1.71701 + 5.28440i) q^{25} +(-0.809017 - 0.587785i) q^{27} +(0.250914 - 0.772235i) q^{29} +(-1.51953 + 1.10400i) q^{31} +(1.46762 + 2.97424i) q^{33} +(2.93555 - 2.13280i) q^{35} +(-1.59821 + 4.91878i) q^{37} +(2.68293 + 1.94926i) q^{39} +(-0.0363881 - 0.111991i) q^{41} -0.605048 q^{43} -3.24905 q^{45} +(-1.73634 - 5.34390i) q^{47} +(4.65408 + 3.38139i) q^{49} +(-1.21854 + 3.75028i) q^{51} +(-8.84026 + 6.42282i) q^{53} +(9.53774 + 5.01511i) q^{55} +(5.06208 - 3.67782i) q^{57} +(-1.44934 + 4.46060i) q^{59} +(-6.44984 - 4.68608i) q^{61} +(0.345109 + 1.06214i) q^{63} +10.7748 q^{65} -5.27560 q^{67} +(0.250618 + 0.771324i) q^{69} +(-10.6725 - 7.75405i) q^{71} +(-0.635354 + 1.95542i) q^{73} +(-4.49518 + 3.26594i) q^{75} +(0.626388 - 3.65065i) q^{77} +(-14.0249 + 10.1897i) q^{79} +(0.309017 - 0.951057i) q^{81} +(11.4242 + 8.30017i) q^{83} +(3.95910 + 12.1849i) q^{85} +0.811976 q^{87} +13.1623 q^{89} +(-1.14448 - 3.52234i) q^{91} +(-1.51953 - 1.10400i) q^{93} +(6.28219 - 19.3346i) q^{95} +(10.1943 - 7.40659i) q^{97} +(-2.37515 + 2.31488i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 3 q^{3} - 3 q^{9} + 6 q^{11} + 6 q^{13} - 5 q^{15} + 8 q^{19} + 10 q^{21} + 8 q^{23} + 9 q^{25} - 3 q^{27} + 5 q^{29} - 11 q^{31} + q^{33} + 9 q^{35} - 6 q^{37} + 6 q^{39} - 10 q^{41} - 16 q^{43}+ \cdots + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1056\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(353\) \(673\) \(991\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.309017 + 0.951057i 0.178411 + 0.549093i
\(4\) 0 0
\(5\) 2.62854 + 1.90975i 1.17552 + 0.854064i 0.991659 0.128888i \(-0.0411409\pi\)
0.183859 + 0.982953i \(0.441141\pi\)
\(6\) 0 0
\(7\) 0.345109 1.06214i 0.130439 0.401450i −0.864414 0.502781i \(-0.832310\pi\)
0.994853 + 0.101331i \(0.0323101\pi\)
\(8\) 0 0
\(9\) −0.809017 + 0.587785i −0.269672 + 0.195928i
\(10\) 0 0
\(11\) 3.28219 0.476705i 0.989617 0.143732i
\(12\) 0 0
\(13\) 2.68293 1.94926i 0.744110 0.540627i −0.149886 0.988703i \(-0.547891\pi\)
0.893995 + 0.448076i \(0.147891\pi\)
\(14\) 0 0
\(15\) −1.00401 + 3.09003i −0.259235 + 0.797843i
\(16\) 0 0
\(17\) 3.19018 + 2.31780i 0.773731 + 0.562149i 0.903091 0.429449i \(-0.141292\pi\)
−0.129360 + 0.991598i \(0.541292\pi\)
\(18\) 0 0
\(19\) −1.93354 5.95084i −0.443585 1.36522i −0.884028 0.467434i \(-0.845178\pi\)
0.440442 0.897781i \(-0.354822\pi\)
\(20\) 0 0
\(21\) 1.11680 0.243705
\(22\) 0 0
\(23\) 0.811018 0.169109 0.0845545 0.996419i \(-0.473053\pi\)
0.0845545 + 0.996419i \(0.473053\pi\)
\(24\) 0 0
\(25\) 1.71701 + 5.28440i 0.343401 + 1.05688i
\(26\) 0 0
\(27\) −0.809017 0.587785i −0.155695 0.113119i
\(28\) 0 0
\(29\) 0.250914 0.772235i 0.0465936 0.143400i −0.925053 0.379838i \(-0.875980\pi\)
0.971647 + 0.236437i \(0.0759798\pi\)
\(30\) 0 0
\(31\) −1.51953 + 1.10400i −0.272916 + 0.198285i −0.715822 0.698283i \(-0.753948\pi\)
0.442906 + 0.896568i \(0.353948\pi\)
\(32\) 0 0
\(33\) 1.46762 + 2.97424i 0.255481 + 0.517748i
\(34\) 0 0
\(35\) 2.93555 2.13280i 0.496198 0.360509i
\(36\) 0 0
\(37\) −1.59821 + 4.91878i −0.262744 + 0.808642i 0.729461 + 0.684023i \(0.239771\pi\)
−0.992205 + 0.124620i \(0.960229\pi\)
\(38\) 0 0
\(39\) 2.68293 + 1.94926i 0.429612 + 0.312131i
\(40\) 0 0
\(41\) −0.0363881 0.111991i −0.00568286 0.0174900i 0.948175 0.317749i \(-0.102927\pi\)
−0.953858 + 0.300259i \(0.902927\pi\)
\(42\) 0 0
\(43\) −0.605048 −0.0922690 −0.0461345 0.998935i \(-0.514690\pi\)
−0.0461345 + 0.998935i \(0.514690\pi\)
\(44\) 0 0
\(45\) −3.24905 −0.484340
\(46\) 0 0
\(47\) −1.73634 5.34390i −0.253271 0.779488i −0.994165 0.107866i \(-0.965598\pi\)
0.740895 0.671621i \(-0.234402\pi\)
\(48\) 0 0
\(49\) 4.65408 + 3.38139i 0.664869 + 0.483056i
\(50\) 0 0
\(51\) −1.21854 + 3.75028i −0.170630 + 0.525144i
\(52\) 0 0
\(53\) −8.84026 + 6.42282i −1.21430 + 0.882243i −0.995614 0.0935521i \(-0.970178\pi\)
−0.218688 + 0.975795i \(0.570178\pi\)
\(54\) 0 0
\(55\) 9.53774 + 5.01511i 1.28607 + 0.676237i
\(56\) 0 0
\(57\) 5.06208 3.67782i 0.670489 0.487139i
\(58\) 0 0
\(59\) −1.44934 + 4.46060i −0.188688 + 0.580721i −0.999992 0.00390262i \(-0.998758\pi\)
0.811305 + 0.584623i \(0.198758\pi\)
\(60\) 0 0
\(61\) −6.44984 4.68608i −0.825817 0.599991i 0.0925559 0.995707i \(-0.470496\pi\)
−0.918373 + 0.395716i \(0.870496\pi\)
\(62\) 0 0
\(63\) 0.345109 + 1.06214i 0.0434797 + 0.133817i
\(64\) 0 0
\(65\) 10.7748 1.33645
\(66\) 0 0
\(67\) −5.27560 −0.644518 −0.322259 0.946652i \(-0.604442\pi\)
−0.322259 + 0.946652i \(0.604442\pi\)
\(68\) 0 0
\(69\) 0.250618 + 0.771324i 0.0301709 + 0.0928565i
\(70\) 0 0
\(71\) −10.6725 7.75405i −1.26660 0.920237i −0.267536 0.963548i \(-0.586209\pi\)
−0.999062 + 0.0433112i \(0.986209\pi\)
\(72\) 0 0
\(73\) −0.635354 + 1.95542i −0.0743626 + 0.228864i −0.981328 0.192340i \(-0.938392\pi\)
0.906966 + 0.421204i \(0.138392\pi\)
\(74\) 0 0
\(75\) −4.49518 + 3.26594i −0.519059 + 0.377118i
\(76\) 0 0
\(77\) 0.626388 3.65065i 0.0713835 0.416030i
\(78\) 0 0
\(79\) −14.0249 + 10.1897i −1.57792 + 1.14643i −0.658889 + 0.752241i \(0.728973\pi\)
−0.919031 + 0.394185i \(0.871027\pi\)
\(80\) 0 0
\(81\) 0.309017 0.951057i 0.0343352 0.105673i
\(82\) 0 0
\(83\) 11.4242 + 8.30017i 1.25397 + 0.911063i 0.998445 0.0557400i \(-0.0177518\pi\)
0.255525 + 0.966803i \(0.417752\pi\)
\(84\) 0 0
