Properties

Label 1056.2.y.c.97.1
Level $1056$
Weight $2$
Character 1056.97
Analytic conductor $8.432$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1056,2,Mod(97,1056)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1056.97"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1056, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 0, 0, 6])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1056 = 2^{5} \cdot 3 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1056.y (of order \(5\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,-2,0,2,0,8,0,-2,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.43220245345\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.484000000.9
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + x^{6} + 16x^{4} + 66x^{2} + 121 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 97.1
Root \(1.73855 + 1.26313i\) of defining polynomial
Character \(\chi\) \(=\) 1056.97
Dual form 1056.2.y.c.577.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.809017 + 0.587785i) q^{3} +(-0.973083 - 2.99484i) q^{5} +(3.85658 + 2.80197i) q^{7} +(0.309017 - 0.951057i) q^{9} +(1.73855 - 2.82444i) q^{11} +(-0.309017 + 0.951057i) q^{13} +(2.54756 + 1.85091i) q^{15} +(0.837466 + 2.57746i) q^{17} +(-0.234536 + 0.170401i) q^{19} -4.76700 q^{21} -1.90794 q^{23} +(-3.97709 + 2.88953i) q^{25} +(0.309017 + 0.951057i) q^{27} +(-7.09513 - 5.15491i) q^{29} +(2.27276 - 6.99485i) q^{31} +(0.253650 + 3.30691i) q^{33} +(4.63868 - 14.2764i) q^{35} +(8.19405 + 5.95332i) q^{37} +(-0.309017 - 0.951057i) q^{39} +(6.27100 - 4.55615i) q^{41} +11.7212 q^{43} -3.14896 q^{45} +(3.50554 - 2.54692i) q^{47} +(4.85906 + 14.9546i) q^{49} +(-2.19251 - 1.59296i) q^{51} +(1.51429 - 4.66051i) q^{53} +(-10.1505 - 2.45825i) q^{55} +(0.0895849 - 0.275714i) q^{57} +(6.75919 + 4.91084i) q^{59} +(-2.83264 - 8.71798i) q^{61} +(3.85658 - 2.80197i) q^{63} +3.14896 q^{65} -1.88431 q^{67} +(1.54355 - 1.12146i) q^{69} +(1.83841 + 5.65805i) q^{71} +(-8.38503 - 6.09208i) q^{73} +(1.51911 - 4.67535i) q^{75} +(14.6188 - 6.02132i) q^{77} +(3.41925 - 10.5234i) q^{79} +(-0.809017 - 0.587785i) q^{81} +(3.53575 + 10.8819i) q^{83} +(6.90414 - 5.01615i) q^{85} +8.77006 q^{87} -7.62768 q^{89} +(-3.85658 + 2.80197i) q^{91} +(2.27276 + 6.99485i) q^{93} +(0.738546 + 0.536585i) q^{95} +(-0.686745 + 2.11358i) q^{97} +(-2.14896 - 2.52626i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 2 q^{3} + 2 q^{5} + 8 q^{7} - 2 q^{9} + 2 q^{13} + 2 q^{15} - 10 q^{17} - 6 q^{19} - 12 q^{21} - 8 q^{23} - 4 q^{25} - 2 q^{27} - 20 q^{29} + 10 q^{31} + 26 q^{37} + 2 q^{39} + 6 q^{41} + 12 q^{43}+ \cdots + 30 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1056\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(353\) \(673\) \(991\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{3}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.809017 + 0.587785i −0.467086 + 0.339358i
\(4\) 0 0
\(5\) −0.973083 2.99484i −0.435176 1.33933i −0.892906 0.450242i \(-0.851338\pi\)
0.457731 0.889091i \(-0.348662\pi\)
\(6\) 0 0
\(7\) 3.85658 + 2.80197i 1.45765 + 1.05904i 0.983967 + 0.178350i \(0.0570758\pi\)
0.473683 + 0.880695i \(0.342924\pi\)
\(8\) 0 0
\(9\) 0.309017 0.951057i 0.103006 0.317019i
\(10\) 0 0
\(11\) 1.73855 2.82444i 0.524191 0.851600i
\(12\) 0 0
\(13\) −0.309017 + 0.951057i −0.0857059 + 0.263776i −0.984720 0.174143i \(-0.944284\pi\)
0.899014 + 0.437919i \(0.144284\pi\)
\(14\) 0 0
\(15\) 2.54756 + 1.85091i 0.657778 + 0.477904i
\(16\) 0 0
\(17\) 0.837466 + 2.57746i 0.203115 + 0.625125i 0.999786 + 0.0207105i \(0.00659282\pi\)
−0.796670 + 0.604414i \(0.793407\pi\)
\(18\) 0 0
\(19\) −0.234536 + 0.170401i −0.0538063 + 0.0390926i −0.614363 0.789023i \(-0.710587\pi\)
0.560557 + 0.828116i \(0.310587\pi\)
\(20\) 0 0
\(21\) −4.76700 −1.04024
\(22\) 0 0
\(23\) −1.90794 −0.397832 −0.198916 0.980017i \(-0.563742\pi\)
−0.198916 + 0.980017i \(0.563742\pi\)
\(24\) 0 0
\(25\) −3.97709 + 2.88953i −0.795418 + 0.577905i
\(26\) 0 0
\(27\) 0.309017 + 0.951057i 0.0594703 + 0.183031i
\(28\) 0 0
\(29\) −7.09513 5.15491i −1.31753 0.957243i −0.999959 0.00900891i \(-0.997132\pi\)
−0.317572 0.948234i \(-0.602868\pi\)
\(30\) 0 0
\(31\) 2.27276 6.99485i 0.408201 1.25631i −0.509992 0.860179i \(-0.670352\pi\)
