Properties

Label 1056.2.y.e.289.1
Level $1056$
Weight $2$
Character 1056.289
Analytic conductor $8.432$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1056,2,Mod(97,1056)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1056.97"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1056, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 0, 6])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1056 = 2^{5} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1056.y (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,-3,0,0,0,-4,0,-3,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.43220245345\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(3\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3 x^{11} + 8 x^{10} - 12 x^{9} + 41 x^{8} - 6 x^{7} + 104 x^{6} + 48 x^{5} + 248 x^{4} + \cdots + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 289.1
Root \(0.228458 + 0.165984i\) of defining polynomial
Character \(\chi\) \(=\) 1056.289
Dual form 1056.2.y.e.961.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.309017 + 0.951057i) q^{3} +(-1.02076 - 0.741628i) q^{5} +(0.167822 - 0.516504i) q^{7} +(-0.809017 + 0.587785i) q^{9} +(-0.493296 - 3.27973i) q^{11} +(2.16155 - 1.57046i) q^{13} +(0.389897 - 1.19998i) q^{15} +(3.76244 + 2.73357i) q^{17} +(0.283418 + 0.872271i) q^{19} +0.543084 q^{21} -7.92887 q^{23} +(-1.05314 - 3.24123i) q^{25} +(-0.809017 - 0.587785i) q^{27} +(3.02965 - 9.32431i) q^{29} +(2.67170 - 1.94110i) q^{31} +(2.96678 - 1.48265i) q^{33} +(-0.554361 + 0.402766i) q^{35} +(2.34049 - 7.20329i) q^{37} +(2.16155 + 1.57046i) q^{39} +(-0.361835 - 1.11361i) q^{41} +10.2437 q^{43} +1.26173 q^{45} +(-1.28895 - 3.96699i) q^{47} +(5.42451 + 3.94114i) q^{49} +(-1.43712 + 4.42301i) q^{51} +(8.03756 - 5.83963i) q^{53} +(-1.92881 + 3.71368i) q^{55} +(-0.741998 + 0.539093i) q^{57} +(-2.62633 + 8.08300i) q^{59} +(-0.129722 - 0.0942488i) q^{61} +(0.167822 + 0.516504i) q^{63} -3.37112 q^{65} +2.62665 q^{67} +(-2.45016 - 7.54080i) q^{69} +(2.17617 + 1.58108i) q^{71} +(-1.89612 + 5.83567i) q^{73} +(2.75715 - 2.00319i) q^{75} +(-1.77678 - 0.295623i) q^{77} +(-3.36840 + 2.44729i) q^{79} +(0.309017 - 0.951057i) q^{81} +(-10.8346 - 7.87178i) q^{83} +(-1.81327 - 5.58067i) q^{85} +9.80416 q^{87} +2.70577 q^{89} +(-0.448390 - 1.38000i) q^{91} +(2.67170 + 1.94110i) q^{93} +(0.357598 - 1.10057i) q^{95} +(6.61605 - 4.80684i) q^{97} +(2.32686 + 2.36341i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 3 q^{3} - 4 q^{7} - 3 q^{9} + 2 q^{11} - 10 q^{13} + 5 q^{15} + 12 q^{17} + 8 q^{19} + 6 q^{21} - 24 q^{23} - 7 q^{25} - 3 q^{27} + 7 q^{29} + 31 q^{31} - 3 q^{33} + 17 q^{35} + 2 q^{37} - 10 q^{39}+ \cdots - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1056\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(353\) \(673\) \(991\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.309017 + 0.951057i 0.178411 + 0.549093i
\(4\) 0 0
\(5\) −1.02076 0.741628i −0.456499 0.331666i 0.335657 0.941984i \(-0.391042\pi\)
−0.792157 + 0.610318i \(0.791042\pi\)
\(6\) 0 0
\(7\) 0.167822 0.516504i 0.0634308 0.195220i −0.914319 0.404995i \(-0.867273\pi\)
0.977750 + 0.209775i \(0.0672732\pi\)
\(8\) 0 0
\(9\) −0.809017 + 0.587785i −0.269672 + 0.195928i
\(10\) 0 0
\(11\) −0.493296 3.27973i −0.148734 0.988877i
\(12\) 0 0
\(13\) 2.16155 1.57046i 0.599505 0.435566i −0.246198 0.969220i \(-0.579181\pi\)
0.845703 + 0.533654i \(0.179181\pi\)
\(14\) 0 0
\(15\) 0.389897 1.19998i 0.100671 0.309833i
\(16\) 0 0
\(17\) 3.76244 + 2.73357i 0.912526 + 0.662989i 0.941652 0.336587i \(-0.109273\pi\)
−0.0291265 + 0.999576i \(0.509273\pi\)
\(18\) 0 0
\(19\) 0.283418 + 0.872271i 0.0650206 + 0.200113i 0.978289 0.207246i \(-0.0664500\pi\)
−0.913268 + 0.407358i \(0.866450\pi\)
\(20\) 0 0
\(21\) 0.543084 0.118511
\(22\) 0 0
\(23\) −7.92887 −1.65328 −0.826642 0.562728i \(-0.809752\pi\)
−0.826642 + 0.562728i \(0.809752\pi\)
\(24\) 0 0
\(25\) −1.05314 3.24123i −0.210628 0.648246i
\(26\) 0 0
\(27\) −0.809017 0.587785i −0.155695 0.113119i
\(28\) 0 0
\(29\) 3.02965 9.32431i 0.562592 1.73148i −0.112407 0.993662i \(-0.535856\pi\)
0.674999 0.737818i \(-0.264144\pi\)
\(30\) 0 0
\(31\) 2.67170 1.94110i 0.479852 0.348633i −0.321417 0.946938i \(-0.604159\pi\)
0.801268 + 0.598305i \(0.204159\pi\)
\(32\) 0 0
\(33\) 2.96678 1.48265i 0.516449 0.258096i
\(34\) 0 0
\(35\) −0.554361 + 0.402766i −0.0937040 + 0.0680800i
\(36\) 0 0
\(37\) 2.34049 7.20329i 0.384774 1.18421i −0.551870 0.833930i \(-0.686085\pi\)
0.936644 0.350283i \(-0.113915\pi\)
\(38\) 0 0
\(39\) 2.16155 + 1.57046i 0.346125 + 0.251474i
\(40\) 0 0
\(41\) −0.361835 1.11361i −0.0565091 0.173917i 0.918818 0.394681i \(-0.129145\pi\)
−0.975327 + 0.220764i \(0.929145\pi\)
\(42\) 0 0
\(43\) 10.2437 1.56216 0.781078 0.624433i \(-0.214670\pi\)
0.781078 + 0.624433i \(0.214670\pi\)
\(44\) 0 0
\(45\) 1.26173 0.188088
\(46\) 0 0
\(47\) −1.28895 3.96699i −0.188013 0.578645i 0.811974 0.583693i \(-0.198393\pi\)
−0.999987 + 0.00504873i \(0.998393\pi\)
\(48\) 0 0
\(49\) 5.42451 + 3.94114i 0.774930 + 0.563019i
\(50\) 0 0
\(51\) −1.43712 + 4.42301i −0.201238 + 0.619346i
\(52\) 0 0
\(53\) 8.03756 5.83963i 1.10404 0.802134i 0.122328 0.992490i \(-0.460964\pi\)
0.981715 + 0.190355i \(0.0609640\pi\)
\(54\) 0 0
\(55\) −1.92881 + 3.71368i −0.260080 + 0.500752i
\(56\) 0 0
\(57\) −0.741998 + 0.539093i −0.0982800 + 0.0714046i
\(58\) 0 0
\(59\) −2.62633 + 8.08300i −0.341919 + 1.05232i 0.621294 + 0.783578i \(0.286607\pi\)