\(85\) 3.95910 + 12.1849i 0.429425 + 1.32163i
\(86\) 0 0
\(87\) 0.811976 0.0870529
\(88\) 0 0
\(89\) 13.1623 1.39520 0.697598 0.716490i \(-0.254252\pi\)
0.697598 + 0.716490i \(0.254252\pi\)
\(90\) 0 0
\(91\) −1.14448 3.52234i −0.119974 0.369242i
\(92\) 0 0
\(93\) −1.51953 1.10400i −0.157568 0.114480i
\(94\) 0 0
\(95\) 6.28219 19.3346i 0.644539 1.98369i
\(96\) 0 0
\(97\) 10.1943 7.40659i 1.03507 0.752025i 0.0657562 0.997836i \(-0.479054\pi\)
0.969318 + 0.245810i \(0.0790540\pi\)
\(98\) 0 0
\(99\) −2.37515 + 2.31488i −0.238711 + 0.232655i
\(100\) 0 0
\(101\) −3.71490 + 2.69904i −0.369647 + 0.268564i −0.757064 0.653340i \(-0.773367\pi\)
0.387418 + 0.921904i \(0.373367\pi\)
\(102\) 0 0
\(103\) −3.43629 + 10.5758i −0.338588 + 1.04207i 0.626339 + 0.779550i \(0.284552\pi\)
−0.964928 + 0.262516i \(0.915448\pi\)
\(104\) 0 0
\(105\) 2.93555 + 2.13280i 0.286480 + 0.208140i
\(106\) 0 0
\(107\) −4.89884 15.0771i −0.473589 1.45756i −0.847852 0.530233i \(-0.822104\pi\)
0.374263 0.927323i \(-0.377896\pi\)
\(108\) 0 0
\(109\) −0.104093 −0.00997029 −0.00498514 0.999988i \(-0.501587\pi\)
−0.00498514 + 0.999988i \(0.501587\pi\)
\(110\) 0 0
\(111\) −5.17191 −0.490896
\(112\) 0 0
\(113\) 3.77865 + 11.6295i 0.355466 + 1.09401i 0.955739 + 0.294216i \(0.0950585\pi\)
−0.600273 + 0.799795i \(0.704941\pi\)
\(114\) 0 0
\(115\) 2.13179 + 1.54884i 0.198791 + 0.144430i
\(116\) 0 0
\(117\) −1.02479 + 3.15397i −0.0947415 + 0.291584i
\(118\) 0 0
\(119\) 3.56278 2.58851i 0.326599 0.237288i
\(120\) 0 0
\(121\) 10.5455 3.12927i 0.958682 0.284479i
\(122\) 0 0
\(123\) 0.0952652 0.0692142i 0.00858977 0.00624084i
\(124\) 0 0
\(125\) −0.558581 + 1.71914i −0.0499610 + 0.153764i
\(126\) 0 0
\(127\) 11.6044 + 8.43108i 1.02972 + 0.748138i 0.968253 0.249971i \(-0.0804211\pi\)
0.0614700 + 0.998109i \(0.480421\pi\)
\(128\) 0 0
\(129\) −0.186970 0.575435i −0.0164618 0.0506642i
\(130\) 0 0
\(131\) 15.1652 1.32499 0.662496 0.749065i \(-0.269497\pi\)
0.662496 + 0.749065i \(0.269497\pi\)
\(132\) 0 0
\(133\) −6.98789 −0.605927
\(134\) 0 0
\(135\) −1.00401 3.09003i −0.0864117 0.265948i
\(136\) 0 0
\(137\) −12.5187 9.09537i −1.06954 0.777070i −0.0937145 0.995599i \(-0.529874\pi\)
−0.975830 + 0.218529i \(0.929874\pi\)
\(138\) 0 0
\(139\) 0.625174 1.92409i 0.0530266 0.163199i −0.921036 0.389477i \(-0.872656\pi\)
0.974063 + 0.226278i \(0.0726558\pi\)
\(140\) 0 0
\(141\) 4.54579 3.30271i 0.382825 0.278138i
\(142\) 0 0
\(143\) 7.87664 7.67680i 0.658678 0.641966i
\(144\) 0 0
\(145\) 2.13431 1.55067i 0.177245 0.128776i
\(146\) 0 0
\(147\) −1.77770 + 5.47120i −0.146622 + 0.451257i
\(148\) 0 0
\(149\) −10.1679 7.38740i −0.832986 0.605200i 0.0874165 0.996172i \(-0.472139\pi\)
−0.920403 + 0.390972i \(0.872139\pi\)
\(150\) 0 0
\(151\) 5.46991 + 16.8347i 0.445135 + 1.36998i 0.882336 + 0.470621i \(0.155970\pi\)
−0.437201 + 0.899364i \(0.644030\pi\)
\(152\) 0 0
\(153\) −3.94327 −0.318795
\(154\) 0 0
\(155\) −6.10251 −0.490166
\(156\) 0 0
\(157\) −3.44051 10.5888i −0.274583 0.845078i −0.989330 0.145695i \(-0.953458\pi\)
0.714747 0.699383i \(-0.246542\pi\)
\(158\) 0 0
\(159\) −8.84026 6.42282i −0.701078 0.509363i
\(160\) 0 0
\(161\) 0.279890 0.861413i 0.0220584 0.0678888i
\(162\) 0 0
\(163\) −20.5866 + 14.9570i −1.61246 + 1.17152i −0.757506 + 0.652828i \(0.773582\pi\)
−0.854959 + 0.518696i \(0.826418\pi\)
\(164\) 0 0
\(165\) −1.82232 + 10.6207i −0.141868 + 0.826819i
\(166\) 0 0
\(167\) 5.75586 4.18188i 0.445402 0.323603i −0.342376 0.939563i \(-0.611232\pi\)
0.787778 + 0.615960i \(0.211232\pi\)
\(168\) 0 0
\(169\) −0.618745 + 1.90430i −0.0475957 + 0.146485i
\(170\) 0 0
\(171\) 5.06208 + 3.67782i 0.387107 + 0.281250i
\(172\) 0 0
\(173\) −6.92575 21.3153i −0.526555 1.62057i −0.761220 0.648494i \(-0.775399\pi\)
0.234665 0.972076i \(-0.424601\pi\)
\(174\) 0 0
\(175\) 6.20531 0.469078
\(176\) 0 0
\(177\) −4.69015 −0.352534
\(178\) 0 0
\(179\) −7.73260 23.7985i −0.577962 1.77878i −0.625865 0.779931i \(-0.715254\pi\)
0.0479034 0.998852i \(-0.484746\pi\)
\(180\) 0 0
\(181\) −18.6967 13.5840i −1.38972 1.00969i −0.995897 0.0904992i \(-0.971154\pi\)
−0.393819 0.919188i \(-0.628846\pi\)
\(182\) 0 0
\(183\) 2.46362 7.58224i 0.182116 0.560495i
\(184\) 0 0
\(185\) −13.5946 + 9.87703i −0.999492 + 0.726174i
\(186\) 0 0
\(187\) 11.5757 + 6.08668i 0.846496 + 0.445102i
\(188\) 0 0
\(189\) −0.903508 + 0.656437i −0.0657205 + 0.0477488i
\(190\) 0 0
\(191\) 5.46312 16.8138i 0.395298 1.21660i −0.533432 0.845843i \(-0.679098\pi\)
0.928729 0.370758i \(-0.120902\pi\)
\(192\) 0 0
\(193\) −13.5823 9.86811i −0.977674 0.710322i −0.0204868 0.999790i \(-0.506522\pi\)
−0.957188 + 0.289468i \(0.906522\pi\)
\(194\) 0 0
\(195\) 3.32959 + 10.2474i 0.238437 + 0.733832i
\(196\) 0 0
\(197\) −1.12635 −0.0802492 −0.0401246 0.999195i \(-0.512775\pi\)
−0.0401246 + 0.999195i \(0.512775\pi\)
\(198\) 0 0
\(199\) −5.52912 −0.391949 −0.195975 0.980609i \(-0.562787\pi\)
−0.195975 + 0.980609i \(0.562787\pi\)
\(200\) 0 0
\(201\) −1.63025 5.01740i −0.114989 0.353900i
\(202\) 0 0
\(203\) −0.733626 0.533011i −0.0514905 0.0374100i
\(204\) 0 0
\(205\) 0.118227 0.363865i 0.00825732 0.0254134i
\(206\) 0 0
\(207\) −0.656128 + 0.476705i −0.0456040 + 0.0331333i
\(208\) 0 0
\(209\) −9.18304 18.6100i −0.635204 1.28728i
\(210\) 0 0
\(211\) 7.93602 5.76585i 0.546338 0.396938i −0.280096 0.959972i \(-0.590366\pi\)