0.918193 0.396133i \(-0.129648\pi\)
\(32\) 0 0
\(33\) 0.253650 + 3.30691i 0.0441549 + 0.575659i
\(34\) 0 0
\(35\) 4.63868 14.2764i 0.784080 2.41315i
\(36\) 0 0
\(37\) 8.19405 + 5.95332i 1.34709 + 0.978720i 0.999151 + 0.0412043i \(0.0131194\pi\)
0.347942 + 0.937516i \(0.386881\pi\)
\(38\) 0 0
\(39\) −0.309017 0.951057i −0.0494823 0.152291i
\(40\) 0 0
\(41\) 6.27100 4.55615i 0.979366 0.711551i 0.0217995 0.999762i \(-0.493060\pi\)
0.957567 + 0.288211i \(0.0930605\pi\)
\(42\) 0 0
\(43\) 11.7212 1.78746 0.893732 0.448602i \(-0.148078\pi\)
0.893732 + 0.448602i \(0.148078\pi\)
\(44\) 0 0
\(45\) −3.14896 −0.469419
\(46\) 0 0
\(47\) 3.50554 2.54692i 0.511336 0.371507i −0.301994 0.953310i \(-0.597652\pi\)
0.813330 + 0.581803i \(0.197652\pi\)
\(48\) 0 0
\(49\) 4.85906 + 14.9546i 0.694151 + 2.13638i
\(50\) 0 0
\(51\) −2.19251 1.59296i −0.307013 0.223058i
\(52\) 0 0
\(53\) 1.51429 4.66051i 0.208004 0.640170i −0.791573 0.611075i \(-0.790737\pi\)
0.999577 0.0290952i \(-0.00926261\pi\)
\(54\) 0 0
\(55\) −10.1505 2.45825i −1.36869 0.331471i
\(56\) 0 0
\(57\) 0.0895849 0.275714i 0.0118658 0.0365192i
\(58\) 0 0
\(59\) 6.75919 + 4.91084i 0.879972 + 0.639337i 0.933244 0.359243i \(-0.116965\pi\)
−0.0532722 + 0.998580i \(0.516965\pi\)
\(60\) 0 0
\(61\) −2.83264 8.71798i −0.362683 1.11622i −0.951419 0.307898i \(-0.900374\pi\)
0.588737 0.808325i \(-0.299626\pi\)
\(62\) 0 0
\(63\) 3.85658 2.80197i 0.485883 0.353015i
\(64\) 0 0
\(65\) 3.14896 0.390581
\(66\) 0 0
\(67\) −1.88431 −0.230205 −0.115103 0.993354i \(-0.536720\pi\)
−0.115103 + 0.993354i \(0.536720\pi\)
\(68\) 0 0
\(69\) 1.54355 1.12146i 0.185822 0.135008i
\(70\) 0 0
\(71\) 1.83841 + 5.65805i 0.218179 + 0.671487i 0.998913 + 0.0466227i \(0.0148458\pi\)
−0.780733 + 0.624865i \(0.785154\pi\)
\(72\) 0 0
\(73\) −8.38503 6.09208i −0.981393 0.713024i −0.0233738 0.999727i \(-0.507441\pi\)
−0.958020 + 0.286703i \(0.907441\pi\)
\(74\) 0 0
\(75\) 1.51911 4.67535i 0.175412 0.539863i
\(76\) 0 0
\(77\) 14.6188 6.02132i 1.66597 0.686193i
\(78\) 0 0
\(79\) 3.41925 10.5234i 0.384695 1.18397i −0.552006 0.833840i \(-0.686137\pi\)
0.936701 0.350130i \(-0.113863\pi\)
\(80\) 0 0
\(81\) −0.809017 0.587785i −0.0898908 0.0653095i
\(82\) 0 0
\(83\) 3.53575 + 10.8819i 0.388099 + 1.19445i 0.934207 + 0.356731i \(0.116109\pi\)
−0.546108 + 0.837715i \(0.683891\pi\)
\(84\) 0 0
\(85\) 6.90414 5.01615i 0.748859 0.544078i
\(86\) 0 0
\(87\) 8.77006 0.940249
\(88\) 0 0
\(89\) −7.62768 −0.808532 −0.404266 0.914641i \(-0.632473\pi\)
−0.404266 + 0.914641i \(0.632473\pi\)
\(90\) 0 0
\(91\) −3.85658 + 2.80197i −0.404279 + 0.293726i
\(92\) 0 0
\(93\) 2.27276 + 6.99485i 0.235675 + 0.725332i
\(94\) 0 0
\(95\) 0.738546 + 0.536585i 0.0757732 + 0.0550525i
\(96\) 0 0
\(97\) −0.686745 + 2.11358i −0.0697284 + 0.214602i −0.979848 0.199743i \(-0.935989\pi\)
0.910120 + 0.414345i \(0.135989\pi\)
\(98\) 0 0
\(99\) −2.14896 2.52626i −0.215979 0.253898i
\(100\) 0 0
\(101\) 4.36510 13.4344i 0.434344 1.33677i −0.459414 0.888222i \(-0.651940\pi\)
0.893757 0.448551i \(-0.148060\pi\)
\(102\) 0 0
\(103\) 4.70514 + 3.41848i 0.463611 + 0.336833i 0.794946 0.606680i \(-0.207499\pi\)
−0.331335 + 0.943513i \(0.607499\pi\)
\(104\) 0 0
\(105\) 4.63868 + 14.2764i 0.452689 + 1.39323i
\(106\) 0 0
\(107\) −3.63868 + 2.64366i −0.351764 + 0.255572i −0.749609 0.661881i \(-0.769758\pi\)
0.397844 + 0.917453i \(0.369758\pi\)
\(108\) 0 0
\(109\) −13.1757 −1.26200 −0.630999 0.775783i \(-0.717355\pi\)
−0.630999 + 0.775783i \(0.717355\pi\)
\(110\) 0 0
\(111\) −10.1284 −0.961345
\(112\) 0 0
\(113\) 9.02998 6.56066i 0.849469 0.617175i −0.0755305 0.997143i \(-0.524065\pi\)
0.925000 + 0.379968i \(0.124065\pi\)
\(114\) 0 0
\(115\) 1.85658 + 5.71397i 0.173127 + 0.532830i
\(116\) 0 0
\(117\) 0.809017 + 0.587785i 0.0747936 + 0.0543408i
\(118\) 0 0
\(119\) −3.99220 + 12.2867i −0.365964 + 1.12632i
\(120\) 0 0
\(121\) −4.95492 9.82084i −0.450447 0.892803i
\(122\) 0 0
\(123\) −2.39531 + 7.37201i −0.215978 + 0.664712i
\(124\) 0 0
\(125\) −0.214107 0.155558i −0.0191503 0.0139135i
\(126\) 0 0
\(127\) −0.385029 1.18500i −0.0341658 0.105152i 0.932519 0.361120i \(-0.117606\pi\)
−0.966685 + 0.255969i \(0.917606\pi\)
\(128\) 0 0
\(129\) −9.48263 + 6.88954i −0.834899 + 0.606590i
\(130\) 0 0
\(131\) 3.08711 0.269722 0.134861 0.990865i \(-0.456941\pi\)