−0.963213 + 0.268740i \(0.913393\pi\)
\(60\) 0 0
\(61\) −0.129722 0.0942488i −0.0166092 0.0120673i 0.579450 0.815008i \(-0.303268\pi\)
−0.596059 + 0.802941i \(0.703268\pi\)
\(62\) 0 0
\(63\) 0.167822 + 0.516504i 0.0211436 + 0.0650733i
\(64\) 0 0
\(65\) −3.37112 −0.418136
\(66\) 0 0
\(67\) 2.62665 0.320896 0.160448 0.987044i \(-0.448706\pi\)
0.160448 + 0.987044i \(0.448706\pi\)
\(68\) 0 0
\(69\) −2.45016 7.54080i −0.294964 0.907806i
\(70\) 0 0
\(71\) 2.17617 + 1.58108i 0.258263 + 0.187639i 0.709381 0.704825i \(-0.248975\pi\)
−0.451118 + 0.892464i \(0.648975\pi\)
\(72\) 0 0
\(73\) −1.89612 + 5.83567i −0.221924 + 0.683013i 0.776665 + 0.629914i \(0.216910\pi\)
−0.998589 + 0.0530990i \(0.983090\pi\)
\(74\) 0 0
\(75\) 2.75715 2.00319i 0.318369 0.231308i
\(76\) 0 0
\(77\) −1.77678 0.295623i −0.202483 0.0336894i
\(78\) 0 0
\(79\) −3.36840 + 2.44729i −0.378975 + 0.275341i −0.760923 0.648843i \(-0.775253\pi\)
0.381948 + 0.924184i \(0.375253\pi\)
\(80\) 0 0
\(81\) 0.309017 0.951057i 0.0343352 0.105673i
\(82\) 0 0
\(83\) −10.8346 7.87178i −1.18925 0.864041i −0.196065 0.980591i \(-0.562816\pi\)
−0.993185 + 0.116550i \(0.962816\pi\)
\(84\) 0 0
\(85\) −1.81327 5.58067i −0.196677 0.605308i
\(86\) 0 0
\(87\) 9.80416 1.05112
\(88\) 0 0
\(89\) 2.70577 0.286811 0.143406 0.989664i \(-0.454195\pi\)
0.143406 + 0.989664i \(0.454195\pi\)
\(90\) 0 0
\(91\) −0.448390 1.38000i −0.0470041 0.144664i
\(92\) 0 0
\(93\) 2.67170 + 1.94110i 0.277042 + 0.201283i
\(94\) 0 0
\(95\) 0.357598 1.10057i 0.0366888 0.112916i
\(96\) 0 0
\(97\) 6.61605 4.80684i 0.671758 0.488061i −0.198855 0.980029i \(-0.563722\pi\)
0.870613 + 0.491968i \(0.163722\pi\)
\(98\) 0 0
\(99\) 2.32686 + 2.36341i 0.233859 + 0.237532i
\(100\) 0 0
\(101\) −0.138091 + 0.100329i −0.0137405 + 0.00998307i −0.594634 0.803996i \(-0.702703\pi\)
0.580894 + 0.813979i \(0.302703\pi\)
\(102\) 0 0
\(103\) −2.59832 + 7.99682i −0.256021 + 0.787950i 0.737606 + 0.675231i \(0.235956\pi\)
−0.993627 + 0.112719i \(0.964044\pi\)
\(104\) 0 0
\(105\) −0.554361 0.402766i −0.0541000 0.0393060i
\(106\) 0 0
\(107\) −3.52470 10.8479i −0.340746 1.04871i −0.963822 0.266546i \(-0.914118\pi\)
0.623077 0.782161i \(-0.285882\pi\)
\(108\) 0 0
\(109\) 7.77469 0.744680 0.372340 0.928096i \(-0.378556\pi\)
0.372340 + 0.928096i \(0.378556\pi\)
\(110\) 0 0
\(111\) 7.57398 0.718891
\(112\) 0 0
\(113\) 2.09234 + 6.43957i 0.196831 + 0.605784i 0.999950 + 0.00996568i \(0.00317223\pi\)
−0.803119 + 0.595818i \(0.796828\pi\)
\(114\) 0 0
\(115\) 8.09350 + 5.88028i 0.754723 + 0.548339i
\(116\) 0 0
\(117\) −0.825637 + 2.54105i −0.0763302 + 0.234920i
\(118\) 0 0
\(119\) 2.04332 1.48456i 0.187311 0.136089i
\(120\) 0 0
\(121\) −10.5133 + 3.23576i −0.955756 + 0.294160i
\(122\) 0 0
\(123\) 0.947295 0.688250i 0.0854147 0.0620574i
\(124\) 0 0
\(125\) −3.27827 + 10.0895i −0.293217 + 0.902429i
\(126\) 0 0
\(127\) 0.415737 + 0.302051i 0.0368907 + 0.0268027i 0.606078 0.795405i \(-0.292742\pi\)
−0.569187 + 0.822208i \(0.692742\pi\)
\(128\) 0 0
\(129\) 3.16549 + 9.74238i 0.278706 + 0.857769i
\(130\) 0 0
\(131\) −15.5023 −1.35445 −0.677223 0.735778i \(-0.736817\pi\)
−0.677223 + 0.735778i \(0.736817\pi\)
\(132\) 0 0
\(133\) 0.498095 0.0431903
\(134\) 0 0
\(135\) 0.389897 + 1.19998i 0.0335570 + 0.103278i
\(136\) 0 0
\(137\) −0.843932 0.613153i −0.0721020 0.0523852i 0.551150 0.834406i \(-0.314189\pi\)
−0.623252 + 0.782021i \(0.714189\pi\)
\(138\) 0 0
\(139\) −4.67943 + 14.4018i −0.396904 + 1.22154i 0.530565 + 0.847644i \(0.321980\pi\)
−0.927469 + 0.373900i \(0.878020\pi\)
\(140\) 0 0
\(141\) 3.37452 2.45173i 0.284186 0.206473i
\(142\) 0 0
\(143\) −6.21696 6.31460i −0.519888 0.528053i
\(144\) 0 0
\(145\) −10.0077 + 7.27104i −0.831097 + 0.603827i
\(146\) 0 0
\(147\) −2.07198 + 6.37689i −0.170894 + 0.525957i
\(148\) 0 0
\(149\) −1.83247 1.33137i −0.150122 0.109070i 0.510189 0.860062i \(-0.329575\pi\)
−0.660311 + 0.750992i \(0.729575\pi\)
\(150\) 0 0
\(151\) −3.87322 11.9205i −0.315198 0.970079i −0.975673 0.219231i \(-0.929645\pi\)
0.660475 0.750848i \(-0.270355\pi\)
\(152\) 0 0
\(153\) −4.65063 −0.375981
\(154\) 0 0
\(155\) −4.16675 −0.334682
\(156\) 0 0
\(157\) −3.07582 9.46641i −0.245478 0.755502i −0.995558 0.0941550i \(-0.969985\pi\)
0.750080 0.661347i \(-0.230015\pi\)
\(158\) 0 0
\(159\) 8.03756 + 5.83963i 0.637420 + 0.463113i
\(160\) 0 0
\(161\) −1.33064 + 4.09529i −0.104869 + 0.322754i
\(162\) 0 0
\(163\) 18.1128 13.1597i 1.41871 1.03075i 0.426722 0.904383i \(-0.359668\pi\)
0.991984 0.126367i \(-0.0403316\pi\)
\(164\) 0 0
\(165\) −4.12795 0.686814i −0.321360 0.0534684i
\(166\) 0 0
\(167\) −1.29744 + 0.942643i −0.100399 + 0.0729439i −0.636852 0.770986i \(-0.719764\pi\)
0.536453 + 0.843930i \(0.319764\pi\)
\(168\) 0 0
\(169\) −1.81127 + 5.57451i −0.139328 + 0.428808i
\(170\) 0 0
\(171\) −0.741998 0.539093i −0.0567420 0.0412255i
\(172\) 0 0
\(173\) −0.675640 2.07941i −0.0513680 0.158094i 0.922082 0.386995i \(-0.126487\pi\)
−0.973450 + 0.228901i \(0.926487\pi\)
\(174\) 0 0
\(175\) −1.85085 −0.139911
\(176\) 0 0
\(177\) −8.49897 −0.638822
\(178\) 0 0
\(179\) −3.19934 9.84656i −0.239130 0.735966i −0.996547 0.0830346i \(-0.973539\pi\)
0.757417 0.652932i \(-0.226461\pi\)
\(180\) 0 0
\(181\) −6.97412 5.06700i −0.518382 0.376627i 0.297612 0.954687i \(-0.403810\pi\)
−0.815994 + 0.578060i \(0.803810\pi\)
\(182\) 0 0
\(183\) 0.0495495 0.152498i 0.00366281 0.0112730i
\(184\) 0 0
\(185\) −7.73125 + 5.61708i −0.568413 + 0.412976i
\(186\) 0 0