0.826433 + 0.563034i \(0.190366\pi\)
\(212\) 0 0
\(213\) 4.07655 12.5463i 0.279320 0.859660i
\(214\) 0 0
\(215\) −1.59039 1.15549i −0.108464 0.0788037i
\(216\) 0 0
\(217\) 0.648199 + 1.99495i 0.0440026 + 0.135426i
\(218\) 0 0
\(219\) −2.05605 −0.138935
\(220\) 0 0
\(221\) 13.0770 0.879654
\(222\) 0 0
\(223\) 1.06393 + 3.27445i 0.0712461 + 0.219273i 0.980339 0.197320i \(-0.0632239\pi\)
−0.909093 + 0.416593i \(0.863224\pi\)
\(224\) 0 0
\(225\) −4.49518 3.26594i −0.299679 0.217729i
\(226\) 0 0
\(227\) 2.14619 6.60531i 0.142448 0.438410i −0.854226 0.519902i \(-0.825969\pi\)
0.996674 + 0.0814922i \(0.0259686\pi\)
\(228\) 0 0
\(229\) −10.7934 + 7.84183i −0.713245 + 0.518203i −0.884219 0.467073i \(-0.845309\pi\)
0.170974 + 0.985276i \(0.445309\pi\)
\(230\) 0 0
\(231\) 3.66554 0.532382i 0.241175 0.0350282i
\(232\) 0 0
\(233\) −12.7033 + 9.22952i −0.832223 + 0.604646i −0.920187 0.391478i \(-0.871964\pi\)
0.0879641 + 0.996124i \(0.471964\pi\)
\(234\) 0 0
\(235\) 5.64145 17.3626i 0.368008 1.13261i
\(236\) 0 0
\(237\) −14.0249 10.1897i −0.911012 0.661889i
\(238\) 0 0
\(239\) 7.44550 + 22.9149i 0.481609 + 1.48224i 0.836832 + 0.547459i \(0.184405\pi\)
−0.355223 + 0.934782i \(0.615595\pi\)
\(240\) 0 0
\(241\) −13.6736 −0.880792 −0.440396 0.897804i \(-0.645162\pi\)
−0.440396 + 0.897804i \(0.645162\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 5.77585 + 17.7762i 0.369005 + 1.13568i
\(246\) 0 0
\(247\) −16.7873 12.1967i −1.06815 0.776056i
\(248\) 0 0
\(249\) −4.36366 + 13.4300i −0.276536 + 0.851089i
\(250\) 0 0
\(251\) −19.7941 + 14.3813i −1.24939 + 0.907737i −0.998187 0.0601968i \(-0.980827\pi\)
−0.251206 + 0.967934i \(0.580827\pi\)
\(252\) 0 0
\(253\) 2.66191 0.386616i 0.167353 0.0243064i
\(254\) 0 0
\(255\) −10.3651 + 7.53065i −0.649085 + 0.471588i
\(256\) 0 0
\(257\) 5.31967 16.3722i 0.331832 1.02127i −0.636430 0.771334i \(-0.719590\pi\)
0.968262 0.249938i \(-0.0804104\pi\)
\(258\) 0 0
\(259\) 4.67286 + 3.39503i 0.290357 + 0.210957i
\(260\) 0 0
\(261\) 0.250914 + 0.772235i 0.0155312 + 0.0478001i
\(262\) 0 0
\(263\) 1.51375 0.0933417 0.0466708 0.998910i \(-0.485139\pi\)
0.0466708 + 0.998910i \(0.485139\pi\)
\(264\) 0 0
\(265\) −35.5029 −2.18093
\(266\) 0 0
\(267\) 4.06736 + 12.5180i 0.248918 + 0.766092i
\(268\) 0 0
\(269\) −2.53286 1.84023i −0.154431 0.112201i 0.507886 0.861424i \(-0.330427\pi\)
−0.662318 + 0.749223i \(0.730427\pi\)
\(270\) 0 0
\(271\) 0.160308 0.493377i 0.00973801 0.0299705i −0.946069 0.323964i \(-0.894984\pi\)
0.955807 + 0.293993i \(0.0949844\pi\)
\(272\) 0 0
\(273\) 2.99628 2.17693i 0.181343 0.131754i
\(274\) 0 0
\(275\) 8.15463 + 16.5259i 0.491743 + 0.996549i
\(276\) 0 0
\(277\) 23.2755 16.9106i 1.39849 1.01606i 0.403613 0.914930i \(-0.367754\pi\)
0.994873 0.101130i \(-0.0322458\pi\)
\(278\) 0 0
\(279\) 0.580409 1.78632i 0.0347482 0.106944i
\(280\) 0 0
\(281\) 17.6750 + 12.8416i 1.05440 + 0.766068i 0.973045 0.230617i \(-0.0740745\pi\)
0.0813573 + 0.996685i \(0.474075\pi\)
\(282\) 0 0
\(283\) −4.99249 15.3653i −0.296773 0.913372i −0.982620 0.185627i \(-0.940568\pi\)
0.685848 0.727745i \(-0.259432\pi\)
\(284\) 0 0
\(285\) 20.3296 1.20422
\(286\) 0 0
\(287\) −0.131508 −0.00776265
\(288\) 0 0
\(289\) −0.448255 1.37959i −0.0263679 0.0811521i
\(290\) 0 0
\(291\) 10.1943 + 7.40659i 0.597600 + 0.434182i
\(292\) 0 0
\(293\) 3.16632 9.74494i 0.184979 0.569306i −0.814969 0.579504i \(-0.803246\pi\)
0.999948 + 0.0101984i \(0.00324631\pi\)
\(294\) 0 0
\(295\) −12.3283 + 8.95700i −0.717779 + 0.521497i
\(296\) 0 0
\(297\) −2.93555 1.54356i −0.170338 0.0895664i
\(298\) 0 0
\(299\) 2.17590 1.58089i 0.125836 0.0914250i
\(300\) 0 0
\(301\) −0.208808 + 0.642644i −0.0120355 + 0.0370414i
\(302\) 0 0
\(303\) −3.71490 2.69904i −0.213416 0.155056i
\(304\) 0 0
\(305\) −8.00443 24.6351i −0.458332 1.41060i
\(306\) 0 0
\(307\) −25.3070 −1.44435 −0.722173 0.691713i \(-0.756856\pi\)
−0.722173 + 0.691713i \(0.756856\pi\)
\(308\) 0 0
\(309\) −11.1201 −0.632599
\(310\) 0 0
\(311\) 6.11677 + 18.8255i 0.346850 + 1.06749i 0.960586 + 0.277983i \(0.0896660\pi\)
−0.613736 + 0.789512i \(0.710334\pi\)
\(312\) 0 0
\(313\) 23.8493 + 17.3276i 1.34804 + 0.979411i 0.999106 + 0.0422649i \(0.0134574\pi\)
0.348937 + 0.937146i \(0.386543\pi\)
\(314\) 0 0
\(315\) −1.12128 + 3.45094i −0.0631769 + 0.194438i
\(316\) 0 0
\(317\) 9.57482 6.95651i 0.537775 0.390717i −0.285483 0.958384i \(-0.592154\pi\)
0.823258 + 0.567667i \(0.192154\pi\)
\(318\) 0 0
\(319\) 0.455420 2.65423i 0.0254986 0.148608i
\(320\) 0 0
\(321\) 12.8253 9.31815i 0.715840 0.520088i
\(322\) 0 0
\(323\) 7.62449 23.4658i 0.424238 1.30567i
\(324\) 0 0
\(325\) 14.9073 + 10.8308i 0.826906 + 0.600783i
\(326\) 0 0
\(327\) −0.0321665 0.0989982i −0.00177881 0.00547461i
\(328\) 0 0
\(329\) −6.27518 −0.345962
\(330\) 0 0
\(331\) 24.2951 1.33538 0.667689 0.744440i \(-0.267284\pi\)
0.667689 + 0.744440i \(0.267284\pi\)
\(332\) 0 0
\(333\) −1.59821 4.91878i −0.0875812 0.269547i
\(334\) 0 0
\(335\) −13.8671 10.0751i −0.757642 0.550459i
\(336\) 0 0
\(337\) 7.25270 22.3215i 0.395080 1.21593i −0.533820 0.845598i \(-0.679244\pi\)
0.928899 0.370332i \(-0.120756\pi\)
\(338\) 0 0
\(339\) −9.89264 + 7.18743i −0.537295 + 0.390367i
\(340\) 0 0
\(341\) −4.46110 + 4.34791i −0.241582 + 0.235453i