0.134861 + 0.990865i \(0.456941\pi\)
\(132\) 0 0
\(133\) −1.38197 −0.119832
\(134\) 0 0
\(135\) 2.54756 1.85091i 0.219259 0.159301i
\(136\) 0 0
\(137\) 4.88801 + 15.0437i 0.417611 + 1.28527i 0.909895 + 0.414839i \(0.136162\pi\)
−0.492284 + 0.870435i \(0.663838\pi\)
\(138\) 0 0
\(139\) 4.29391 + 3.11971i 0.364205 + 0.264610i 0.754804 0.655951i \(-0.227732\pi\)
−0.390599 + 0.920561i \(0.627732\pi\)
\(140\) 0 0
\(141\) −1.33900 + 4.12101i −0.112764 + 0.347052i
\(142\) 0 0
\(143\) 2.14896 + 2.52626i 0.179705 + 0.211256i
\(144\) 0 0
\(145\) −8.53399 + 26.2649i −0.708709 + 2.18118i
\(146\) 0 0
\(147\) −12.7212 9.24248i −1.04923 0.762307i
\(148\) 0 0
\(149\) 1.77232 + 5.45464i 0.145194 + 0.446862i 0.997036 0.0769376i \(-0.0245142\pi\)
−0.851842 + 0.523799i \(0.824514\pi\)
\(150\) 0 0
\(151\) 4.94121 3.59000i 0.402110 0.292150i −0.368290 0.929711i \(-0.620057\pi\)
0.770400 + 0.637561i \(0.220057\pi\)
\(152\) 0 0
\(153\) 2.71010 0.219098
\(154\) 0 0
\(155\) −23.1600 −1.86026
\(156\) 0 0
\(157\) −14.6371 + 10.6345i −1.16817 + 0.848726i −0.990789 0.135416i \(-0.956763\pi\)
−0.177382 + 0.984142i \(0.556763\pi\)
\(158\) 0 0
\(159\) 1.51429 + 4.66051i 0.120091 + 0.369602i
\(160\) 0 0
\(161\) −7.35811 5.34598i −0.579900 0.421322i
\(162\) 0 0
\(163\) 0.781070 2.40389i 0.0611782 0.188287i −0.915796 0.401643i \(-0.868439\pi\)
0.976975 + 0.213356i \(0.0684393\pi\)
\(164\) 0 0
\(165\) 9.65685 3.97754i 0.751785 0.309651i
\(166\) 0 0
\(167\) 1.26267 3.88611i 0.0977087 0.300717i −0.890241 0.455489i \(-0.849464\pi\)
0.987950 + 0.154772i \(0.0494644\pi\)
\(168\) 0 0
\(169\) 9.70820 + 7.05342i 0.746785 + 0.542571i
\(170\) 0 0
\(171\) 0.0895849 + 0.275714i 0.00685073 + 0.0210844i
\(172\) 0 0
\(173\) 5.84549 4.24699i 0.444424 0.322893i −0.342966 0.939348i \(-0.611432\pi\)
0.787390 + 0.616455i \(0.211432\pi\)
\(174\) 0 0
\(175\) −23.4343 −1.77147
\(176\) 0 0
\(177\) −8.35482 −0.627987
\(178\) 0 0
\(179\) −8.76239 + 6.36625i −0.654932 + 0.475836i −0.864948 0.501862i \(-0.832648\pi\)
0.210016 + 0.977698i \(0.432648\pi\)
\(180\) 0 0
\(181\) −5.81938 17.9102i −0.432551 1.33126i −0.895575 0.444910i \(-0.853236\pi\)
0.463024 0.886346i \(-0.346764\pi\)
\(182\) 0 0
\(183\) 7.41596 + 5.38801i 0.548203 + 0.398293i
\(184\) 0 0
\(185\) 9.85577 30.3329i 0.724610 2.23012i
\(186\) 0 0
\(187\) 8.73584 + 2.11565i 0.638828 + 0.154712i
\(188\) 0 0
\(189\) −1.47308 + 4.53368i −0.107151 + 0.329777i
\(190\) 0 0
\(191\) 19.4706 + 14.1462i 1.40884 + 1.02358i 0.993489 + 0.113924i \(0.0363420\pi\)
0.415353 + 0.909660i \(0.363658\pi\)
\(192\) 0 0
\(193\) 1.97520 + 6.07904i 0.142178 + 0.437579i 0.996637 0.0819395i \(-0.0261114\pi\)
−0.854459 + 0.519518i \(0.826111\pi\)
\(194\) 0 0
\(195\) −2.54756 + 1.85091i −0.182435 + 0.132547i
\(196\) 0 0
\(197\) −25.4390 −1.81246 −0.906228 0.422790i \(-0.861051\pi\)
−0.906228 + 0.422790i \(0.861051\pi\)
\(198\) 0 0
\(199\) −18.0252 −1.27777 −0.638887 0.769300i \(-0.720605\pi\)
−0.638887 + 0.769300i \(0.720605\pi\)
\(200\) 0 0
\(201\) 1.52444 1.10757i 0.107526 0.0781220i
\(202\) 0 0
\(203\) −12.9190 39.7607i −0.906737 2.79065i
\(204\) 0 0
\(205\) −19.7472 14.3471i −1.37920 1.00205i
\(206\) 0 0
\(207\) −0.589585 + 1.81456i −0.0409790 + 0.126120i
\(208\) 0 0
\(209\) 0.0735340 + 0.958683i 0.00508645 + 0.0663135i
\(210\) 0 0
\(211\) −4.04165 + 12.4389i −0.278239 + 0.856331i 0.710105 + 0.704095i \(0.248647\pi\)
−0.988344 + 0.152236i \(0.951353\pi\)
\(212\) 0 0
\(213\) −4.81303 3.49687i −0.329783 0.239601i
\(214\) 0 0
\(215\) −11.4057 35.1031i −0.777861 2.39401i
\(216\) 0 0
\(217\) 28.3645 20.6080i 1.92550 1.39896i
\(218\) 0 0
\(219\) 10.3645 0.700366
\(220\) 0 0
\(221\) −2.71010 −0.182301
\(222\) 0 0
\(223\) −8.14648 + 5.91877i −0.545529 + 0.396350i −0.826134 0.563473i \(-0.809465\pi\)
0.280605 + 0.959823i \(0.409465\pi\)
\(224\) 0 0
\(225\) 1.51911 + 4.67535i 0.101274 + 0.311690i
\(226\) 0 0
\(227\) −9.41369 6.83945i −0.624809 0.453950i 0.229789 0.973240i \(-0.426196\pi\)
−0.854598 + 0.519290i \(0.826196\pi\)
\(228\) 0 0
\(229\) −1.21550 + 3.74094i −0.0803228 + 0.247208i −0.983152 0.182792i \(-0.941487\pi\)
0.902829 + 0.430000i \(0.141487\pi\)
\(230\) 0 0
\(231\) −8.28764 + 13.4641i −0.545287 + 0.885872i
\(232\) 0 0
\(233\) −1.35009 + 4.15516i −0.0884475 + 0.272213i −0.985491 0.169729i \(-0.945711\pi\)