\(187\) 7.10940 13.6883i 0.519891 1.00099i
\(188\) 0 0
\(189\) −0.439364 + 0.319217i −0.0319590 + 0.0232196i
\(190\) 0 0
\(191\) −1.04765 + 3.22432i −0.0758050 + 0.233304i −0.981778 0.190032i \(-0.939141\pi\)
0.905973 + 0.423336i \(0.139141\pi\)
\(192\) 0 0
\(193\) 16.2259 + 11.7888i 1.16797 + 0.848579i 0.990764 0.135595i \(-0.0432945\pi\)
0.177205 + 0.984174i \(0.443294\pi\)
\(194\) 0 0
\(195\) −1.04173 3.20613i −0.0746002 0.229596i
\(196\) 0 0
\(197\) −22.2953 −1.58847 −0.794237 0.607608i \(-0.792129\pi\)
−0.794237 + 0.607608i \(0.792129\pi\)
\(198\) 0 0
\(199\) −16.1481 −1.14471 −0.572353 0.820008i \(-0.693969\pi\)
−0.572353 + 0.820008i \(0.693969\pi\)
\(200\) 0 0
\(201\) 0.811679 + 2.49809i 0.0572514 + 0.176202i
\(202\) 0 0
\(203\) −4.30760 3.12965i −0.302334 0.219658i
\(204\) 0 0
\(205\) −0.456539 + 1.40508i −0.0318861 + 0.0981352i
\(206\) 0 0
\(207\) 6.41459 4.66047i 0.445845 0.323925i
\(208\) 0 0
\(209\) 2.72101 1.35982i 0.188216 0.0940610i
\(210\) 0 0
\(211\) 3.83447 2.78591i 0.263976 0.191790i −0.447922 0.894073i \(-0.647836\pi\)
0.711898 + 0.702283i \(0.247836\pi\)
\(212\) 0 0
\(213\) −0.831221 + 2.55824i −0.0569543 + 0.175287i
\(214\) 0 0
\(215\) −10.4564 7.59705i −0.713124 0.518115i
\(216\) 0 0
\(217\) −0.554217 1.70570i −0.0376227 0.115791i
\(218\) 0 0
\(219\) −6.13598 −0.414631
\(220\) 0 0
\(221\) 12.4256 0.835840
\(222\) 0 0
\(223\) 8.68148 + 26.7188i 0.581355 + 1.78923i 0.613440 + 0.789741i \(0.289785\pi\)
−0.0320852 + 0.999485i \(0.510215\pi\)
\(224\) 0 0
\(225\) 2.75715 + 2.00319i 0.183810 + 0.133546i
\(226\) 0 0
\(227\) −7.19753 + 22.1517i −0.477717 + 1.47026i 0.364541 + 0.931187i \(0.381226\pi\)
−0.842258 + 0.539074i \(0.818774\pi\)
\(228\) 0 0
\(229\) −14.3592 + 10.4326i −0.948882 + 0.689403i −0.950542 0.310596i \(-0.899471\pi\)
0.00166043 + 0.999999i \(0.499471\pi\)
\(230\) 0 0
\(231\) −0.267901 1.78117i −0.0176266 0.117192i
\(232\) 0 0
\(233\) −18.9468 + 13.7656i −1.24124 + 0.901816i −0.997681 0.0680686i \(-0.978316\pi\)
−0.243563 + 0.969885i \(0.578316\pi\)
\(234\) 0 0
\(235\) −1.62631 + 5.00528i −0.106089 + 0.326508i
\(236\) 0 0
\(237\) −3.36840 2.44729i −0.218801 0.158968i
\(238\) 0 0
\(239\) −6.56017 20.1901i −0.424342 1.30599i −0.903623 0.428330i \(-0.859102\pi\)
0.479280 0.877662i \(-0.340898\pi\)
\(240\) 0 0
\(241\) −1.23192 −0.0793551 −0.0396776 0.999213i \(-0.512633\pi\)
−0.0396776 + 0.999213i \(0.512633\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) −2.61428 8.04594i −0.167020 0.514036i
\(246\) 0 0
\(247\) 1.98248 + 1.44036i 0.126142 + 0.0916479i
\(248\) 0 0
\(249\) 4.13844 12.7368i 0.262263 0.807163i
\(250\) 0 0
\(251\) 11.7203 8.51526i 0.739776 0.537479i −0.152865 0.988247i \(-0.548850\pi\)
0.892641 + 0.450769i \(0.148850\pi\)
\(252\) 0 0
\(253\) 3.91128 + 26.0046i 0.245900 + 1.63489i
\(254\) 0 0
\(255\) 4.74720 3.44904i 0.297281 0.215987i
\(256\) 0 0
\(257\) 1.84528 5.67919i 0.115105 0.354258i −0.876864 0.480739i \(-0.840368\pi\)
0.991969 + 0.126481i \(0.0403683\pi\)
\(258\) 0 0
\(259\) −3.32774 2.41774i −0.206776 0.150231i
\(260\) 0 0
\(261\) 3.02965 + 9.32431i 0.187531 + 0.577160i
\(262\) 0 0
\(263\) 26.1883 1.61484 0.807421 0.589976i \(-0.200863\pi\)
0.807421 + 0.589976i \(0.200863\pi\)
\(264\) 0 0
\(265\) −12.5353 −0.770036
\(266\) 0 0
\(267\) 0.836129 + 2.57334i 0.0511703 + 0.157486i
\(268\) 0 0
\(269\) 17.1974 + 12.4947i 1.04855 + 0.761813i 0.971935 0.235248i \(-0.0755903\pi\)
0.0766102 + 0.997061i \(0.475590\pi\)
\(270\) 0 0
\(271\) −0.330382 + 1.01681i −0.0200693 + 0.0617669i −0.960590 0.277971i \(-0.910338\pi\)
0.940520 + 0.339737i \(0.110338\pi\)
\(272\) 0 0
\(273\) 1.17390 0.852889i 0.0710478 0.0516192i
\(274\) 0 0
\(275\) −10.1109 + 5.05290i −0.609708 + 0.304701i
\(276\) 0 0
\(277\) −13.1821 + 9.57736i −0.792036 + 0.575448i −0.908567 0.417739i \(-0.862823\pi\)
0.116531 + 0.993187i \(0.462823\pi\)
\(278\) 0 0
\(279\) −1.02050 + 3.14077i −0.0610957 + 0.188033i
\(280\) 0 0
\(281\) 4.39076 + 3.19008i 0.261931 + 0.190304i 0.710998 0.703194i \(-0.248244\pi\)
−0.449067 + 0.893498i \(0.648244\pi\)
\(282\) 0 0
\(283\) 0.0223882 + 0.0689037i 0.00133084 + 0.00409590i 0.951720 0.306968i \(-0.0993146\pi\)
−0.950389 + 0.311064i \(0.899315\pi\)
\(284\) 0 0
\(285\) 1.15721 0.0685473
\(286\) 0 0
\(287\) −0.635909 −0.0375365
\(288\) 0 0
\(289\) 1.43025 + 4.40185i 0.0841323 + 0.258933i
\(290\) 0 0
\(291\) 6.61605 + 4.80684i 0.387840 + 0.281782i
\(292\) 0 0
\(293\) −0.984643 + 3.03042i −0.0575234 + 0.177039i −0.975690 0.219156i \(-0.929670\pi\)
0.918166 + 0.396195i \(0.129670\pi\)
\(294\) 0 0
\(295\) 8.67545 6.30308i 0.505104 0.366980i
\(296\) 0 0
\(297\) −1.52869 + 2.94331i −0.0887039 + 0.170788i
\(298\) 0 0
\(299\) −17.1386 + 12.4519i −0.991152 + 0.720114i
\(300\) 0 0
\(301\) 1.71913 5.29093i 0.0990889 0.304964i
\(302\) 0 0
\(303\) −0.138091 0.100329i −0.00793309 0.00576373i
\(304\) 0 0
\(305\) 0.0625183 + 0.192411i 0.00357979 + 0.0110175i
\(306\) 0 0
\(307\) 11.6868 0.666999 0.333500 0.942750i \(-0.391770\pi\)
0.333500 + 0.942750i \(0.391770\pi\)
\(308\) 0 0
\(309\) −8.40836 −0.478335
\(310\) 0 0
\(311\) 7.83003 + 24.0984i 0.444000 + 1.36649i 0.883576 + 0.468287i \(0.155129\pi\)
−0.439576 + 0.898206i \(0.644871\pi\)
\(312\) 0 0
\(313\) −23.1045 16.7864i −1.30595 0.948825i −0.305950 0.952047i \(-0.598974\pi\)
−0.999995 + 0.00322282i \(0.998974\pi\)
\(314\) 0 0
\(315\) 0.211747 0.651690i 0.0119306 0.0367186i
\(316\) 0 0
\(317\) −17.6882 + 12.8512i −0.993466 + 0.721795i −0.960677 0.277667i \(-0.910439\pi\)