\(342\) 0 0
\(343\) 11.5222 8.37138i 0.622142 0.452012i
\(344\) 0 0
\(345\) −0.814273 + 2.50607i −0.0438390 + 0.134922i
\(346\) 0 0
\(347\) 16.4029 + 11.9174i 0.880554 + 0.639760i 0.933398 0.358843i \(-0.116829\pi\)
−0.0528442 + 0.998603i \(0.516829\pi\)
\(348\) 0 0
\(349\) 1.57004 + 4.83210i 0.0840425 + 0.258656i 0.984243 0.176818i \(-0.0565805\pi\)
−0.900201 + 0.435475i \(0.856581\pi\)
\(350\) 0 0
\(351\) −3.31628 −0.177010
\(352\) 0 0
\(353\) 3.10388 0.165203 0.0826015 0.996583i \(-0.473677\pi\)
0.0826015 + 0.996583i \(0.473677\pi\)
\(354\) 0 0
\(355\) −13.2449 40.7637i −0.702967 2.16351i
\(356\) 0 0
\(357\) 3.56278 + 2.58851i 0.188562 + 0.136999i
\(358\) 0 0
\(359\) 5.01860 15.4457i 0.264872 0.815191i −0.726851 0.686795i \(-0.759017\pi\)
0.991723 0.128396i \(-0.0409829\pi\)
\(360\) 0 0
\(361\) −16.3025 + 11.8445i −0.858028 + 0.623394i
\(362\) 0 0
\(363\) 6.23485 + 9.06237i 0.327245 + 0.475651i
\(364\) 0 0
\(365\) −5.40441 + 3.92653i −0.282880 + 0.205524i
\(366\) 0 0
\(367\) 0.621004 1.91125i 0.0324161 0.0997666i −0.933539 0.358475i \(-0.883297\pi\)
0.965955 + 0.258708i \(0.0832968\pi\)
\(368\) 0 0
\(369\) 0.0952652 + 0.0692142i 0.00495931 + 0.00360315i
\(370\) 0 0
\(371\) 3.77106 + 11.6061i 0.195784 + 0.602561i
\(372\) 0 0
\(373\) −5.48175 −0.283834 −0.141917 0.989879i \(-0.545327\pi\)
−0.141917 + 0.989879i \(0.545327\pi\)
\(374\) 0 0
\(375\) −1.80761 −0.0933444
\(376\) 0 0
\(377\) −0.832101 2.56094i −0.0428554 0.131895i
\(378\) 0 0
\(379\) −12.3686 8.98634i −0.635334 0.461597i 0.222910 0.974839i \(-0.428444\pi\)
−0.858244 + 0.513242i \(0.828444\pi\)
\(380\) 0 0
\(381\) −4.43248 + 13.6418i −0.227083 + 0.698890i
\(382\) 0 0
\(383\) −8.45103 + 6.14003i −0.431827 + 0.313741i −0.782379 0.622802i \(-0.785994\pi\)
0.350552 + 0.936543i \(0.385994\pi\)
\(384\) 0 0
\(385\) 8.61829 8.39963i 0.439229 0.428085i
\(386\) 0 0
\(387\) 0.489494 0.355639i 0.0248824 0.0180781i
\(388\) 0 0
\(389\) −6.82197 + 20.9959i −0.345888 + 1.06453i 0.615219 + 0.788356i \(0.289068\pi\)
−0.961107 + 0.276177i \(0.910932\pi\)
\(390\) 0 0
\(391\) 2.58729 + 1.87978i 0.130845 + 0.0950644i
\(392\) 0 0
\(393\) 4.68631 + 14.4230i 0.236393 + 0.727544i
\(394\) 0 0
\(395\) −56.3245 −2.83400
\(396\) 0 0
\(397\) −0.959507 −0.0481563 −0.0240781 0.999710i \(-0.507665\pi\)
−0.0240781 + 0.999710i \(0.507665\pi\)
\(398\) 0 0
\(399\) −2.15938 6.64588i −0.108104 0.332710i
\(400\) 0 0
\(401\) −8.82120 6.40897i −0.440510 0.320049i 0.345328 0.938482i \(-0.387768\pi\)
−0.785837 + 0.618433i \(0.787768\pi\)
\(402\) 0 0
\(403\) −1.92480 + 5.92392i −0.0958810 + 0.295091i
\(404\) 0 0
\(405\) 2.62854 1.90975i 0.130613 0.0948960i
\(406\) 0 0
\(407\) −2.90081 + 16.9062i −0.143788 + 0.838010i
\(408\) 0 0
\(409\) −3.70138 + 2.68921i −0.183021 + 0.132973i −0.675524 0.737338i \(-0.736082\pi\)
0.492502 + 0.870311i \(0.336082\pi\)
\(410\) 0 0
\(411\) 4.78172 14.7166i 0.235865 0.725917i
\(412\) 0 0
\(413\) 4.23759 + 3.07879i 0.208518 + 0.151497i
\(414\) 0 0
\(415\) 14.1778 + 43.6347i 0.695959 + 2.14194i
\(416\) 0 0
\(417\) 2.02311 0.0990720
\(418\) 0 0
\(419\) 23.0003 1.12364 0.561819 0.827260i \(-0.310102\pi\)
0.561819 + 0.827260i \(0.310102\pi\)
\(420\) 0 0
\(421\) −2.44065 7.51154i −0.118950 0.366090i 0.873800 0.486285i \(-0.161648\pi\)
−0.992750 + 0.120194i \(0.961648\pi\)
\(422\) 0 0
\(423\) 4.54579 + 3.30271i 0.221024 + 0.160583i
\(424\) 0 0
\(425\) −6.77063 + 20.8378i −0.328424 + 1.01078i
\(426\) 0 0
\(427\) −7.20316 + 5.23340i −0.348585 + 0.253262i
\(428\) 0 0
\(429\) 9.73508 + 5.11887i 0.470014 + 0.247141i
\(430\) 0 0
\(431\) −6.60738 + 4.80054i −0.318266 + 0.231234i −0.735435 0.677595i \(-0.763022\pi\)
0.417169 + 0.908829i \(0.363022\pi\)
\(432\) 0 0
\(433\) 5.02582 15.4679i 0.241525 0.743339i −0.754663 0.656112i \(-0.772200\pi\)
0.996189 0.0872263i \(-0.0278003\pi\)
\(434\) 0 0
\(435\) 2.13431 + 1.55067i 0.102332 + 0.0743488i
\(436\) 0 0
\(437\) −1.56814 4.82624i −0.0750143 0.230870i
\(438\) 0 0
\(439\) −27.5051 −1.31275 −0.656374 0.754436i \(-0.727911\pi\)
−0.656374 + 0.754436i \(0.727911\pi\)
\(440\) 0 0
\(441\) −5.75276 −0.273941
\(442\) 0 0
\(443\) 4.60511 + 14.1731i 0.218795 + 0.673383i 0.998862 + 0.0476871i \(0.0151850\pi\)
−0.780067 + 0.625696i \(0.784815\pi\)
\(444\) 0 0
\(445\) 34.5975 + 25.1366i 1.64008 + 1.19159i
\(446\) 0 0
\(447\) 3.88379 11.9531i 0.183697 0.565361i
\(448\) 0 0
\(449\) 1.99197 1.44725i 0.0940071 0.0683001i −0.539789 0.841800i \(-0.681496\pi\)
0.633796 + 0.773500i \(0.281496\pi\)
\(450\) 0 0
\(451\) −0.172819 0.350229i −0.00813773 0.0164916i
\(452\) 0 0
\(453\) −14.3204 + 10.4044i −0.672832 + 0.488841i
\(454\) 0 0
\(455\) 3.71847 11.4443i 0.174325 0.536516i
\(456\) 0 0
\(457\) −2.75543 2.00193i −0.128893 0.0936465i 0.521471 0.853269i \(-0.325384\pi\)
−0.650364 + 0.759623i \(0.725384\pi\)
\(458\) 0 0
\(459\) −1.21854 3.75028i −0.0568765 0.175048i
\(460\) 0 0
\(461\) −9.22511 −0.429656 −0.214828 0.976652i \(-0.568919\pi\)
−0.214828 + 0.976652i \(0.568919\pi\)
\(462\) 0 0
\(463\) 16.1334 0.749784 0.374892 0.927069i \(-0.377680\pi\)
0.374892 + 0.927069i \(0.377680\pi\)
\(464\) 0 0
\(465\) −1.88578 5.80383i −0.0874509 0.269146i
\(466\) 0 0
\(467\) 14.1151 + 10.2552i 0.653167 + 0.474553i 0.864348 0.502893i \(-0.167731\pi\)
−0.211182 + 0.977447i \(0.567731\pi\)
\(468\) 0 0