0.897043 + 0.441943i \(0.145711\pi\)
\(234\) 0 0
\(235\) −11.0388 8.02017i −0.720093 0.523178i
\(236\) 0 0
\(237\) 3.41925 + 10.5234i 0.222104 + 0.683566i
\(238\) 0 0
\(239\) −3.51852 + 2.55635i −0.227594 + 0.165357i −0.695738 0.718295i \(-0.744923\pi\)
0.468144 + 0.883652i \(0.344923\pi\)
\(240\) 0 0
\(241\) 5.48061 0.353037 0.176519 0.984297i \(-0.443516\pi\)
0.176519 + 0.984297i \(0.443516\pi\)
\(242\) 0 0
\(243\) 1.00000 0.0641500
\(244\) 0 0
\(245\) 40.0585 29.1042i 2.55924 1.85940i
\(246\) 0 0
\(247\) −0.0895849 0.275714i −0.00570015 0.0175433i
\(248\) 0 0
\(249\) −9.25671 6.72540i −0.586620 0.426205i
\(250\) 0 0
\(251\) −8.21076 + 25.2701i −0.518259 + 1.59504i 0.259014 + 0.965873i \(0.416602\pi\)
−0.777273 + 0.629163i \(0.783398\pi\)
\(252\) 0 0
\(253\) −3.31704 + 5.38885i −0.208540 + 0.338794i
\(254\) 0 0
\(255\) −2.63715 + 8.11631i −0.165145 + 0.508263i
\(256\) 0 0
\(257\) 5.16064 + 3.74943i 0.321912 + 0.233883i 0.736991 0.675903i \(-0.236246\pi\)
−0.415079 + 0.909785i \(0.636246\pi\)
\(258\) 0 0
\(259\) 14.9200 + 45.9189i 0.927082 + 2.85326i
\(260\) 0 0
\(261\) −7.09513 + 5.15491i −0.439177 + 0.319081i
\(262\) 0 0
\(263\) −26.4473 −1.63081 −0.815406 0.578890i \(-0.803486\pi\)
−0.815406 + 0.578890i \(0.803486\pi\)
\(264\) 0 0
\(265\) −15.4310 −0.947919
\(266\) 0 0
\(267\) 6.17092 4.48344i 0.377654 0.274382i
\(268\) 0 0
\(269\) 1.41713 + 4.36148i 0.0864040 + 0.265924i 0.984918 0.173020i \(-0.0553526\pi\)
−0.898514 + 0.438944i \(0.855353\pi\)
\(270\) 0 0
\(271\) −10.8736 7.90011i −0.660522 0.479897i 0.206317 0.978485i \(-0.433852\pi\)
−0.866839 + 0.498588i \(0.833852\pi\)
\(272\) 0 0
\(273\) 1.47308 4.53368i 0.0891550 0.274391i
\(274\) 0 0
\(275\) 1.24693 + 16.2566i 0.0751930 + 0.980312i
\(276\) 0 0
\(277\) −9.04960 + 27.8518i −0.543738 + 1.67345i 0.180235 + 0.983624i \(0.442314\pi\)
−0.723973 + 0.689829i \(0.757686\pi\)
\(278\) 0 0
\(279\) −5.95017 4.32305i −0.356228 0.258815i
\(280\) 0 0
\(281\) −2.76889 8.52176i −0.165178 0.508366i 0.833871 0.551959i \(-0.186119\pi\)
−0.999049 + 0.0435932i \(0.986119\pi\)
\(282\) 0 0
\(283\) −5.67493 + 4.12308i −0.337340 + 0.245092i −0.743539 0.668693i \(-0.766854\pi\)
0.406199 + 0.913785i \(0.366854\pi\)
\(284\) 0 0
\(285\) −0.912893 −0.0540751
\(286\) 0 0
\(287\) 36.9508 2.18114
\(288\) 0 0
\(289\) 7.81136 5.67529i 0.459492 0.333840i
\(290\) 0 0
\(291\) −0.686745 2.11358i −0.0402577 0.123901i
\(292\) 0 0
\(293\) −2.48797 1.80762i −0.145349 0.105602i 0.512734 0.858547i \(-0.328633\pi\)
−0.658083 + 0.752945i \(0.728633\pi\)
\(294\) 0 0
\(295\) 8.12993 25.0214i 0.473343 1.45680i
\(296\) 0 0
\(297\) 3.22344 + 0.780656i 0.187043 + 0.0452982i
\(298\) 0 0
\(299\) 0.589585 1.81456i 0.0340966 0.104938i
\(300\) 0 0
\(301\) 45.2037 + 32.8424i 2.60550 + 1.89300i
\(302\) 0 0
\(303\) 4.36510 + 13.4344i 0.250769 + 0.771786i
\(304\) 0 0
\(305\) −23.3526 + 16.9666i −1.33716 + 0.971506i
\(306\) 0 0
\(307\) −10.1281 −0.578043 −0.289021 0.957323i \(-0.593330\pi\)
−0.289021 + 0.957323i \(0.593330\pi\)
\(308\) 0 0
\(309\) −5.81587 −0.330854
\(310\) 0 0
\(311\) −8.45951 + 6.14619i −0.479695 + 0.348519i −0.801208 0.598387i \(-0.795809\pi\)
0.321513 + 0.946905i \(0.395809\pi\)
\(312\) 0 0
\(313\) 2.10316 + 6.47285i 0.118878 + 0.365867i 0.992736 0.120313i \(-0.0383898\pi\)
−0.873859 + 0.486180i \(0.838390\pi\)
\(314\) 0 0
\(315\) −12.1442 8.82329i −0.684249 0.497136i
\(316\) 0 0
\(317\) −3.58061 + 11.0200i −0.201107 + 0.618943i 0.798744 + 0.601671i \(0.205498\pi\)
−0.999851 + 0.0172723i \(0.994502\pi\)
\(318\) 0 0
\(319\) −26.8949 + 11.0777i −1.50583 + 0.620232i
\(320\) 0 0
\(321\) 1.38985 4.27752i 0.0775740 0.238748i
\(322\) 0 0
\(323\) −0.635616 0.461802i −0.0353666 0.0256954i
\(324\) 0 0
\(325\) −1.51911 4.67535i −0.0842653 0.259342i
\(326\) 0 0
\(327\) 10.6593 7.74445i 0.589462 0.428269i
\(328\) 0 0
\(329\) 20.6558 1.13879
\(330\) 0 0
\(331\) 31.9488 1.75606 0.878032 0.478603i \(-0.158857\pi\)
0.878032 + 0.478603i \(0.158857\pi\)
\(332\) 0 0
\(333\) 8.19405 5.95332i 0.449031 0.326240i
\(334\) 0 0
\(335\) 1.83359 + 5.64321i 0.100180 + 0.308321i
\(336\) 0 0
\(337\) 11.8782 + 8.62999i 0.647045 + 0.470105i 0.862263 0.506460i \(-0.169046\pi\)
−0.215219 + 0.976566i \(0.569046\pi\)
\(338\) 0 0