−0.0327884 + 0.999462i \(0.510439\pi\)
\(318\) 0 0
\(319\) −32.0758 5.33681i −1.79590 0.298804i
\(320\) 0 0
\(321\) 9.22778 6.70438i 0.515045 0.374202i
\(322\) 0 0
\(323\) −1.31807 + 4.05661i −0.0733396 + 0.225716i
\(324\) 0 0
\(325\) −7.36661 5.35216i −0.408626 0.296884i
\(326\) 0 0
\(327\) 2.40251 + 7.39417i 0.132859 + 0.408898i
\(328\) 0 0
\(329\) −2.26528 −0.124889
\(330\) 0 0
\(331\) 34.2835 1.88439 0.942196 0.335061i \(-0.108757\pi\)
0.942196 + 0.335061i \(0.108757\pi\)
\(332\) 0 0
\(333\) 2.34049 + 7.20329i 0.128258 + 0.394738i
\(334\) 0 0
\(335\) −2.68119 1.94800i −0.146489 0.106430i
\(336\) 0 0
\(337\) −3.50378 + 10.7835i −0.190863 + 0.587416i −1.00000 0.000204246i \(-0.999935\pi\)
0.809137 + 0.587620i \(0.199935\pi\)
\(338\) 0 0
\(339\) −5.47783 + 3.97988i −0.297515 + 0.216157i
\(340\) 0 0
\(341\) −7.68424 7.80493i −0.416125 0.422661i
\(342\) 0 0
\(343\) 6.02151 4.37488i 0.325131 0.236222i
\(344\) 0 0
\(345\) −3.09144 + 9.51449i −0.166438 + 0.512243i
\(346\) 0 0
\(347\) −11.2220 8.15328i −0.602430 0.437691i 0.244311 0.969697i \(-0.421438\pi\)
−0.846741 + 0.532006i \(0.821438\pi\)
\(348\) 0 0
\(349\) 6.25040 + 19.2367i 0.334576 + 1.02972i 0.966931 + 0.255040i \(0.0820886\pi\)
−0.632354 + 0.774679i \(0.717911\pi\)
\(350\) 0 0
\(351\) −2.67182 −0.142611
\(352\) 0 0
\(353\) 7.38396 0.393008 0.196504 0.980503i \(-0.437041\pi\)
0.196504 + 0.980503i \(0.437041\pi\)
\(354\) 0 0
\(355\) −1.04878 3.22781i −0.0556634 0.171314i
\(356\) 0 0
\(357\) 2.04332 + 1.48456i 0.108144 + 0.0785712i
\(358\) 0 0
\(359\) −1.57534 + 4.84841i −0.0831435 + 0.255889i −0.983983 0.178263i \(-0.942952\pi\)
0.900839 + 0.434153i \(0.142952\pi\)
\(360\) 0 0
\(361\) 14.6908 10.6735i 0.773200 0.561762i
\(362\) 0 0
\(363\) −6.32618 8.99886i −0.332039 0.472317i
\(364\) 0 0
\(365\) 6.26339 4.55062i 0.327841 0.238190i
\(366\) 0 0
\(367\) −5.71986 + 17.6039i −0.298574 + 0.918917i 0.683423 + 0.730022i \(0.260490\pi\)
−0.981997 + 0.188894i \(0.939510\pi\)
\(368\) 0 0
\(369\) 0.947295 + 0.688250i 0.0493142 + 0.0358289i
\(370\) 0 0
\(371\) −1.66731 5.13145i −0.0865623 0.266411i
\(372\) 0 0
\(373\) 12.4317 0.643690 0.321845 0.946792i \(-0.395697\pi\)
0.321845 + 0.946792i \(0.395697\pi\)
\(374\) 0 0
\(375\) −10.6087 −0.547830
\(376\) 0 0
\(377\) −8.09468 24.9129i −0.416897 1.28308i
\(378\) 0 0
\(379\) 24.9720 + 18.1432i 1.28272 + 0.931954i 0.999632 0.0271386i \(-0.00863953\pi\)
0.283093 + 0.959093i \(0.408640\pi\)
\(380\) 0 0
\(381\) −0.158797 + 0.488728i −0.00813544 + 0.0250383i
\(382\) 0 0
\(383\) 30.6757 22.2872i 1.56746 1.13882i 0.637917 0.770105i \(-0.279796\pi\)
0.929541 0.368719i \(-0.120204\pi\)
\(384\) 0 0
\(385\) 1.59443 + 1.61947i 0.0812597 + 0.0825360i
\(386\) 0 0
\(387\) −8.28737 + 6.02112i −0.421270 + 0.306071i
\(388\) 0 0
\(389\) −8.99871 + 27.6952i −0.456253 + 1.40420i 0.413406 + 0.910547i \(0.364339\pi\)
−0.869658 + 0.493654i \(0.835661\pi\)
\(390\) 0 0
\(391\) −29.8319 21.6741i −1.50866 1.09611i
\(392\) 0 0
\(393\) −4.79049 14.7436i −0.241648 0.743717i
\(394\) 0 0
\(395\) 5.25332 0.264323
\(396\) 0 0
\(397\) 12.4889 0.626800 0.313400 0.949621i \(-0.398532\pi\)
0.313400 + 0.949621i \(0.398532\pi\)
\(398\) 0 0
\(399\) 0.153920 + 0.473716i 0.00770563 + 0.0237155i
\(400\) 0 0
\(401\) 15.1991 + 11.0428i 0.759007 + 0.551451i 0.898606 0.438757i \(-0.144581\pi\)
−0.139599 + 0.990208i \(0.544581\pi\)
\(402\) 0 0
\(403\) 2.72659 8.39157i 0.135821 0.418014i
\(404\) 0 0
\(405\) −1.02076 + 0.741628i −0.0507222 + 0.0368518i
\(406\) 0 0
\(407\) −24.7794 4.12283i −1.22827 0.204361i
\(408\) 0 0
\(409\) 30.3265 22.0335i 1.49955 1.08949i 0.528988 0.848629i \(-0.322572\pi\)
0.970561 0.240857i \(-0.0774284\pi\)
\(410\) 0 0
\(411\) 0.322354 0.992102i 0.0159005 0.0489368i
\(412\) 0 0
\(413\) 3.73414 + 2.71301i 0.183745 + 0.133499i
\(414\) 0 0
\(415\) 5.22161 + 16.0705i 0.256319 + 0.788868i
\(416\) 0 0
\(417\) −15.1429 −0.741553
\(418\) 0 0
\(419\) 16.7087 0.816272 0.408136 0.912921i \(-0.366179\pi\)
0.408136 + 0.912921i \(0.366179\pi\)
\(420\) 0 0
\(421\) 1.42450 + 4.38416i 0.0694259 + 0.213671i 0.979750 0.200226i \(-0.0641675\pi\)
−0.910324 + 0.413897i \(0.864168\pi\)
\(422\) 0 0
\(423\) 3.37452 + 2.45173i 0.164075 + 0.119207i
\(424\) 0 0
\(425\) 4.89776 15.0738i 0.237576 0.731185i
\(426\) 0 0
\(427\) −0.0704501 + 0.0511850i −0.00340932 + 0.00247702i
\(428\) 0 0
\(429\) 4.08440 7.86400i 0.197197 0.379677i
\(430\) 0 0
\(431\) 4.49014 3.26228i 0.216282 0.157138i −0.474369 0.880326i \(-0.657324\pi\)
0.690652 + 0.723188i \(0.257324\pi\)
\(432\) 0 0
\(433\) 8.78642 27.0418i 0.422249 1.29955i −0.483356 0.875424i \(-0.660582\pi\)
0.905604 0.424123i \(-0.139418\pi\)
\(434\) 0 0
\(435\) −10.0077 7.27104i −0.479834 0.348620i
\(436\) 0 0
\(437\) −2.24719 6.91612i −0.107497 0.330843i
\(438\) 0 0
\(439\) 20.2313 0.965588 0.482794 0.875734i \(-0.339622\pi\)
0.482794 + 0.875734i \(0.339622\pi\)
\(440\) 0 0
\(441\) −6.70506 −0.319289
\(442\) 0 0
\(443\) −0.0735632 0.226404i −0.00349509 0.0107568i 0.949294 0.314390i \(-0.101800\pi\)
−0.952789 + 0.303634i \(0.901800\pi\)
\(444\) 0 0
\(445\) −2.76195 2.00668i −0.130929 0.0951256i
\(446\) 0 0
\(447\) 0.699943 2.15420i 0.0331061 0.101890i
\(448\) 0 0
\(449\) 9.40124 6.83040i 0.443672 0.322347i −0.343420 0.939182i \(-0.611586\pi\)
0.787092 + 0.616835i \(0.211586\pi\)
\(450\) 0 0
\(451\) −3.47386 + 1.73606i −0.163578 + 0.0817480i
\(452\) 0 0
\(453\) 10.1402 7.36729i 0.476429 0.346146i
\(454\) 0 0