\(469\) −1.82066 + 5.60341i −0.0840703 + 0.258742i
\(470\) 0 0
\(471\) 9.00737 6.54424i 0.415038 0.301543i
\(472\) 0 0
\(473\) −1.98588 + 0.288429i −0.0913110 + 0.0132620i
\(474\) 0 0
\(475\) 28.1267 20.4352i 1.29054 0.937633i
\(476\) 0 0
\(477\) 3.37668 10.3923i 0.154607 0.475833i
\(478\) 0 0
\(479\) 4.86072 + 3.53152i 0.222092 + 0.161359i 0.693268 0.720680i \(-0.256170\pi\)
−0.471176 + 0.882039i \(0.656170\pi\)
\(480\) 0 0
\(481\) 5.30010 + 16.3120i 0.241664 + 0.743765i
\(482\) 0 0
\(483\) 0.905743 0.0412127
\(484\) 0 0
\(485\) 40.9408 1.85903
\(486\) 0 0
\(487\) 6.91810 + 21.2917i 0.313489 + 0.964820i 0.976372 + 0.216097i \(0.0693327\pi\)
−0.662883 + 0.748723i \(0.730667\pi\)
\(488\) 0 0
\(489\) −20.5866 14.9570i −0.930957 0.676380i
\(490\) 0 0
\(491\) 0.878233 2.70292i 0.0396341 0.121981i −0.929282 0.369372i \(-0.879573\pi\)
0.968916 + 0.247390i \(0.0795730\pi\)
\(492\) 0 0
\(493\) 2.59035 1.88200i 0.116663 0.0847608i
\(494\) 0 0
\(495\) −10.6640 + 1.54884i −0.479311 + 0.0696151i
\(496\) 0 0
\(497\) −11.9191 + 8.65970i −0.534643 + 0.388441i
\(498\) 0 0
\(499\) 11.9319 36.7227i 0.534147 1.64393i −0.211339 0.977413i \(-0.567783\pi\)
0.745486 0.666521i \(-0.232217\pi\)
\(500\) 0 0
\(501\) 5.75586 + 4.18188i 0.257153 + 0.186832i
\(502\) 0 0
\(503\) 3.82688 + 11.7779i 0.170632 + 0.525152i 0.999407 0.0344301i \(-0.0109616\pi\)
−0.828775 + 0.559582i \(0.810962\pi\)
\(504\) 0 0
\(505\) −14.9192 −0.663898
\(506\) 0 0
\(507\) −2.00230 −0.0889253
\(508\) 0 0
\(509\) 13.0120 + 40.0469i 0.576748 + 1.77505i 0.630148 + 0.776475i \(0.282994\pi\)
−0.0533993 + 0.998573i \(0.517006\pi\)
\(510\) 0 0
\(511\) 1.85766 + 1.34967i 0.0821779 + 0.0597057i
\(512\) 0 0
\(513\) −1.93354 + 5.95084i −0.0853680 + 0.262736i
\(514\) 0 0
\(515\) −29.2296 + 21.2365i −1.28801 + 0.935793i
\(516\) 0 0
\(517\) −8.24645 16.7120i −0.362678 0.734991i
\(518\) 0 0
\(519\) 18.1319 13.1736i 0.795900 0.578255i
\(520\) 0 0
\(521\) −7.77071 + 23.9158i −0.340441 + 1.04777i 0.623538 + 0.781793i \(0.285694\pi\)
−0.963979 + 0.265977i \(0.914306\pi\)
\(522\) 0 0
\(523\) 14.5631 + 10.5807i 0.636798 + 0.462661i 0.858749 0.512397i \(-0.171242\pi\)
−0.221951 + 0.975058i \(0.571242\pi\)
\(524\) 0 0
\(525\) 1.91755 + 5.90160i 0.0836886 + 0.257567i
\(526\) 0 0
\(527\) −7.40643 −0.322629
\(528\) 0 0
\(529\) −22.3422 −0.971402
\(530\) 0 0
\(531\) −1.44934 4.46060i −0.0628959 0.193574i
\(532\) 0 0
\(533\) −0.315926 0.229534i −0.0136843 0.00994220i
\(534\) 0 0
\(535\) 15.9166 48.9862i 0.688134 2.11786i
\(536\) 0 0
\(537\) 20.2442 14.7083i 0.873602 0.634709i
\(538\) 0 0
\(539\) 16.8875 + 8.87973i 0.727396 + 0.382477i
\(540\) 0 0
\(541\) 34.5019 25.0671i 1.48335 1.07772i 0.506896 0.862007i \(-0.330793\pi\)
0.976457 0.215712i \(-0.0692073\pi\)
\(542\) 0 0
\(543\) 7.14151 21.9793i 0.306471 0.943222i
\(544\) 0 0
\(545\) −0.273612 0.198791i −0.0117203 0.00851527i
\(546\) 0 0
\(547\) 5.02532 + 15.4663i 0.214867 + 0.661293i 0.999163 + 0.0409061i \(0.0130244\pi\)
−0.784296 + 0.620387i \(0.786976\pi\)
\(548\) 0 0
\(549\) 7.97244 0.340255
\(550\) 0 0
\(551\) −5.08060 −0.216441
\(552\) 0 0
\(553\) 5.98270 + 18.4129i 0.254410 + 0.782995i
\(554\) 0 0
\(555\) −13.5946 9.87703i −0.577057 0.419257i
\(556\) 0 0
\(557\) 13.1209 40.3819i 0.555949 1.71103i −0.137475 0.990505i \(-0.543899\pi\)
0.693424 0.720530i \(-0.256101\pi\)
\(558\) 0 0
\(559\) −1.62330 + 1.17940i −0.0686583 + 0.0498831i
\(560\) 0 0
\(561\) −2.21170 + 12.8900i −0.0933780 + 0.544216i
\(562\) 0 0
\(563\) −13.8274 + 10.0462i −0.582755 + 0.423396i −0.839716 0.543026i \(-0.817279\pi\)
0.256962 + 0.966422i \(0.417279\pi\)
\(564\) 0 0
\(565\) −12.2770 + 37.7849i −0.516499 + 1.58962i
\(566\) 0 0
\(567\) −0.903508 0.656437i −0.0379438 0.0275678i
\(568\) 0 0
\(569\) 3.72771 + 11.4727i 0.156274 + 0.480961i 0.998288 0.0584945i \(-0.0186300\pi\)
−0.842014 + 0.539456i \(0.818630\pi\)
\(570\) 0 0
\(571\) −22.2050 −0.929252 −0.464626 0.885507i \(-0.653811\pi\)
−0.464626 + 0.885507i \(0.653811\pi\)
\(572\) 0 0
\(573\) 17.6790 0.738553
\(574\) 0 0
\(575\) 1.39252 + 4.28575i 0.0580723 + 0.178728i
\(576\) 0 0
\(577\) 20.4466 + 14.8553i 0.851204 + 0.618436i 0.925478 0.378802i \(-0.123664\pi\)
−0.0742736 + 0.997238i \(0.523664\pi\)
\(578\) 0 0
\(579\) 5.18797 15.9669i 0.215605 0.663563i
\(580\) 0 0
\(581\) 12.7585 9.26961i 0.529313 0.384568i
\(582\) 0 0
\(583\) −25.9536 + 25.2951i −1.07489 + 1.04762i
\(584\) 0 0
\(585\) −8.71697 + 6.33325i −0.360402 + 0.261848i
\(586\) 0 0
\(587\) 2.08186 6.40731i 0.0859276 0.264458i −0.898856 0.438245i \(-0.855600\pi\)
0.984783 + 0.173787i \(0.0556003\pi\)
\(588\) 0 0
\(589\) 9.50782 + 6.90784i 0.391763 + 0.284632i
\(590\) 0 0
\(591\) −0.348062 1.07122i −0.0143173 0.0440643i
\(592\) 0 0
\(593\) 18.9123 0.776635 0.388317 0.921526i \(-0.373056\pi\)
0.388317 + 0.921526i \(0.373056\pi\)
\(594\) 0 0
\(595\) 14.3083 0.586583
\(596\) 0 0
\(597\) −1.70859 5.25851i −0.0699280 0.215216i
\(598\) 0 0
\(599\) −32.6725 23.7380i −1.33496 0.969908i −0.999613 0.0278150i \(-0.991145\pi\)
−0.335351 0.942093i \(-0.608855\pi\)
\(600\) 0 0
\(601\) −1.16622 + 3.58925i −0.0475710 + 0.146409i −0.972021 0.234896i \(-0.924525\pi\)
0.924449 + 0.381305i \(0.124525\pi\)
\(602\) 0 0
\(603\) 4.26805 3.10092i 0.173809 0.126279i
\(604\) 0 0