\(339\) −3.44915 + 10.6154i −0.187332 + 0.576548i
\(340\) 0 0
\(341\) −15.8052 18.5802i −0.855901 1.00617i
\(342\) 0 0
\(343\) −12.8515 + 39.5529i −0.693917 + 2.13566i
\(344\) 0 0
\(345\) −4.86059 3.53143i −0.261685 0.190126i
\(346\) 0 0
\(347\) 4.49270 + 13.8271i 0.241181 + 0.742278i 0.996241 + 0.0866228i \(0.0276075\pi\)
−0.755060 + 0.655655i \(0.772393\pi\)
\(348\) 0 0
\(349\) −10.9790 + 7.97669i −0.587691 + 0.426982i −0.841489 0.540275i \(-0.818320\pi\)
0.253798 + 0.967257i \(0.418320\pi\)
\(350\) 0 0
\(351\) −1.00000 −0.0533761
\(352\) 0 0
\(353\) −17.5713 −0.935228 −0.467614 0.883933i \(-0.654886\pi\)
−0.467614 + 0.883933i \(0.654886\pi\)
\(354\) 0 0
\(355\) 15.1560 11.0115i 0.804399 0.584430i
\(356\) 0 0
\(357\) −3.99220 12.2867i −0.211289 0.650282i
\(358\) 0 0
\(359\) 12.1983 + 8.86256i 0.643800 + 0.467748i 0.861154 0.508345i \(-0.169742\pi\)
−0.217353 + 0.976093i \(0.569742\pi\)
\(360\) 0 0
\(361\) −5.84535 + 17.9901i −0.307650 + 0.946850i
\(362\) 0 0
\(363\) 9.78115 + 5.03280i 0.513377 + 0.264153i
\(364\) 0 0
\(365\) −10.0855 + 31.0399i −0.527898 + 1.62470i
\(366\) 0 0
\(367\) −17.8259 12.9512i −0.930502 0.676049i 0.0156136 0.999878i \(-0.495030\pi\)
−0.946116 + 0.323829i \(0.895030\pi\)
\(368\) 0 0
\(369\) −2.39531 7.37201i −0.124695 0.383771i
\(370\) 0 0
\(371\) 18.8986 13.7306i 0.981166 0.712859i
\(372\) 0 0
\(373\) 34.3215 1.77710 0.888551 0.458779i \(-0.151713\pi\)
0.888551 + 0.458779i \(0.151713\pi\)
\(374\) 0 0
\(375\) 0.264650 0.0136665
\(376\) 0 0
\(377\) 7.09513 5.15491i 0.365418 0.265491i
\(378\) 0 0
\(379\) −1.72854 5.31991i −0.0887893 0.273265i 0.896796 0.442444i \(-0.145889\pi\)
−0.985585 + 0.169179i \(0.945889\pi\)
\(380\) 0 0
\(381\) 1.00802 + 0.732369i 0.0516424 + 0.0375204i
\(382\) 0 0
\(383\) −7.32637 + 22.5483i −0.374360 + 1.15216i 0.569549 + 0.821957i \(0.307118\pi\)
−0.943909 + 0.330205i \(0.892882\pi\)
\(384\) 0 0
\(385\) −32.2582 37.9218i −1.64403 1.93268i
\(386\) 0 0
\(387\) 3.62204 11.1475i 0.184119 0.566659i
\(388\) 0 0
\(389\) 5.69486 + 4.13756i 0.288741 + 0.209782i 0.722721 0.691140i \(-0.242891\pi\)
−0.433980 + 0.900922i \(0.642891\pi\)
\(390\) 0 0
\(391\) −1.59783 4.91762i −0.0808059 0.248695i
\(392\) 0 0
\(393\) −2.49752 + 1.81456i −0.125983 + 0.0915322i
\(394\) 0 0
\(395\) −34.8430 −1.75314
\(396\) 0 0
\(397\) 13.7388 0.689533 0.344766 0.938689i \(-0.387958\pi\)
0.344766 + 0.938689i \(0.387958\pi\)
\(398\) 0 0
\(399\) 1.11803 0.812299i 0.0559717 0.0406658i
\(400\) 0 0
\(401\) −11.9241 36.6987i −0.595462 1.83264i −0.552413 0.833571i \(-0.686293\pi\)
−0.0430489 0.999073i \(-0.513707\pi\)
\(402\) 0 0
\(403\) 5.95017 + 4.32305i 0.296399 + 0.215347i
\(404\) 0 0
\(405\) −0.973083 + 2.99484i −0.0483529 + 0.148815i
\(406\) 0 0
\(407\) 31.0605 12.7935i 1.53961 0.634148i
\(408\) 0 0
\(409\) 3.97882 12.2455i 0.196740 0.605503i −0.803212 0.595693i \(-0.796877\pi\)
0.999952 0.00980963i \(-0.00312255\pi\)
\(410\) 0 0
\(411\) −12.7970 9.29755i −0.631228 0.458614i
\(412\) 0 0
\(413\) 12.3073 + 37.8781i 0.605605 + 1.86386i
\(414\) 0 0
\(415\) 29.1490 21.1780i 1.43087 1.03959i
\(416\) 0 0
\(417\) −5.30757 −0.259913
\(418\) 0 0
\(419\) −20.8582 −1.01899 −0.509494 0.860474i \(-0.670167\pi\)
−0.509494 + 0.860474i \(0.670167\pi\)
\(420\) 0 0
\(421\) 25.5092 18.5335i 1.24324 0.903268i 0.245432 0.969414i \(-0.421070\pi\)
0.997810 + 0.0661458i \(0.0210702\pi\)
\(422\) 0 0
\(423\) −1.33900 4.12101i −0.0651043 0.200370i
\(424\) 0 0
\(425\) −10.7783 7.83090i −0.522825 0.379854i
\(426\) 0 0
\(427\) 13.5032 41.5586i 0.653465 2.01116i
\(428\) 0 0
\(429\) −3.22344 0.780656i −0.155629 0.0376904i
\(430\) 0 0
\(431\) −5.77291 + 17.7672i −0.278071 + 0.855815i 0.710319 + 0.703880i \(0.248551\pi\)
−0.988390 + 0.151935i \(0.951449\pi\)
\(432\) 0 0
\(433\) 0.871335 + 0.633062i 0.0418737 + 0.0304230i 0.608525 0.793535i \(-0.291761\pi\)
−0.566652 + 0.823958i \(0.691761\pi\)
\(434\) 0 0
\(435\) −8.53399 26.2649i −0.409174 1.25931i
\(436\) 0 0
\(437\) 0.447481 0.325114i 0.0214059 0.0155523i
\(438\) 0 0
\(439\) 6.98032 0.333153 0.166576 0.986029i \(-0.446729\pi\)
0.166576 + 0.986029i \(0.446729\pi\)
\(440\) 0 0
\(441\) 15.7242 0.748773
\(442\) 0 0
\(443\) 13.4721 9.78808i 0.640080 0.465046i −0.219797 0.975546i \(-0.570540\pi\)
0.859878 + 0.510500i \(0.170540\pi\)
\(444\) 0 0