\(455\) −0.565749 + 1.74120i −0.0265227 + 0.0816286i
\(456\) 0 0
\(457\) −17.6473 12.8215i −0.825506 0.599765i 0.0927784 0.995687i \(-0.470425\pi\)
−0.918284 + 0.395922i \(0.870425\pi\)
\(458\) 0 0
\(459\) −1.43712 4.42301i −0.0670792 0.206449i
\(460\) 0 0
\(461\) 24.7325 1.15191 0.575954 0.817482i \(-0.304631\pi\)
0.575954 + 0.817482i \(0.304631\pi\)
\(462\) 0 0
\(463\) −38.5025 −1.78936 −0.894681 0.446705i \(-0.852597\pi\)
−0.894681 + 0.446705i \(0.852597\pi\)
\(464\) 0 0
\(465\) −1.28760 3.96282i −0.0597109 0.183771i
\(466\) 0 0
\(467\) 28.6985 + 20.8506i 1.32801 + 0.964853i 0.999795 + 0.0202484i \(0.00644570\pi\)
0.328211 + 0.944604i \(0.393554\pi\)
\(468\) 0 0
\(469\) 0.440810 1.35667i 0.0203547 0.0626454i
\(470\) 0 0
\(471\) 8.05261 5.85057i 0.371045 0.269580i
\(472\) 0 0
\(473\) −5.05320 33.5968i −0.232346 1.54478i
\(474\) 0 0
\(475\) 2.52875 1.83724i 0.116027 0.0842986i
\(476\) 0 0
\(477\) −3.07007 + 9.44872i −0.140569 + 0.432627i
\(478\) 0 0
\(479\) 1.06209 + 0.771652i 0.0485280 + 0.0352577i 0.611785 0.791024i \(-0.290452\pi\)
−0.563257 + 0.826282i \(0.690452\pi\)
\(480\) 0 0
\(481\) −6.25337 19.2459i −0.285129 0.877537i
\(482\) 0 0
\(483\) −4.30604 −0.195932
\(484\) 0 0
\(485\) −10.3183 −0.468530
\(486\) 0 0
\(487\) −6.67061 20.5300i −0.302274 0.930305i −0.980680 0.195618i \(-0.937329\pi\)
0.678406 0.734687i \(-0.262671\pi\)
\(488\) 0 0
\(489\) 18.1128 + 13.1597i 0.819090 + 0.595104i
\(490\) 0 0
\(491\) −11.1012 + 34.1659i −0.500990 + 1.54189i 0.306420 + 0.951896i \(0.400869\pi\)
−0.807410 + 0.589991i \(0.799131\pi\)
\(492\) 0 0
\(493\) 36.8876 26.8004i 1.66133 1.20703i
\(494\) 0 0
\(495\) −0.622408 4.13815i −0.0279752 0.185996i
\(496\) 0 0
\(497\) 1.18184 0.858657i 0.0530128 0.0385160i
\(498\) 0 0
\(499\) −1.70033 + 5.23309i −0.0761174 + 0.234265i −0.981875 0.189532i \(-0.939303\pi\)
0.905757 + 0.423797i \(0.139303\pi\)
\(500\) 0 0
\(501\) −1.29744 0.942643i −0.0579652 0.0421142i
\(502\) 0 0
\(503\) 6.58030 + 20.2521i 0.293401 + 0.902995i 0.983754 + 0.179522i \(0.0574553\pi\)
−0.690353 + 0.723473i \(0.742545\pi\)
\(504\) 0 0
\(505\) 0.215364 0.00958359
\(506\) 0 0
\(507\) −5.86138 −0.260313
\(508\) 0 0
\(509\) 9.68204 + 29.7983i 0.429149 + 1.32078i 0.898965 + 0.438020i \(0.144320\pi\)
−0.469816 + 0.882764i \(0.655680\pi\)
\(510\) 0 0
\(511\) 2.69593 + 1.95871i 0.119261 + 0.0866482i
\(512\) 0 0
\(513\) 0.283418 0.872271i 0.0125132 0.0385117i
\(514\) 0 0
\(515\) 8.58295 6.23588i 0.378210 0.274786i
\(516\) 0 0
\(517\) −12.3748 + 6.18432i −0.544244 + 0.271986i
\(518\) 0 0
\(519\) 1.76885 1.28514i 0.0776439 0.0564116i
\(520\) 0 0
\(521\) 7.06997 21.7591i 0.309741 0.953285i −0.668124 0.744050i \(-0.732902\pi\)
0.977865 0.209236i \(-0.0670975\pi\)
\(522\) 0 0
\(523\) −20.7468 15.0735i −0.907196 0.659116i 0.0331081 0.999452i \(-0.489459\pi\)
−0.940304 + 0.340335i \(0.889459\pi\)
\(524\) 0 0
\(525\) −0.571943 1.76026i −0.0249616 0.0768240i
\(526\) 0 0
\(527\) 15.3583 0.669017
\(528\) 0 0
\(529\) 39.8670 1.73335
\(530\) 0 0
\(531\) −2.62633 8.08300i −0.113973 0.350773i
\(532\) 0 0
\(533\) −2.53100 1.83888i −0.109630 0.0796507i
\(534\) 0 0
\(535\) −4.44723 + 13.6872i −0.192271 + 0.591748i
\(536\) 0 0
\(537\) 8.37598 6.08551i 0.361450 0.262609i
\(538\) 0 0
\(539\) 10.2500 19.7351i 0.441498 0.850051i
\(540\) 0 0
\(541\) −31.1941 + 22.6638i −1.34114 + 0.974395i −0.341738 + 0.939795i \(0.611015\pi\)
−0.999401 + 0.0345992i \(0.988985\pi\)
\(542\) 0 0
\(543\) 2.66388 8.19857i 0.114318 0.351834i
\(544\) 0 0
\(545\) −7.93612 5.76593i −0.339946 0.246985i
\(546\) 0 0
\(547\) −12.9738 39.9291i −0.554718 1.70725i −0.696688 0.717374i \(-0.745344\pi\)
0.141970 0.989871i \(-0.454656\pi\)
\(548\) 0 0
\(549\) 0.160346 0.00684338
\(550\) 0 0
\(551\) 8.99198 0.383071
\(552\) 0 0
\(553\) 0.698740 + 2.15050i 0.0297134 + 0.0914485i
\(554\) 0 0
\(555\) −7.73125 5.61708i −0.328173 0.238432i
\(556\) 0 0
\(557\) 8.12732 25.0133i 0.344366 1.05985i −0.617557 0.786526i \(-0.711877\pi\)
0.961922 0.273322i \(-0.0881226\pi\)
\(558\) 0 0
\(559\) 22.1423 16.0874i 0.936521 0.680422i
\(560\) 0 0
\(561\) 15.2152 + 2.53153i 0.642388 + 0.106881i
\(562\) 0 0
\(563\) 14.0239 10.1889i 0.591035 0.429412i −0.251650 0.967818i \(-0.580973\pi\)
0.842686 + 0.538406i \(0.180973\pi\)
\(564\) 0 0
\(565\) 2.63998 8.12503i 0.111065 0.341822i
\(566\) 0 0
\(567\) −0.439364 0.319217i −0.0184516 0.0134058i
\(568\) 0 0
\(569\) 1.60157 + 4.92913i 0.0671414 + 0.206640i 0.978998 0.203868i \(-0.0653514\pi\)
−0.911857 + 0.410508i \(0.865351\pi\)
\(570\) 0 0
\(571\) −44.0308 −1.84263 −0.921316 0.388815i \(-0.872885\pi\)
−0.921316 + 0.388815i \(0.872885\pi\)
\(572\) 0 0
\(573\) −3.39025 −0.141630
\(574\) 0 0
\(575\) 8.35020 + 25.6993i 0.348227 + 1.07173i
\(576\) 0 0
\(577\) −21.3772 15.5314i −0.889942 0.646581i 0.0459206 0.998945i \(-0.485378\pi\)
−0.935863 + 0.352364i \(0.885378\pi\)
\(578\) 0 0
\(579\) −6.19776 + 19.0747i −0.257570 + 0.792719i
\(580\) 0 0
\(581\) −5.88409 + 4.27504i −0.244113 + 0.177359i
\(582\) 0 0
\(583\) −23.1173 23.4804i −0.957422 0.972458i
\(584\) 0 0
\(585\) 2.72730 1.98150i 0.112760 0.0819248i
\(586\) 0 0
\(587\) 6.42363 19.7699i 0.265132 0.815991i −0.726531 0.687133i \(-0.758869\pi\)
0.991663 0.128858i \(-0.0411312\pi\)
\(588\) 0 0
\(589\) 2.45038 + 1.78030i 0.100966 + 0.0733561i
\(590\) 0 0
\(591\) −6.88963 21.2041i −0.283401 0.872220i
\(592\) 0 0
\(593\) 38.8090 1.59370 0.796848 0.604180i \(-0.206499\pi\)
0.796848 + 0.604180i \(0.206499\pi\)
