Properties

Label 1056.2.y
Level $1056$
Weight $2$
Character orbit 1056.y
Rep. character $\chi_{1056}(97,\cdot)$
Character field $\Q(\zeta_{5})$
Dimension $96$
Newform subspaces $10$
Sturm bound $384$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1056 = 2^{5} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1056.y (of order \(5\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 11 \)
Character field: \(\Q(\zeta_{5})\)
Newform subspaces: \( 10 \)
Sturm bound: \(384\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(5\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1056, [\chi])\).

Total New Old
Modular forms 832 96 736
Cusp forms 704 96 608
Eisenstein series 128 0 128

Trace form

\( 96 q - 24 q^{9} - 40 q^{25} - 8 q^{33} + 48 q^{41} + 8 q^{49} - 32 q^{53} - 32 q^{61} - 32 q^{65} + 24 q^{73} + 112 q^{77} - 24 q^{81} + 144 q^{85} + 32 q^{89} + 48 q^{93} + 32 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(1056, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
1056.2.y.a 1056.y 11.c $4$ $8.432$ \(\Q(\zeta_{10})\) None 1056.2.y.a \(0\) \(-1\) \(-2\) \(-4\) $\mathrm{SU}(2)[C_{5}]$ \(q+\zeta_{10}^{2}q^{3}+(-1+\zeta_{10}-\zeta_{10}^{2})q^{5}+\cdots\)
1056.2.y.b 1056.y 11.c $4$ $8.432$ \(\Q(\zeta_{10})\) None 1056.2.y.a \(0\) \(1\) \(-2\) \(4\) $\mathrm{SU}(2)[C_{5}]$ \(q-\zeta_{10}^{2}q^{3}+(-1+\zeta_{10}-\zeta_{10}^{2})q^{5}+\cdots\)
1056.2.y.c 1056.y 11.c $8$ $8.432$ 8.0.484000000.9 None 1056.2.y.c \(0\) \(-2\) \(2\) \(8\) $\mathrm{SU}(2)[C_{5}]$ \(q+\beta _{3}q^{3}+(-\beta _{2}-\beta _{6})q^{5}+(2+\beta _{1}+\cdots)q^{7}+\cdots\)
1056.2.y.d 1056.y 11.c $8$ $8.432$ 8.0.484000000.9 None 1056.2.y.c \(0\) \(2\) \(2\) \(-8\) $\mathrm{SU}(2)[C_{5}]$ \(q-\beta _{3}q^{3}+(-\beta _{2}-\beta _{6})q^{5}+(-2-\beta _{1}+\cdots)q^{7}+\cdots\)
1056.2.y.e 1056.y 11.c $12$ $8.432$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 1056.2.y.e \(0\) \(-3\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{5}]$ \(q-\beta _{7}q^{3}+(1-\beta _{5}-\beta _{7}-\beta _{8}+\beta _{9}+\cdots)q^{5}+\cdots\)
1056.2.y.f 1056.y 11.c $12$ $8.432$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 1056.2.y.f \(0\) \(-3\) \(0\) \(0\) $\mathrm{SU}(2)[C_{5}]$ \(q-\beta _{6}q^{3}+(-\beta _{5}+\beta _{8}+\beta _{11})q^{5}+(\beta _{1}+\cdots)q^{7}+\cdots\)
1056.2.y.g 1056.y 11.c $12$ $8.432$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 1056.2.y.g \(0\) \(-3\) \(0\) \(0\) $\mathrm{SU}(2)[C_{5}]$ \(q+\beta _{5}q^{3}+(-\beta _{1}+\beta _{2}-\beta _{3}+2\beta _{4}+\cdots)q^{5}+\cdots\)
1056.2.y.h 1056.y 11.c $12$ $8.432$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 1056.2.y.g \(0\) \(3\) \(0\) \(0\) $\mathrm{SU}(2)[C_{5}]$ \(q-\beta _{5}q^{3}+(-\beta _{1}+\beta _{2}-\beta _{3}+2\beta _{4}+\cdots)q^{5}+\cdots\)
1056.2.y.i 1056.y 11.c $12$ $8.432$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 1056.2.y.f \(0\) \(3\) \(0\) \(0\) $\mathrm{SU}(2)[C_{5}]$ \(q+\beta _{6}q^{3}+(-\beta _{5}+\beta _{8}+\beta _{11})q^{5}+(-\beta _{1}+\cdots)q^{7}+\cdots\)
1056.2.y.j 1056.y 11.c $12$ $8.432$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 1056.2.y.e \(0\) \(3\) \(0\) \(4\) $\mathrm{SU}(2)[C_{5}]$ \(q+\beta _{7}q^{3}+(1-\beta _{5}-\beta _{7}-\beta _{8}+\beta _{9}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(1056, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(1056, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(22, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(33, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(44, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(66, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(88, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(132, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(176, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(264, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(352, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(528, [\chi])\)\(^{\oplus 2}\)