\(445\) 7.42236 + 22.8437i 0.351854 + 1.08289i
\(446\) 0 0
\(447\) −4.64000 3.37115i −0.219464 0.159450i
\(448\) 0 0
\(449\) −3.47826 + 10.7050i −0.164149 + 0.505200i −0.998973 0.0453183i \(-0.985570\pi\)
0.834823 + 0.550518i \(0.185570\pi\)
\(450\) 0 0
\(451\) −1.96614 25.6332i −0.0925821 1.20702i
\(452\) 0 0
\(453\) −1.88737 + 5.80874i −0.0886766 + 0.272918i
\(454\) 0 0
\(455\) 12.1442 + 8.82329i 0.569330 + 0.413642i
\(456\) 0 0
\(457\) −7.02028 21.6062i −0.328395 1.01069i −0.969885 0.243564i \(-0.921684\pi\)
0.641490 0.767131i \(-0.278316\pi\)
\(458\) 0 0
\(459\) −2.19251 + 1.59296i −0.102338 + 0.0743528i
\(460\) 0 0
\(461\) −12.0229 −0.559962 −0.279981 0.960005i \(-0.590328\pi\)
−0.279981 + 0.960005i \(0.590328\pi\)
\(462\) 0 0
\(463\) 36.2618 1.68523 0.842613 0.538519i \(-0.181016\pi\)
0.842613 + 0.538519i \(0.181016\pi\)
\(464\) 0 0
\(465\) 18.7369 13.6131i 0.868901 0.631294i
\(466\) 0 0
\(467\) −5.72294 17.6134i −0.264826 0.815051i −0.991733 0.128315i \(-0.959043\pi\)
0.726907 0.686736i \(-0.240957\pi\)
\(468\) 0 0
\(469\) −7.26700 5.27978i −0.335559 0.243798i
\(470\) 0 0
\(471\) 5.59089 17.2070i 0.257615 0.792856i
\(472\) 0 0
\(473\) 20.3778 33.1058i 0.936973 1.52220i
\(474\) 0 0
\(475\) 0.440396 1.35540i 0.0202067 0.0621899i
\(476\) 0 0
\(477\) −3.96447 2.88035i −0.181520 0.131882i
\(478\) 0 0
\(479\) −7.06470 21.7429i −0.322794 0.993459i −0.972426 0.233210i \(-0.925077\pi\)
0.649632 0.760249i \(-0.274923\pi\)
\(480\) 0 0
\(481\) −8.19405 + 5.95332i −0.373616 + 0.271448i
\(482\) 0 0
\(483\) 9.09513 0.413843
\(484\) 0 0
\(485\) 6.99811 0.317768
\(486\) 0 0
\(487\) 1.04214 0.757161i 0.0472240 0.0343102i −0.563923 0.825827i \(-0.690708\pi\)
0.611147 + 0.791517i \(0.290708\pi\)
\(488\) 0 0
\(489\) 0.781070 + 2.40389i 0.0353212 + 0.108708i
\(490\) 0 0
\(491\) 19.3570 + 14.0637i 0.873570 + 0.634686i 0.931542 0.363633i \(-0.118464\pi\)
−0.0579727 + 0.998318i \(0.518464\pi\)
\(492\) 0 0
\(493\) 7.34463 22.6044i 0.330785 1.01805i
\(494\) 0 0
\(495\) −5.47461 + 8.89405i −0.246066 + 0.399758i
\(496\) 0 0
\(497\) −8.76370 + 26.9719i −0.393106 + 1.20986i
\(498\) 0 0
\(499\) 6.58366 + 4.78331i 0.294725 + 0.214130i 0.725315 0.688418i \(-0.241694\pi\)
−0.430589 + 0.902548i \(0.641694\pi\)
\(500\) 0 0
\(501\) 1.26267 + 3.88611i 0.0564122 + 0.173619i
\(502\) 0 0
\(503\) −8.41524 + 6.11403i −0.375217 + 0.272611i −0.759371 0.650658i \(-0.774493\pi\)
0.384154 + 0.923269i \(0.374493\pi\)
\(504\) 0 0
\(505\) −44.4815 −1.97940
\(506\) 0 0
\(507\) −12.0000 −0.532939
\(508\) 0 0
\(509\) −11.3705 + 8.26114i −0.503988 + 0.366169i −0.810538 0.585686i \(-0.800825\pi\)
0.306550 + 0.951855i \(0.400825\pi\)
\(510\) 0 0
\(511\) −15.2677 46.9892i −0.675404 2.07868i
\(512\) 0 0
\(513\) −0.234536 0.170401i −0.0103550 0.00752337i
\(514\) 0 0
\(515\) 5.65933 17.4176i 0.249380 0.767512i
\(516\) 0 0
\(517\) −1.09909 14.3291i −0.0483379 0.630195i
\(518\) 0 0
\(519\) −2.23278 + 6.87178i −0.0980080 + 0.301638i
\(520\) 0 0
\(521\) 18.0883 + 13.1419i 0.792462 + 0.575757i 0.908693 0.417465i \(-0.137081\pi\)
−0.116231 + 0.993222i \(0.537081\pi\)
\(522\) 0 0
\(523\) 6.59288 + 20.2908i 0.288286 + 0.887254i 0.985394 + 0.170288i \(0.0544698\pi\)
−0.697108 + 0.716966i \(0.745530\pi\)
\(524\) 0 0
\(525\) 18.9588 13.7744i 0.827429 0.601162i
\(526\) 0 0
\(527\) 19.9323 0.868264
\(528\) 0 0
\(529\) −19.3598 −0.841729
\(530\) 0 0
\(531\) 6.75919 4.91084i 0.293324 0.213112i
\(532\) 0 0
\(533\) 2.39531 + 7.37201i 0.103752 + 0.319317i
\(534\) 0 0
\(535\) 11.4581 + 8.32477i 0.495375 + 0.359911i
\(536\) 0 0
\(537\) 3.34693 10.3008i 0.144431 0.444513i
\(538\) 0 0
\(539\) 50.6862 + 12.2752i 2.18321 + 0.528731i
\(540\) 0 0
\(541\) −11.4320 + 35.1841i −0.491500 + 1.51268i 0.330840 + 0.943687i \(0.392668\pi\)
−0.822340 + 0.568996i \(0.807332\pi\)
\(542\) 0 0
\(543\) 15.2353 + 11.0691i 0.653811 + 0.475021i
\(544\) 0 0
\(545\) 12.8210 + 39.4590i 0.549191 + 1.69024i
\(546\) 0 0
\(547\) −31.0148 + 22.5336i −1.32610 + 0.963467i −0.326264 + 0.945279i \(0.605790\pi\)
−0.999835 + 0.0181879i \(0.994210\pi\)
\(548\) 0 0
\(549\) −9.16663 −0.391222
\(550\) 0 0
\(551\) 2.54247 0.108313
\(552\) 0 0
\(553\) 42.6727 31.0036i 1.81463 1.31841i
\(554\) 0 0
\(555\) 9.85577 + 30.3329i 0.418354 + 1.28756i
\(556\) 0 0