\(594\) 0 0
\(595\) −3.18674 −0.130644
\(596\) 0 0
\(597\) −4.99002 15.3577i −0.204228 0.628549i
\(598\) 0 0
\(599\) 27.2171 + 19.7744i 1.11206 + 0.807961i 0.982987 0.183674i \(-0.0587991\pi\)
0.129075 + 0.991635i \(0.458799\pi\)
\(600\) 0 0
\(601\) −9.69734 + 29.8454i −0.395563 + 1.21742i 0.532959 + 0.846141i \(0.321080\pi\)
−0.928522 + 0.371277i \(0.878920\pi\)
\(602\) 0 0
\(603\) −2.12500 + 1.54391i −0.0865368 + 0.0628727i
\(604\) 0 0
\(605\) 13.1313 + 4.49403i 0.533865 + 0.182708i
\(606\) 0 0
\(607\) −35.5367 + 25.8189i −1.44239 + 1.04796i −0.454852 + 0.890567i \(0.650308\pi\)
−0.987537 + 0.157389i \(0.949692\pi\)
\(608\) 0 0
\(609\) 1.64536 5.06388i 0.0666732 0.205199i
\(610\) 0 0
\(611\) −9.01611 6.55059i −0.364753 0.265008i
\(612\) 0 0
\(613\) −4.01487 12.3565i −0.162159 0.499075i 0.836656 0.547728i \(-0.184507\pi\)
−0.998816 + 0.0486531i \(0.984507\pi\)
\(614\) 0 0
\(615\) −1.47739 −0.0595741
\(616\) 0 0
\(617\) −21.4961 −0.865401 −0.432701 0.901538i \(-0.642439\pi\)
−0.432701 + 0.901538i \(0.642439\pi\)
\(618\) 0 0
\(619\) 2.35958 + 7.26205i 0.0948396 + 0.291886i 0.987212 0.159414i \(-0.0509604\pi\)
−0.892372 + 0.451300i \(0.850960\pi\)
\(620\) 0 0
\(621\) 6.41459 + 4.66047i 0.257409 + 0.187018i
\(622\) 0 0
\(623\) 0.454088 1.39754i 0.0181927 0.0559913i
\(624\) 0 0
\(625\) −2.95680 + 2.14824i −0.118272 + 0.0859295i
\(626\) 0 0
\(627\) 2.13411 + 2.16762i 0.0852280 + 0.0865666i
\(628\) 0 0
\(629\) 28.4967 20.7040i 1.13624 0.825524i
\(630\) 0 0
\(631\) 4.76280 14.6584i 0.189604 0.583541i −0.810393 0.585886i \(-0.800747\pi\)
0.999997 + 0.00234540i \(0.000746564\pi\)
\(632\) 0 0
\(633\) 3.83447 + 2.78591i 0.152407 + 0.110730i
\(634\) 0 0
\(635\) −0.200360 0.616645i −0.00795105 0.0244708i
\(636\) 0 0
\(637\) 17.9147 0.709806
\(638\) 0 0
\(639\) −2.68989 −0.106410
\(640\) 0 0
\(641\) 2.73861 + 8.42856i 0.108168 + 0.332908i 0.990461 0.137793i \(-0.0440009\pi\)
−0.882293 + 0.470701i \(0.844001\pi\)
\(642\) 0 0
\(643\) −7.14036 5.18777i −0.281588 0.204586i 0.438022 0.898964i \(-0.355679\pi\)
−0.719610 + 0.694379i \(0.755679\pi\)
\(644\) 0 0
\(645\) 3.99401 12.2923i 0.157264 0.484008i
\(646\) 0 0
\(647\) 11.9448 8.67838i 0.469597 0.341182i −0.327687 0.944786i \(-0.606269\pi\)
0.797284 + 0.603604i \(0.206269\pi\)
\(648\) 0 0
\(649\) 27.8057 + 4.62634i 1.09147 + 0.181600i
\(650\) 0 0
\(651\) 1.45096 1.05418i 0.0568675 0.0413167i
\(652\) 0 0
\(653\) 2.12825 6.55008i 0.0832849 0.256325i −0.900739 0.434361i \(-0.856974\pi\)
0.984024 + 0.178036i \(0.0569744\pi\)
\(654\) 0 0
\(655\) 15.8242 + 11.4970i 0.618304 + 0.449224i
\(656\) 0 0
\(657\) −1.89612 5.83567i −0.0739748 0.227671i
\(658\) 0 0
\(659\) 4.45910 0.173702 0.0868509 0.996221i \(-0.472320\pi\)
0.0868509 + 0.996221i \(0.472320\pi\)
\(660\) 0 0
\(661\) 26.6538 1.03671 0.518356 0.855165i \(-0.326544\pi\)
0.518356 + 0.855165i \(0.326544\pi\)
\(662\) 0 0
\(663\) 3.83974 + 11.8175i 0.149123 + 0.458953i
\(664\) 0 0
\(665\) −0.508437 0.369401i −0.0197164 0.0143248i
\(666\) 0 0
\(667\) −24.0217 + 73.9312i −0.930125 + 2.86263i
\(668\) 0 0
\(669\) −22.7284 + 16.5132i −0.878731 + 0.638435i
\(670\) 0 0
\(671\) −0.245120 + 0.471947i −0.00946273 + 0.0182193i
\(672\) 0 0
\(673\) −3.36374 + 2.44390i −0.129663 + 0.0942055i −0.650726 0.759312i \(-0.725535\pi\)
0.521064 + 0.853518i \(0.325535\pi\)
\(674\) 0 0
\(675\) −1.05314 + 3.24123i −0.0405353 + 0.124755i
\(676\) 0 0
\(677\) −6.06506 4.40653i −0.233099 0.169357i 0.465104 0.885256i \(-0.346017\pi\)
−0.698203 + 0.715899i \(0.746017\pi\)
\(678\) 0 0
\(679\) −1.37243 4.22391i −0.0526691 0.162099i
\(680\) 0 0
\(681\) −23.2917 −0.892540
\(682\) 0 0
\(683\) 15.9932 0.611962 0.305981 0.952038i \(-0.401016\pi\)
0.305981 + 0.952038i \(0.401016\pi\)
\(684\) 0 0
\(685\) 0.406724 + 1.25177i 0.0155401 + 0.0478276i
\(686\) 0 0
\(687\) −14.3592 10.4326i −0.547837 0.398027i
\(688\) 0 0
\(689\) 8.20268 25.2453i 0.312497 0.961768i
\(690\) 0 0
\(691\) 22.0240 16.0014i 0.837831 0.608720i −0.0839326 0.996471i \(-0.526748\pi\)
0.921764 + 0.387751i \(0.126748\pi\)
\(692\) 0 0
\(693\) 1.61121 0.805201i 0.0612048 0.0305871i
\(694\) 0 0
\(695\) 15.4574 11.2304i 0.586332 0.425995i
\(696\) 0 0
\(697\) 1.68276 5.17900i 0.0637391 0.196169i
\(698\) 0 0
\(699\) −18.9468 13.7656i −0.716632 0.520664i
\(700\) 0 0
\(701\) 2.23858 + 6.88964i 0.0845500 + 0.260218i 0.984390 0.176003i \(-0.0563167\pi\)
−0.899840 + 0.436221i \(0.856317\pi\)
\(702\) 0 0
\(703\) 6.94656 0.261994
\(704\) 0 0
\(705\) −5.26286 −0.198211
\(706\) 0 0
\(707\) 0.0286455 + 0.0881616i 0.00107732 + 0.00331566i
\(708\) 0 0
\(709\) −22.4505 16.3112i −0.843145 0.612581i 0.0801023 0.996787i \(-0.474475\pi\)
−0.923247 + 0.384206i \(0.874475\pi\)
\(710\) 0 0
\(711\) 1.28661 3.95979i 0.0482518 0.148504i
\(712\) 0 0
\(713\) −21.1836 + 15.3908i −0.793331 + 0.576389i
\(714\) 0 0
\(715\) 1.66296 + 11.0564i 0.0621912 + 0.413486i
\(716\) 0 0
\(717\) 17.1748 12.4782i 0.641403 0.466007i
\(718\) 0 0
\(719\) −9.13018 + 28.0998i −0.340498 + 1.04795i 0.623452 + 0.781862i \(0.285730\pi\)
−0.963950 + 0.266084i \(0.914270\pi\)
\(720\) 0 0
\(721\) 3.69433 + 2.68409i 0.137584 + 0.0999607i
\(722\) 0 0
\(723\) −0.380685 1.17163i −0.0141578 0.0435733i
\(724\) 0 0
\(725\) −33.4129 −1.24092
\(726\) 0 0
\(727\) 35.9365 1.33281 0.666406 0.745589i \(-0.267832\pi\)
0.666406 + 0.745589i \(0.267832\pi\)
\(728\) 0 0
\(729\) 0.309017 + 0.951057i 0.0114451 + 0.0352243i
\(730\) 0 0
\(731\) 38.5415 + 28.0020i 1.42551 + 1.03569i