\(605\) 33.6954 + 11.9138i 1.36991 + 0.484366i
\(606\) 0 0
\(607\) 10.4015 7.55715i 0.422185 0.306735i −0.356332 0.934360i \(-0.615973\pi\)
0.778516 + 0.627624i \(0.215973\pi\)
\(608\) 0 0
\(609\) 0.280220 0.862429i 0.0113551 0.0349474i
\(610\) 0 0
\(611\) −15.0751 10.9527i −0.609874 0.443099i
\(612\) 0 0
\(613\) 14.0108 + 43.1208i 0.565891 + 1.74163i 0.665290 + 0.746585i \(0.268308\pi\)
−0.0993999 + 0.995048i \(0.531692\pi\)
\(614\) 0 0
\(615\) 0.382590 0.0154275
\(616\) 0 0
\(617\) 35.7946 1.44104 0.720519 0.693435i \(-0.243904\pi\)
0.720519 + 0.693435i \(0.243904\pi\)
\(618\) 0 0
\(619\) 8.76431 + 26.9738i 0.352267 + 1.08417i 0.957577 + 0.288177i \(0.0930492\pi\)
−0.605310 + 0.795990i \(0.706951\pi\)
\(620\) 0 0
\(621\) −0.656128 0.476705i −0.0263295 0.0191295i
\(622\) 0 0
\(623\) 4.54241 13.9801i 0.181988 0.560101i
\(624\) 0 0
\(625\) 17.7245 12.8776i 0.708981 0.515105i
\(626\) 0 0
\(627\) 14.8615 14.4844i 0.593510 0.578452i
\(628\) 0 0
\(629\) −16.4993 + 11.9874i −0.657870 + 0.477971i
\(630\) 0 0
\(631\) 4.87511 15.0041i 0.194075 0.597302i −0.805911 0.592037i \(-0.798324\pi\)
0.999986 0.00526533i \(-0.00167602\pi\)
\(632\) 0 0
\(633\) 7.93602 + 5.76585i 0.315428 + 0.229172i
\(634\) 0 0
\(635\) 14.4014 + 44.3229i 0.571501 + 1.75890i
\(636\) 0 0
\(637\) 19.0778 0.755889
\(638\) 0 0
\(639\) 13.1920 0.521867
\(640\) 0 0
\(641\) −3.40525 10.4803i −0.134499 0.413946i 0.861013 0.508584i \(-0.169831\pi\)
−0.995512 + 0.0946378i \(0.969831\pi\)
\(642\) 0 0
\(643\) −13.4462 9.76920i −0.530265 0.385260i 0.290192 0.956968i \(-0.406281\pi\)
−0.820457 + 0.571709i \(0.806281\pi\)
\(644\) 0 0
\(645\) 0.607476 1.86962i 0.0239194 0.0736162i
\(646\) 0 0
\(647\) −23.9629 + 17.4100i −0.942077 + 0.684459i −0.948920 0.315518i \(-0.897822\pi\)
0.00684270 + 0.999977i \(0.497822\pi\)
\(648\) 0 0
\(649\) −2.63061 + 15.3314i −0.103260 + 0.601811i
\(650\) 0 0
\(651\) −1.69701 + 1.23295i −0.0665110 + 0.0483230i
\(652\) 0 0
\(653\) 7.75351 23.8628i 0.303418 0.933825i −0.676845 0.736126i \(-0.736653\pi\)
0.980263 0.197699i \(-0.0633469\pi\)
\(654\) 0 0
\(655\) 39.8624 + 28.9617i 1.55755 + 1.13163i
\(656\) 0 0
\(657\) −0.635354 1.95542i −0.0247875 0.0762882i
\(658\) 0 0
\(659\) −4.35903 −0.169804 −0.0849018 0.996389i \(-0.527058\pi\)
−0.0849018 + 0.996389i \(0.527058\pi\)
\(660\) 0 0
\(661\) 11.4920 0.446987 0.223493 0.974705i \(-0.428254\pi\)
0.223493 + 0.974705i \(0.428254\pi\)
\(662\) 0 0
\(663\) 4.04101 + 12.4370i 0.156940 + 0.483012i
\(664\) 0 0
\(665\) −18.3679 13.3451i −0.712278 0.517500i
\(666\) 0 0
\(667\) 0.203496 0.626297i 0.00787940 0.0242503i
\(668\) 0 0
\(669\) −2.78541 + 2.02372i −0.107690 + 0.0782415i
\(670\) 0 0
\(671\) −23.4034 12.3059i −0.903480 0.475065i
\(672\) 0 0
\(673\) −21.5880 + 15.6846i −0.832157 + 0.604598i −0.920169 0.391522i \(-0.871949\pi\)
0.0880116 + 0.996119i \(0.471949\pi\)
\(674\) 0 0
\(675\) 1.71701 5.28440i 0.0660876 0.203397i
\(676\) 0 0
\(677\) 17.6500 + 12.8235i 0.678344 + 0.492846i 0.872808 0.488064i \(-0.162297\pi\)
−0.194464 + 0.980910i \(0.562297\pi\)
\(678\) 0 0
\(679\) −4.34867 13.3838i −0.166887 0.513624i
\(680\) 0 0
\(681\) 6.94523 0.266142
\(682\) 0 0
\(683\) 27.1072 1.03723 0.518614 0.855009i \(-0.326448\pi\)
0.518614 + 0.855009i \(0.326448\pi\)
\(684\) 0 0
\(685\) −15.5361 47.8151i −0.593602 1.82692i
\(686\) 0 0
\(687\) −10.7934 7.84183i −0.411792 0.299185i
\(688\) 0 0
\(689\) −11.1980 + 34.4639i −0.426610 + 1.31297i
\(690\) 0 0
\(691\) −37.9445 + 27.5683i −1.44348 + 1.04875i −0.456174 + 0.889891i \(0.650781\pi\)
−0.987302 + 0.158856i \(0.949219\pi\)
\(692\) 0 0
\(693\) 1.63904 + 3.32162i 0.0622619 + 0.126178i
\(694\) 0 0
\(695\) 5.31782 3.86362i 0.201716 0.146555i
\(696\) 0 0
\(697\) 0.143488 0.441611i 0.00543500 0.0167272i
\(698\) 0 0
\(699\) −12.7033 9.22952i −0.480484 0.349092i
\(700\) 0 0
\(701\) 0.437693 + 1.34708i 0.0165315 + 0.0508786i 0.958982 0.283467i \(-0.0914847\pi\)
−0.942450 + 0.334346i \(0.891485\pi\)
\(702\) 0 0
\(703\) 32.3610 1.22052
\(704\) 0 0
\(705\) 18.2561 0.687566
\(706\) 0 0
\(707\) 1.58470 + 4.87720i 0.0595987 + 0.183426i
\(708\) 0 0
\(709\) 32.7422 + 23.7886i 1.22966 + 0.893398i 0.996864 0.0791279i \(-0.0252136\pi\)
0.232793 + 0.972526i \(0.425214\pi\)
\(710\) 0 0
\(711\) 5.35702 16.4872i 0.200904 0.618319i
\(712\) 0 0
\(713\) −1.23237 + 0.895367i −0.0461525 + 0.0335318i
\(714\) 0 0
\(715\) 35.3648 5.13638i 1.32257 0.192090i
\(716\) 0 0
\(717\) −19.4926 + 14.1622i −0.727963 + 0.528896i
\(718\) 0 0
\(719\) −3.85521 + 11.8651i −0.143775 + 0.442494i −0.996851 0.0792919i \(-0.974734\pi\)
0.853076 + 0.521786i \(0.174734\pi\)
\(720\) 0 0
\(721\) 10.0471 + 7.29963i 0.374173 + 0.271852i
\(722\) 0 0
\(723\) −4.22536 13.0043i −0.157143 0.483636i
\(724\) 0 0
\(725\) 4.51162 0.167557
\(726\) 0 0
\(727\) −16.3245 −0.605442 −0.302721 0.953079i \(-0.597895\pi\)
−0.302721 + 0.953079i \(0.597895\pi\)
\(728\) 0 0
\(729\) 0.309017 + 0.951057i 0.0114451 + 0.0352243i
\(730\) 0 0
\(731\) −1.93021 1.40238i −0.0713914 0.0518689i
\(732\) 0 0
\(733\) 4.83249 14.8729i 0.178492 0.549342i −0.821284 0.570520i \(-0.806742\pi\)
0.999776 + 0.0211781i \(0.00674171\pi\)
\(734\) 0 0
\(735\) −15.1214 + 10.9863i −0.557760 + 0.405236i
\(736\) 0 0
\(737\) −17.3155 + 2.51490i −0.637825 + 0.0926377i
\(738\) 0 0