\(557\) −5.92720 4.30637i −0.251144 0.182467i 0.455090 0.890446i \(-0.349607\pi\)
−0.706234 + 0.707979i \(0.749607\pi\)
\(558\) 0 0
\(559\) −3.62204 + 11.1475i −0.153196 + 0.471489i
\(560\) 0 0
\(561\) −8.31099 + 3.42320i −0.350890 + 0.144528i
\(562\) 0 0
\(563\) 9.31924 28.6817i 0.392759 1.20879i −0.537934 0.842987i \(-0.680795\pi\)
0.930693 0.365801i \(-0.119205\pi\)
\(564\) 0 0
\(565\) −28.4351 20.6593i −1.19627 0.869142i
\(566\) 0 0
\(567\) −1.47308 4.53368i −0.0618637 0.190397i
\(568\) 0 0
\(569\) −13.1650 + 9.56493i −0.551906 + 0.400983i −0.828488 0.560007i \(-0.810798\pi\)
0.276582 + 0.960990i \(0.410798\pi\)
\(570\) 0 0
\(571\) −10.1020 −0.422755 −0.211378 0.977404i \(-0.567795\pi\)
−0.211378 + 0.977404i \(0.567795\pi\)
\(572\) 0 0
\(573\) −24.0670 −1.00541
\(574\) 0 0
\(575\) 7.58804 5.51303i 0.316443 0.229909i
\(576\) 0 0
\(577\) −12.9426 39.8334i −0.538809 1.65828i −0.735271 0.677773i \(-0.762945\pi\)
0.196462 0.980512i \(-0.437055\pi\)
\(578\) 0 0
\(579\) −5.17114 3.75705i −0.214905 0.156138i
\(580\) 0 0
\(581\) −16.8549 + 51.8741i −0.699259 + 2.15210i
\(582\) 0 0
\(583\) −10.5307 12.3795i −0.436135 0.512708i
\(584\) 0 0
\(585\) 0.973083 2.99484i 0.0402320 0.123821i
\(586\) 0 0
\(587\) −3.58441 2.60423i −0.147945 0.107488i 0.511351 0.859372i \(-0.329145\pi\)
−0.659295 + 0.751884i \(0.729145\pi\)
\(588\) 0 0
\(589\) 0.658881 + 2.02783i 0.0271487 + 0.0835552i
\(590\) 0 0
\(591\) 20.5806 14.9527i 0.846573 0.615071i
\(592\) 0 0
\(593\) −10.6225 −0.436215 −0.218108 0.975925i \(-0.569988\pi\)
−0.218108 + 0.975925i \(0.569988\pi\)
\(594\) 0 0
\(595\) 40.6815 1.66778
\(596\) 0 0
\(597\) 14.5827 10.5950i 0.596831 0.433623i
\(598\) 0 0
\(599\) 2.06537 + 6.35657i 0.0843889 + 0.259722i 0.984343 0.176262i \(-0.0564005\pi\)
−0.899954 + 0.435984i \(0.856400\pi\)
\(600\) 0 0
\(601\) −5.91975 4.30095i −0.241472 0.175439i 0.460467 0.887677i \(-0.347682\pi\)
−0.701939 + 0.712237i \(0.747682\pi\)
\(602\) 0 0
\(603\) −0.582284 + 1.79209i −0.0237124 + 0.0729794i
\(604\) 0 0
\(605\) −24.5903 + 24.3957i −0.999737 + 0.991825i
\(606\) 0 0
\(607\) 9.48781 29.2005i 0.385098 1.18521i −0.551310 0.834300i \(-0.685872\pi\)
0.936409 0.350911i \(-0.114128\pi\)
\(608\) 0 0
\(609\) 33.8224 + 24.5734i 1.37055 + 0.995766i
\(610\) 0 0
\(611\) 1.33900 + 4.12101i 0.0541700 + 0.166718i
\(612\) 0 0
\(613\) −25.0524 + 18.2016i −1.01186 + 0.735156i −0.964598 0.263726i \(-0.915048\pi\)
−0.0472583 + 0.998883i \(0.515048\pi\)
\(614\) 0 0
\(615\) 24.4088 0.984259
\(616\) 0 0
\(617\) −27.3227 −1.09997 −0.549986 0.835174i \(-0.685367\pi\)
−0.549986 + 0.835174i \(0.685367\pi\)
\(618\) 0 0
\(619\) −21.7248 + 15.7840i −0.873195 + 0.634413i −0.931442 0.363889i \(-0.881449\pi\)
0.0582477 + 0.998302i \(0.481449\pi\)
\(620\) 0 0
\(621\) −0.589585 1.81456i −0.0236592 0.0728156i
\(622\) 0 0
\(623\) −29.4168 21.3725i −1.17856 0.856272i
\(624\) 0 0
\(625\) −7.85310 + 24.1693i −0.314124 + 0.966774i
\(626\) 0 0
\(627\) −0.622990 0.732369i −0.0248798 0.0292480i
\(628\) 0 0
\(629\) −8.48219 + 26.1055i −0.338207 + 1.04089i
\(630\) 0 0
\(631\) 38.1798 + 27.7393i 1.51991 + 1.10428i 0.961530 + 0.274701i \(0.0885788\pi\)
0.558385 + 0.829582i \(0.311421\pi\)
\(632\) 0 0
\(633\) −4.04165 12.4389i −0.160641 0.494403i
\(634\) 0 0
\(635\) −3.17421 + 2.30620i −0.125965 + 0.0915188i
\(636\) 0 0
\(637\) −15.7242 −0.623017
\(638\) 0 0
\(639\) 5.94923 0.235348
\(640\) 0 0
\(641\) 24.9991 18.1629i 0.987407 0.717393i 0.0280549 0.999606i \(-0.491069\pi\)
0.959352 + 0.282214i \(0.0910687\pi\)
\(642\) 0 0
\(643\) 14.8648 + 45.7492i 0.586211 + 1.80417i 0.594350 + 0.804206i \(0.297409\pi\)
−0.00813892 + 0.999967i \(0.502591\pi\)
\(644\) 0 0
\(645\) 29.8604 + 21.6949i 1.17575 + 0.854235i
\(646\) 0 0
\(647\) −2.09185 + 6.43804i −0.0822390 + 0.253106i −0.983719 0.179716i \(-0.942482\pi\)
0.901480 + 0.432822i \(0.142482\pi\)
\(648\) 0 0
\(649\) 25.6215 10.5532i 1.00573 0.414250i
\(650\) 0 0
\(651\) −10.8343 + 33.3444i −0.424628 + 1.30687i
\(652\) 0 0
\(653\) 0.463747 + 0.336932i 0.0181478 + 0.0131852i 0.596822 0.802374i \(-0.296430\pi\)
−0.578674 + 0.815559i \(0.696430\pi\)
\(654\) 0 0
\(655\) −3.00401 9.24539i −0.117376 0.361247i
\(656\) 0 0
\(657\) −8.38503 + 6.09208i −0.327131 + 0.237675i
\(658\) 0 0
\(659\) 30.5486 1.19000 0.595002 0.803724i \(-0.297151\pi\)