\(732\) 0 0
\(733\) −12.6573 + 38.9552i −0.467508 + 1.43884i 0.388293 + 0.921536i \(0.373065\pi\)
−0.855801 + 0.517305i \(0.826935\pi\)
\(734\) 0 0
\(735\) 6.84428 4.97266i 0.252455 0.183419i
\(736\) 0 0
\(737\) −1.29571 8.61471i −0.0477283 0.317327i
\(738\) 0 0
\(739\) 20.7506 15.0762i 0.763322 0.554586i −0.136606 0.990625i \(-0.543619\pi\)
0.899927 + 0.436040i \(0.143619\pi\)
\(740\) 0 0
\(741\) −0.757242 + 2.33055i −0.0278180 + 0.0856149i
\(742\) 0 0
\(743\) −2.36606 1.71904i −0.0868023 0.0630655i 0.543538 0.839385i \(-0.317084\pi\)
−0.630340 + 0.776319i \(0.717084\pi\)
\(744\) 0 0
\(745\) 0.883141 + 2.71803i 0.0323558 + 0.0995809i
\(746\) 0 0
\(747\) 13.3923 0.489998
\(748\) 0 0
\(749\) −6.19451 −0.226342
\(750\) 0 0
\(751\) 5.62802 + 17.3213i 0.205370 + 0.632062i 0.999698 + 0.0245739i \(0.00782291\pi\)
−0.794328 + 0.607488i \(0.792177\pi\)
\(752\) 0 0
\(753\) 11.7203 + 8.51526i 0.427110 + 0.310313i
\(754\) 0 0
\(755\) −4.88697 + 15.0405i −0.177855 + 0.547381i
\(756\) 0 0
\(757\) −13.0694 + 9.49549i −0.475016 + 0.345119i −0.799393 0.600809i \(-0.794845\pi\)
0.324377 + 0.945928i \(0.394845\pi\)
\(758\) 0 0
\(759\) −23.5232 + 11.7557i −0.853838 + 0.426705i
\(760\) 0 0
\(761\) 10.5978 7.69976i 0.384171 0.279116i −0.378892 0.925441i \(-0.623695\pi\)
0.763063 + 0.646325i \(0.223695\pi\)
\(762\) 0 0
\(763\) 1.30476 4.01565i 0.0472357 0.145376i
\(764\) 0 0
\(765\) 4.74720 + 3.44904i 0.171635 + 0.124700i
\(766\) 0 0
\(767\) 7.01707 + 21.5963i 0.253372 + 0.779798i
\(768\) 0 0
\(769\) 20.2660 0.730812 0.365406 0.930848i \(-0.380930\pi\)
0.365406 + 0.930848i \(0.380930\pi\)
\(770\) 0 0
\(771\) 5.97145 0.215057
\(772\) 0 0
\(773\) 4.03968 + 12.4329i 0.145297 + 0.447179i 0.997049 0.0767663i \(-0.0244595\pi\)
−0.851752 + 0.523945i \(0.824460\pi\)
\(774\) 0 0
\(775\) −9.10523 6.61534i −0.327070 0.237630i
\(776\) 0 0
\(777\) 1.27108 3.91199i 0.0455998 0.140342i
\(778\) 0 0
\(779\) 0.868821 0.631236i 0.0311288 0.0226164i
\(780\) 0 0
\(781\) 4.11202 7.91718i 0.147140 0.283299i
\(782\) 0 0
\(783\) −7.93173 + 5.76274i −0.283457 + 0.205944i
\(784\) 0 0
\(785\) −3.88087 + 11.9441i −0.138514 + 0.426303i
\(786\) 0 0
\(787\) −36.8800 26.7949i −1.31463 0.955136i −0.999982 0.00592778i \(-0.998113\pi\)
−0.314649 0.949208i \(-0.601887\pi\)
\(788\) 0 0
\(789\) 8.09264 + 24.9066i 0.288106 + 0.886698i
\(790\) 0 0
\(791\) 3.67720 0.130746
\(792\) 0 0
\(793\) −0.428414 −0.0152134
\(794\) 0 0
\(795\) −3.87361 11.9218i −0.137383 0.422821i
\(796\) 0 0
\(797\) −19.8237 14.4027i −0.702190 0.510171i 0.178454 0.983948i \(-0.442890\pi\)
−0.880645 + 0.473777i \(0.842890\pi\)
\(798\) 0 0
\(799\) 5.99444 18.4490i 0.212068 0.652679i
\(800\) 0 0
\(801\) −2.18901 + 1.59041i −0.0773450 + 0.0561945i
\(802\) 0 0
\(803\) 20.0748 + 3.34007i 0.708424 + 0.117869i
\(804\) 0 0
\(805\) 4.39545 3.19348i 0.154919 0.112556i
\(806\) 0 0
\(807\) −6.56883 + 20.2168i −0.231234 + 0.711665i
\(808\) 0 0
\(809\) 21.8891 + 15.9034i 0.769581 + 0.559133i 0.901834 0.432083i \(-0.142221\pi\)
−0.132253 + 0.991216i \(0.542221\pi\)
\(810\) 0 0
\(811\) −5.81313 17.8910i −0.204127 0.628237i −0.999748 0.0224432i \(-0.992856\pi\)
0.795621 0.605794i \(-0.207144\pi\)
\(812\) 0 0
\(813\) −1.06914 −0.0374963
\(814\) 0 0
\(815\) −28.2485 −0.989503
\(816\) 0 0
\(817\) 2.90326 + 8.93532i 0.101572 + 0.312607i
\(818\) 0 0
\(819\) 1.17390 + 0.852889i 0.0410194 + 0.0298024i
\(820\) 0 0
\(821\) 0.472048 1.45281i 0.0164746 0.0507035i −0.942481 0.334259i \(-0.891514\pi\)
0.958956 + 0.283555i \(0.0915140\pi\)
\(822\) 0 0
\(823\) 1.87252 1.36047i 0.0652720 0.0474229i −0.554671 0.832070i \(-0.687156\pi\)
0.619943 + 0.784647i \(0.287156\pi\)
\(824\) 0 0
\(825\) −7.93002 8.05457i −0.276088 0.280424i
\(826\) 0 0
\(827\) 16.8428 12.2370i 0.585680 0.425522i −0.255087 0.966918i \(-0.582104\pi\)
0.840767 + 0.541396i \(0.182104\pi\)
\(828\) 0 0
\(829\) 8.58521 26.4226i 0.298177 0.917694i −0.683959 0.729520i \(-0.739743\pi\)
0.982136 0.188173i \(-0.0602567\pi\)
\(830\) 0 0
\(831\) −13.1821 9.57736i −0.457282 0.332235i
\(832\) 0 0
\(833\) 9.63601 + 29.6566i 0.333868 + 1.02754i
\(834\) 0 0
\(835\) 2.02347 0.0700250
\(836\) 0 0
\(837\) −3.30240 −0.114148
\(838\) 0 0
\(839\) 4.73552 + 14.5744i 0.163488 + 0.503165i 0.998922 0.0464265i \(-0.0147833\pi\)
−0.835433 + 0.549592i \(0.814783\pi\)
\(840\) 0 0
\(841\) −54.3025 39.4530i −1.87250 1.36045i
\(842\) 0 0
\(843\) −1.67712 + 5.16165i −0.0577631 + 0.177777i
\(844\) 0 0
\(845\) 5.98309 4.34697i 0.205825 0.149540i
\(846\) 0 0
\(847\) −0.0930872 + 5.97320i −0.00319851 + 0.205242i
\(848\) 0 0
\(849\) −0.0586130 + 0.0425848i −0.00201159 + 0.00146151i
\(850\) 0 0
\(851\) −18.5574 + 57.1139i −0.636141 + 1.95784i
\(852\) 0 0
\(853\) −16.0505 11.6614i −0.549558 0.399278i 0.278064 0.960562i \(-0.410307\pi\)
−0.827623 + 0.561285i \(0.810307\pi\)
\(854\) 0 0
\(855\) 0.357598 + 1.10057i 0.0122296 + 0.0376388i
\(856\) 0 0
\(857\) −19.0643 −0.651225 −0.325613 0.945503i \(-0.605571\pi\)
−0.325613 + 0.945503i \(0.605571\pi\)
\(858\) 0 0
\(859\) −39.6848 −1.35403 −0.677014 0.735970i \(-0.736726\pi\)
−0.677014 + 0.735970i \(0.736726\pi\)
\(860\) 0 0
\(861\) −0.196507 0.604785i −0.00669693 0.0206110i
\(862\) 0 0
\(863\) −2.98630 2.16967i −0.101655 0.0738565i 0.535797 0.844347i \(-0.320011\pi\)
−0.637451 + 0.770491i \(0.720011\pi\)
\(864\) 0 0
\(865\) −0.852478 + 2.62366i −0.0289851 + 0.0892070i
\(866\) 0 0
\(867\) −3.74444 + 2.72050i −0.127168 + 0.0923929i
\(868\) 0 0