\(739\) −32.7572 + 23.7995i −1.20499 + 0.875480i −0.994767 0.102172i \(-0.967421\pi\)
−0.210228 + 0.977652i \(0.567421\pi\)
\(740\) 0 0
\(741\) 6.41217 19.7346i 0.235557 0.724970i
\(742\) 0 0
\(743\) 27.3034 + 19.8371i 1.00167 + 0.727752i 0.962445 0.271478i \(-0.0875125\pi\)
0.0392206 + 0.999231i \(0.487512\pi\)
\(744\) 0 0
\(745\) −12.6186 38.8362i −0.462311 1.42285i
\(746\) 0 0
\(747\) −14.1211 −0.516664
\(748\) 0 0
\(749\) −17.7046 −0.646910
\(750\) 0 0
\(751\) −3.29519 10.1415i −0.120243 0.370070i 0.872761 0.488147i \(-0.162327\pi\)
−0.993004 + 0.118077i \(0.962327\pi\)
\(752\) 0 0
\(753\) −19.7941 14.3813i −0.721337 0.524082i
\(754\) 0 0
\(755\) −17.7720 + 54.6967i −0.646790 + 1.99062i
\(756\) 0 0
\(757\) −12.5856 + 9.14400i −0.457433 + 0.332344i −0.792523 0.609841i \(-0.791233\pi\)
0.335090 + 0.942186i \(0.391233\pi\)
\(758\) 0 0
\(759\) 1.19027 + 2.41216i 0.0432041 + 0.0875559i
\(760\) 0 0
\(761\) 6.61906 4.80903i 0.239941 0.174327i −0.461316 0.887236i \(-0.652623\pi\)
0.701257 + 0.712909i \(0.252623\pi\)
\(762\) 0 0
\(763\) −0.0359234 + 0.110561i −0.00130051 + 0.00400257i
\(764\) 0 0
\(765\) −10.3651 7.53065i −0.374749 0.272271i
\(766\) 0 0
\(767\) 4.80641 + 14.7926i 0.173549 + 0.534130i
\(768\) 0 0
\(769\) −31.2236 −1.12595 −0.562975 0.826474i \(-0.690343\pi\)
−0.562975 + 0.826474i \(0.690343\pi\)
\(770\) 0 0
\(771\) 17.2148 0.619976
\(772\) 0 0
\(773\) −3.44712 10.6092i −0.123984 0.381585i 0.869730 0.493527i \(-0.164293\pi\)
−0.993715 + 0.111943i \(0.964293\pi\)
\(774\) 0 0
\(775\) −8.44304 6.13423i −0.303283 0.220348i
\(776\) 0 0
\(777\) −1.78487 + 5.49328i −0.0640320 + 0.197070i
\(778\) 0 0
\(779\) −0.596082 + 0.433079i −0.0213568 + 0.0155167i
\(780\) 0 0
\(781\) −38.7257 20.3626i −1.38571 0.728631i
\(782\) 0 0
\(783\) −0.656902 + 0.477267i −0.0234758 + 0.0170561i
\(784\) 0 0
\(785\) 11.1784 34.4036i 0.398974 1.22792i
\(786\) 0 0
\(787\) −39.6481 28.8061i −1.41330 1.02683i −0.992832 0.119520i \(-0.961864\pi\)
−0.420472 0.907305i \(-0.638136\pi\)
\(788\) 0 0
\(789\) 0.467774 + 1.43966i 0.0166532 + 0.0512532i
\(790\) 0 0
\(791\) 13.6562 0.485557
\(792\) 0 0
\(793\) −26.4388 −0.938870
\(794\) 0 0
\(795\) −10.9710 33.7653i −0.389102 1.19753i
\(796\) 0 0
\(797\) −27.8223 20.2141i −0.985516 0.716019i −0.0265815 0.999647i \(-0.508462\pi\)
−0.958935 + 0.283627i \(0.908462\pi\)
\(798\) 0 0
\(799\) 6.84686 21.0725i 0.242224 0.745490i
\(800\) 0 0
\(801\) −10.6485 + 7.73658i −0.376246 + 0.273358i
\(802\) 0 0
\(803\) −1.15319 + 6.72093i −0.0406953 + 0.237176i
\(804\) 0 0
\(805\) 2.38078 1.72974i 0.0839115 0.0609653i
\(806\) 0 0
\(807\) 0.967468 2.97756i 0.0340565 0.104815i
\(808\) 0 0
\(809\) −3.83283 2.78471i −0.134755 0.0979053i 0.518366 0.855159i \(-0.326541\pi\)
−0.653121 + 0.757254i \(0.726541\pi\)
\(810\) 0 0
\(811\) 0.439870 + 1.35378i 0.0154459 + 0.0475377i 0.958482 0.285152i \(-0.0920440\pi\)
−0.943036 + 0.332689i \(0.892044\pi\)
\(812\) 0 0
\(813\) 0.518767 0.0181940
\(814\) 0 0
\(815\) −82.6767 −2.89604
\(816\) 0 0
\(817\) 1.16989 + 3.60054i 0.0409292 + 0.125967i
\(818\) 0 0
\(819\) 2.99628 + 2.17693i 0.104699 + 0.0760680i
\(820\) 0 0
\(821\) −9.17379 + 28.2340i −0.320168 + 0.985374i 0.653407 + 0.757007i \(0.273339\pi\)
−0.973575 + 0.228368i \(0.926661\pi\)
\(822\) 0 0
\(823\) −6.83410 + 4.96526i −0.238222 + 0.173078i −0.700491 0.713662i \(-0.747035\pi\)
0.462269 + 0.886740i \(0.347035\pi\)
\(824\) 0 0
\(825\) −13.1971 + 12.8623i −0.459465 + 0.447808i
\(826\) 0 0
\(827\) 4.66210 3.38721i 0.162117 0.117785i −0.503769 0.863838i \(-0.668054\pi\)
0.665886 + 0.746054i \(0.268054\pi\)
\(828\) 0 0
\(829\) −12.8466 + 39.5376i −0.446179 + 1.37320i 0.435006 + 0.900427i \(0.356746\pi\)
−0.881185 + 0.472771i \(0.843254\pi\)
\(830\) 0 0
\(831\) 23.2755 + 16.9106i 0.807417 + 0.586622i
\(832\) 0 0
\(833\) 7.00997 + 21.5745i 0.242881 + 0.747511i
\(834\) 0 0
\(835\) 23.1158 0.799956
\(836\) 0 0
\(837\) 1.87824 0.0649216
\(838\) 0 0
\(839\) 5.15925 + 15.8785i 0.178117 + 0.548188i 0.999762 0.0218113i \(-0.00694331\pi\)
−0.821645 + 0.570000i \(0.806943\pi\)
\(840\) 0 0
\(841\) 22.9281 + 16.6582i 0.790624 + 0.574422i
\(842\) 0 0
\(843\) −6.75125 + 20.7782i −0.232525 + 0.715639i
\(844\) 0 0
\(845\) −5.26312 + 3.82388i −0.181057 + 0.131546i
\(846\) 0 0
\(847\) 0.315640 12.2807i 0.0108455 0.421970i
\(848\) 0 0
\(849\) 13.0705 9.49628i 0.448579 0.325911i
\(850\) 0 0
\(851\) −1.29618 + 3.98922i −0.0444323 + 0.136749i
\(852\) 0 0
\(853\) −33.7963 24.5545i −1.15716 0.840729i −0.167747 0.985830i \(-0.553649\pi\)
−0.989417 + 0.145101i \(0.953649\pi\)
\(854\) 0 0
\(855\) 6.28219 + 19.3346i 0.214846 + 0.661229i
\(856\) 0 0
\(857\) 13.1283 0.448455 0.224227 0.974537i \(-0.428014\pi\)
0.224227 + 0.974537i \(0.428014\pi\)
\(858\) 0 0
\(859\) 2.12782 0.0726003 0.0363002 0.999341i \(-0.488443\pi\)
0.0363002 + 0.999341i \(0.488443\pi\)
\(860\) 0 0
\(861\) −0.0406381 0.125071i −0.00138494 0.00426241i
\(862\) 0 0
\(863\) 25.9579 + 18.8596i 0.883619 + 0.641987i 0.934206 0.356733i \(-0.116109\pi\)
−0.0505875 + 0.998720i \(0.516109\pi\)
\(864\) 0 0
\(865\) 22.5021 69.2545i 0.765096 2.35472i
\(866\) 0 0
\(867\) 1.17355 0.852631i 0.0398557 0.0289569i
\(868\) 0 0
\(869\) −41.1747 + 40.1301i −1.39676 + 1.36132i
\(870\) 0 0
\(871\) −14.1541 + 10.2835i −0.479592 + 0.348444i
\(872\) 0 0