\(869\) 9.68807 + 9.84022i 0.328645 + 0.333807i
\(870\) 0 0
\(871\) 5.67762 4.12504i 0.192379 0.139771i
\(872\) 0 0
\(873\) −2.52711 + 7.77763i −0.0855296 + 0.263233i
\(874\) 0 0
\(875\) 4.66108 + 3.38647i 0.157573 + 0.114484i
\(876\) 0 0
\(877\) −9.19166 28.2890i −0.310380 0.955252i −0.977614 0.210404i \(-0.932522\pi\)
0.667234 0.744848i \(-0.267478\pi\)
\(878\) 0 0
\(879\) −3.18637 −0.107474
\(880\) 0 0
\(881\) −52.9912 −1.78532 −0.892660 0.450731i \(-0.851163\pi\)
−0.892660 + 0.450731i \(0.851163\pi\)
\(882\) 0 0
\(883\) −2.24579 6.91183i −0.0755768 0.232602i 0.906130 0.422999i \(-0.139022\pi\)
−0.981707 + 0.190397i \(0.939022\pi\)
\(884\) 0 0
\(885\) 8.67545 + 6.30308i 0.291622 + 0.211876i
\(886\) 0 0
\(887\) 16.9828 52.2677i 0.570227 1.75498i −0.0816575 0.996660i \(-0.526021\pi\)
0.651885 0.758318i \(-0.273979\pi\)
\(888\) 0 0
\(889\) 0.225780 0.164039i 0.00757242 0.00550169i
\(890\) 0 0
\(891\) −3.27165 0.544342i −0.109604 0.0182361i
\(892\) 0 0
\(893\) 3.09498 2.24863i 0.103569 0.0752476i
\(894\) 0 0
\(895\) −4.03672 + 12.4237i −0.134933 + 0.415280i
\(896\) 0 0
\(897\) −17.1386 12.4519i −0.572242 0.415758i
\(898\) 0 0
\(899\) −10.0051 30.7926i −0.333690 1.02699i
\(900\) 0 0
\(901\) 46.2039 1.53927
\(902\) 0 0
\(903\) 5.56321 0.185132
\(904\) 0 0
\(905\) 3.36110 + 10.3444i 0.111727 + 0.343860i
\(906\) 0 0
\(907\) 18.9567 + 13.7728i 0.629447 + 0.457320i 0.856209 0.516630i \(-0.172814\pi\)
−0.226762 + 0.973950i \(0.572814\pi\)
\(908\) 0 0
\(909\) 0.0527459 0.162335i 0.00174947 0.00538432i
\(910\) 0 0
\(911\) 33.4577 24.3085i 1.10850 0.805376i 0.126077 0.992020i \(-0.459761\pi\)
0.982427 + 0.186645i \(0.0597613\pi\)
\(912\) 0 0
\(913\) −20.4727 + 39.4177i −0.677548 + 1.30453i
\(914\) 0 0
\(915\) −0.163675 + 0.118917i −0.00541093 + 0.00393127i
\(916\) 0 0
\(917\) −2.60164 + 8.00702i −0.0859136 + 0.264415i
\(918\) 0 0
\(919\) −8.99997 6.53886i −0.296882 0.215697i 0.429365 0.903131i \(-0.358737\pi\)
−0.726247 + 0.687434i \(0.758737\pi\)
\(920\) 0 0
\(921\) 3.61141 + 11.1148i 0.119000 + 0.366244i
\(922\) 0 0
\(923\) 7.18689 0.236559
\(924\) 0 0
\(925\) −25.8124 −0.848705
\(926\) 0 0
\(927\) −2.59832 7.99682i −0.0853402 0.262650i
\(928\) 0 0
\(929\) 39.2999 + 28.5531i 1.28939 + 0.936795i 0.999793 0.0203537i \(-0.00647925\pi\)
0.289595 + 0.957149i \(0.406479\pi\)
\(930\) 0 0
\(931\) −1.90033 + 5.84863i −0.0622810 + 0.191681i
\(932\) 0 0
\(933\) −20.4993 + 14.8936i −0.671117 + 0.487595i
\(934\) 0 0
\(935\) −17.4086 + 8.69996i −0.569323 + 0.284519i
\(936\) 0 0
\(937\) −34.9622 + 25.4015i −1.14217 + 0.829832i −0.987420 0.158122i \(-0.949456\pi\)
−0.154746 + 0.987954i \(0.549456\pi\)
\(938\) 0 0
\(939\) 8.82514 27.1610i 0.287998 0.886366i
\(940\) 0 0
\(941\) 0.459262 + 0.333673i 0.0149715 + 0.0108774i 0.595246 0.803544i \(-0.297055\pi\)
−0.580274 + 0.814421i \(0.697055\pi\)
\(942\) 0 0
\(943\) 2.86894 + 8.82969i 0.0934255 + 0.287534i
\(944\) 0 0
\(945\) 0.685227 0.0222904
\(946\) 0 0
\(947\) 23.5465 0.765159 0.382579 0.923923i \(-0.375036\pi\)
0.382579 + 0.923923i \(0.375036\pi\)
\(948\) 0 0
\(949\) 5.06610 + 15.5918i 0.164452 + 0.506133i
\(950\) 0 0
\(951\) −17.6882 12.8512i −0.573578 0.416729i
\(952\) 0 0
\(953\) −14.9261 + 45.9378i −0.483504 + 1.48807i 0.350632 + 0.936513i \(0.385967\pi\)
−0.834136 + 0.551559i \(0.814033\pi\)
\(954\) 0 0
\(955\) 3.46065 2.51431i 0.111984 0.0813611i
\(956\) 0 0
\(957\) −4.83635 32.1550i −0.156337 1.03942i
\(958\) 0 0
\(959\) −0.458326 + 0.332993i −0.0148001 + 0.0107529i
\(960\) 0 0
\(961\) −6.20943 + 19.1107i −0.200304 + 0.616473i
\(962\) 0 0
\(963\) 9.22778 + 6.70438i 0.297361 + 0.216045i
\(964\) 0 0
\(965\) −7.81992 24.0672i −0.251732 0.774752i
\(966\) 0 0
\(967\) 27.7356 0.891916 0.445958 0.895054i \(-0.352863\pi\)
0.445958 + 0.895054i \(0.352863\pi\)
\(968\) 0 0
\(969\) −4.26537 −0.137024
\(970\) 0 0
\(971\) −3.08190 9.48510i −0.0989028 0.304391i 0.889348 0.457230i \(-0.151158\pi\)
−0.988251 + 0.152839i \(0.951158\pi\)
\(972\) 0 0
\(973\) 6.65327 + 4.83388i 0.213294 + 0.154967i
\(974\) 0 0
\(975\) 2.81380 8.65997i 0.0901136 0.277341i
\(976\) 0 0
\(977\) −21.0418 + 15.2877i −0.673186 + 0.489098i −0.871090 0.491123i \(-0.836587\pi\)
0.197904 + 0.980221i \(0.436587\pi\)
\(978\) 0 0
\(979\) −1.33475 8.87421i −0.0426587 0.283621i
\(980\) 0 0
\(981\) −6.28985 + 4.56985i −0.200820 + 0.145904i
\(982\) 0 0
\(983\) −12.5154 + 38.5184i −0.399179 + 1.22855i 0.526480 + 0.850188i \(0.323512\pi\)
−0.925659 + 0.378359i \(0.876488\pi\)
\(984\) 0 0
\(985\) 22.7582 + 16.5348i 0.725138 + 0.526843i
\(986\) 0 0
\(987\) −0.700009 2.15441i −0.0222815 0.0685755i
\(988\) 0 0
\(989\) −81.2213 −2.58269
\(990\) 0 0
\(991\) −25.5128 −0.810441 −0.405221 0.914219i \(-0.632805\pi\)
−0.405221 + 0.914219i \(0.632805\pi\)
\(992\) 0 0
\(993\) 10.5942 + 32.6056i 0.336196 + 1.03471i
\(994\) 0 0
\(995\) 16.4834 + 11.9759i 0.522557 + 0.379660i
\(996\) 0 0
\(997\) −13.5397 + 41.6709i −0.428806 + 1.31973i 0.470496 + 0.882402i \(0.344075\pi\)
−0.899302 + 0.437328i \(0.855925\pi\)
\(998\) 0 0
\(999\) −6.12748 + 4.45188i −0.193865 + 0.140851i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1056.2.y.e.289.1 12
4.3 odd 2 1056.2.y.j.289.1 yes 12
11.4 even 5 inner 1056.2.y.e.961.1 yes 12
44.15 odd 10 1056.2.y.j.961.1 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1056.2.y.e.289.1 12 1.1 even 1 trivial
1056.2.y.e.961.1 yes 12 11.4 even 5 inner
1056.2.y.j.289.1 yes 12 4.3 odd 2
1056.2.y.j.961.1 yes 12 44.15 odd 10