\(873\) −3.89388 + 11.9841i −0.131788 + 0.405601i
\(874\) 0 0
\(875\) 1.63319 + 1.18658i 0.0552118 + 0.0401137i
\(876\) 0 0
\(877\) −16.6145 51.1342i −0.561032 1.72668i −0.679456 0.733716i \(-0.737784\pi\)
0.118424 0.992963i \(-0.462216\pi\)
\(878\) 0 0
\(879\) 10.2464 0.345604
\(880\) 0 0
\(881\) −1.24849 −0.0420629 −0.0210314 0.999779i \(-0.506695\pi\)
−0.0210314 + 0.999779i \(0.506695\pi\)
\(882\) 0 0
\(883\) −12.7992 39.3920i −0.430728 1.32565i −0.897401 0.441216i \(-0.854547\pi\)
0.466673 0.884430i \(-0.345453\pi\)
\(884\) 0 0
\(885\) −12.3283 8.95700i −0.414410 0.301086i
\(886\) 0 0
\(887\) 11.7972 36.3080i 0.396111 1.21910i −0.531982 0.846756i \(-0.678552\pi\)
0.928093 0.372349i \(-0.121448\pi\)
\(888\) 0 0
\(889\) 12.9598 9.41581i 0.434656 0.315796i
\(890\) 0 0
\(891\) 0.560879 3.26886i 0.0187901 0.109511i
\(892\) 0 0
\(893\) −28.4434 + 20.6653i −0.951821 + 0.691539i
\(894\) 0 0
\(895\) 25.1236 77.3226i 0.839790 2.58461i
\(896\) 0 0
\(897\) 2.17590 + 1.58089i 0.0726512 + 0.0527842i
\(898\) 0 0
\(899\) 0.471278 + 1.45044i 0.0157180 + 0.0483750i
\(900\) 0 0
\(901\) −43.0888 −1.43550
\(902\) 0 0
\(903\) −0.675716 −0.0224864
\(904\) 0 0
\(905\) −23.2031 71.4119i −0.771298 2.37381i
\(906\) 0 0
\(907\) 13.1002 + 9.51783i 0.434984 + 0.316034i 0.783639 0.621217i \(-0.213361\pi\)
−0.348655 + 0.937251i \(0.613361\pi\)
\(908\) 0 0
\(909\) 1.41897 4.36713i 0.0470642 0.144849i
\(910\) 0 0
\(911\) −44.1658 + 32.0883i −1.46328 + 1.06313i −0.480784 + 0.876839i \(0.659648\pi\)
−0.982494 + 0.186294i \(0.940352\pi\)
\(912\) 0 0
\(913\) 41.4531 + 21.7968i 1.37190 + 0.721367i
\(914\) 0 0
\(915\) 20.9559 15.2253i 0.692779 0.503334i
\(916\) 0 0
\(917\) 5.23366 16.1076i 0.172831 0.531918i
\(918\) 0 0
\(919\) −12.1111 8.79921i −0.399507 0.290259i 0.369833 0.929098i \(-0.379415\pi\)
−0.769340 + 0.638839i \(0.779415\pi\)
\(920\) 0 0
\(921\) −7.82029 24.0684i −0.257687 0.793080i
\(922\) 0 0
\(923\) −43.7483 −1.43999
\(924\) 0 0
\(925\) −28.7369 −0.944864
\(926\) 0 0
\(927\) −3.43629 10.5758i −0.112863 0.347356i
\(928\) 0 0
\(929\) 17.3130 + 12.5786i 0.568022 + 0.412692i 0.834386 0.551180i \(-0.185822\pi\)
−0.266364 + 0.963872i \(0.585822\pi\)
\(930\) 0 0
\(931\) 11.1232 34.2338i 0.364549 1.12197i
\(932\) 0 0
\(933\) −16.0139 + 11.6348i −0.524272 + 0.380906i
\(934\) 0 0
\(935\) 18.8031 + 38.1056i 0.614926 + 1.24619i
\(936\) 0 0
\(937\) 44.5506 32.3679i 1.45540 1.05741i 0.470873 0.882201i \(-0.343939\pi\)
0.984531 0.175212i \(-0.0560610\pi\)
\(938\) 0 0
\(939\) −9.10963 + 28.0366i −0.297282 + 0.914939i
\(940\) 0 0
\(941\) −13.6377 9.90835i −0.444575 0.323003i 0.342875 0.939381i \(-0.388599\pi\)
−0.787450 + 0.616378i \(0.788599\pi\)
\(942\) 0 0
\(943\) −0.0295114 0.0908267i −0.000961023 0.00295773i
\(944\) 0 0
\(945\) −3.62853 −0.118036
\(946\) 0 0
\(947\) 43.1436 1.40198 0.700989 0.713172i \(-0.252742\pi\)
0.700989 + 0.713172i \(0.252742\pi\)
\(948\) 0 0
\(949\) 2.10701 + 6.48471i 0.0683965 + 0.210503i
\(950\) 0 0
\(951\) 9.57482 + 6.95651i 0.310485 + 0.225580i
\(952\) 0 0
\(953\) 3.36126 10.3449i 0.108882 0.335104i −0.881740 0.471735i \(-0.843628\pi\)
0.990622 + 0.136632i \(0.0436277\pi\)
\(954\) 0 0
\(955\) 46.4701 33.7625i 1.50374 1.09253i
\(956\) 0 0
\(957\) 2.66506 0.387073i 0.0861490 0.0125123i
\(958\) 0 0
\(959\) −13.9808 + 10.1577i −0.451465 + 0.328009i
\(960\) 0 0
\(961\) −8.48938 + 26.1276i −0.273851 + 0.842826i
\(962\) 0 0
\(963\) 12.8253 + 9.31815i 0.413290 + 0.300273i
\(964\) 0 0
\(965\) −16.8560 51.8774i −0.542614 1.66999i
\(966\) 0 0
\(967\) −5.69152 −0.183027 −0.0915135 0.995804i \(-0.529170\pi\)
−0.0915135 + 0.995804i \(0.529170\pi\)
\(968\) 0 0
\(969\) 24.6734 0.792623
\(970\) 0 0
\(971\) −14.6985 45.2374i −0.471698 1.45174i −0.850360 0.526202i \(-0.823616\pi\)
0.378662 0.925535i \(-0.376384\pi\)
\(972\) 0 0
\(973\) −1.82789 1.32804i −0.0585996 0.0425751i
\(974\) 0 0
\(975\) −5.69407 + 17.5245i −0.182356 + 0.561235i
\(976\) 0 0
\(977\) 4.83562 3.51328i 0.154705 0.112400i −0.507740 0.861510i \(-0.669519\pi\)
0.662445 + 0.749111i \(0.269519\pi\)
\(978\) 0 0
\(979\) 43.2010 6.27451i 1.38071 0.200534i
\(980\) 0 0
\(981\) 0.0842129 0.0611842i 0.00268871 0.00195346i
\(982\) 0 0
\(983\) −11.4661 + 35.2891i −0.365712 + 1.12555i 0.583822 + 0.811882i \(0.301557\pi\)
−0.949534 + 0.313665i \(0.898443\pi\)
\(984\) 0 0
\(985\) −2.96066 2.15104i −0.0943345 0.0685380i
\(986\) 0 0
\(987\) −1.93914 5.96805i −0.0617234 0.189965i
\(988\) 0 0
\(989\) −0.490705 −0.0156035
\(990\) 0 0
\(991\) −33.5152 −1.06465 −0.532323 0.846542i \(-0.678681\pi\)
−0.532323 + 0.846542i \(0.678681\pi\)
\(992\) 0 0
\(993\) 7.50759 + 23.1060i 0.238246 + 0.733247i
\(994\) 0 0
\(995\) −14.5335 10.5592i −0.460743 0.334750i
\(996\) 0 0
\(997\) 0.575741 1.77195i 0.0182339 0.0561182i −0.941526 0.336942i \(-0.890608\pi\)
0.959759 + 0.280823i \(0.0906075\pi\)
\(998\) 0 0
\(999\) 4.18416 3.03997i 0.132381 0.0961805i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1056.2.y.f.289.3 12
4.3 odd 2 1056.2.y.i.289.3 yes 12
11.4 even 5 inner 1056.2.y.f.961.3 yes 12
44.15 odd 10 1056.2.y.i.961.3 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1056.2.y.f.289.3 12 1.1 even 1 trivial
1056.2.y.f.961.3 yes 12 11.4 even 5 inner
1056.2.y.i.289.3 yes 12 4.3 odd 2
1056.2.y.i.961.3 yes 12 44.15 odd 10