0.595002 + 0.803724i \(0.297151\pi\)
\(660\) 0 0
\(661\) −1.25682 −0.0488847 −0.0244423 0.999701i \(-0.507781\pi\)
−0.0244423 + 0.999701i \(0.507781\pi\)
\(662\) 0 0
\(663\) 2.19251 1.59296i 0.0851502 0.0618652i
\(664\) 0 0
\(665\) 1.34477 + 4.13877i 0.0521478 + 0.160495i
\(666\) 0 0
\(667\) 13.5371 + 9.83524i 0.524157 + 0.380822i
\(668\) 0 0
\(669\) 3.11168 9.57677i 0.120304 0.370259i
\(670\) 0 0
\(671\) −29.5481 7.15598i −1.14069 0.276254i
\(672\) 0 0
\(673\) 8.33164 25.6421i 0.321161 0.988432i −0.651983 0.758234i \(-0.726063\pi\)
0.973144 0.230198i \(-0.0739375\pi\)
\(674\) 0 0
\(675\) −3.97709 2.88953i −0.153078 0.111218i
\(676\) 0 0
\(677\) −1.23607 3.80423i −0.0475060 0.146208i 0.924490 0.381207i \(-0.124491\pi\)
−0.971996 + 0.234999i \(0.924491\pi\)
\(678\) 0 0
\(679\) −8.57069 + 6.22697i −0.328913 + 0.238969i
\(680\) 0 0
\(681\) 11.6360 0.445891
\(682\) 0 0
\(683\) −28.8819 −1.10514 −0.552568 0.833468i \(-0.686352\pi\)
−0.552568 + 0.833468i \(0.686352\pi\)
\(684\) 0 0
\(685\) 40.2972 29.2776i 1.53968 1.11864i
\(686\) 0 0
\(687\) −1.21550 3.74094i −0.0463744 0.142726i
\(688\) 0 0
\(689\) 3.96447 + 2.88035i 0.151034 + 0.109733i
\(690\) 0 0
\(691\) −5.42264 + 16.6892i −0.206287 + 0.634885i 0.793371 + 0.608738i \(0.208324\pi\)
−0.999658 + 0.0261475i \(0.991676\pi\)
\(692\) 0 0
\(693\) −1.20915 15.7640i −0.0459318 0.598826i
\(694\) 0 0
\(695\) 5.16470 15.8953i 0.195908 0.602944i
\(696\) 0 0
\(697\) 16.9950 + 12.3476i 0.643733 + 0.467699i
\(698\) 0 0
\(699\) −1.35009 4.15516i −0.0510652 0.157162i
\(700\) 0 0
\(701\) 10.2829 7.47097i 0.388380 0.282175i −0.376411 0.926453i \(-0.622842\pi\)
0.764791 + 0.644278i \(0.222842\pi\)
\(702\) 0 0
\(703\) −2.93625 −0.110743
\(704\) 0 0
\(705\) 13.6447 0.513890
\(706\) 0 0
\(707\) 54.4772 39.5800i 2.04882 1.48856i
\(708\) 0 0
\(709\) −13.8659 42.6749i −0.520745 1.60269i −0.772580 0.634918i \(-0.781034\pi\)
0.251835 0.967770i \(-0.418966\pi\)
\(710\) 0 0
\(711\) −8.95171 6.50380i −0.335715 0.243911i
\(712\) 0 0
\(713\) −4.33629 + 13.3457i −0.162395 + 0.499802i
\(714\) 0 0
\(715\) 5.47461 8.89405i 0.204739 0.332619i
\(716\) 0 0
\(717\) 1.34395 4.13626i 0.0501909 0.154472i
\(718\) 0 0
\(719\) −16.1425 11.7282i −0.602012 0.437387i 0.244580 0.969629i \(-0.421350\pi\)
−0.846593 + 0.532242i \(0.821350\pi\)
\(720\) 0 0
\(721\) 8.56726 + 26.3673i 0.319062 + 0.981970i
\(722\) 0 0
\(723\) −4.43391 + 3.22142i −0.164899 + 0.119806i
\(724\) 0 0
\(725\) 43.1132 1.60118
\(726\) 0 0
\(727\) 10.4418 0.387264 0.193632 0.981074i \(-0.437973\pi\)
0.193632 + 0.981074i \(0.437973\pi\)
\(728\) 0 0
\(729\) −0.809017 + 0.587785i −0.0299636 + 0.0217698i
\(730\) 0 0
\(731\) 9.81609 + 30.2108i 0.363061 + 1.11739i
\(732\) 0 0
\(733\) −11.3867 8.27289i −0.420576 0.305566i 0.357294 0.933992i \(-0.383700\pi\)
−0.777869 + 0.628426i \(0.783700\pi\)
\(734\) 0 0
\(735\) −15.3010 + 47.0916i −0.564385 + 1.73700i
\(736\) 0 0
\(737\) −3.27596 + 5.32212i −0.120672 + 0.196043i
\(738\) 0 0
\(739\) 13.0488 40.1601i 0.480009 1.47731i −0.359073 0.933309i \(-0.616907\pi\)
0.839082 0.544005i \(-0.183093\pi\)
\(740\) 0 0
\(741\) 0.234536 + 0.170401i 0.00861591 + 0.00625983i
\(742\) 0 0
\(743\) −11.6338 35.8051i −0.426802 1.31356i −0.901258 0.433282i \(-0.857355\pi\)
0.474457 0.880279i \(-0.342645\pi\)
\(744\) 0 0
\(745\) 14.6112 10.6156i 0.535312 0.388927i
\(746\) 0 0
\(747\) 11.4419 0.418638
\(748\) 0 0
\(749\) −21.4403 −0.783412
\(750\) 0 0
\(751\) −37.6857 + 27.3802i −1.37517 + 0.999119i −0.377856 + 0.925864i \(0.623338\pi\)
−0.997313 + 0.0732543i \(0.976662\pi\)
\(752\) 0 0
\(753\) −8.21076 25.2701i −0.299217 0.920895i
\(754\) 0 0
\(755\) −15.5597 11.3048i −0.566275 0.411423i
\(756\) 0 0
\(757\) 13.4316 41.3381i 0.488178 1.50246i −0.339146 0.940734i \(-0.610138\pi\)
0.827324 0.561724i \(-0.189862\pi\)
\(758\) 0 0
\(759\) −0.483949 6.30938i −0.0175662 0.229016i
\(760\) 0 0
\(761\) −4.06529 + 12.5117i −0.147367 + 0.453548i −0.997308 0.0733300i \(-0.976637\pi\)
0.849941 + 0.526878i \(0.176637\pi\)
\(762\) 0 0
\(763\) −50.8130 36.9178i −1.83955 1.33651i
\(764\) 0 0
\(765\) −2.63715 8.11631i −0.0953463 0.293446i
\(766\) 0 0
\(767\) −6.75919 + 4.91084i −0.244060 + 0.177320i
\(768\) 0 0
\(769\) 19.9646 0.719944 0.359972 0.932963i \(-0.382786\pi\)
0.359972 + 0.932963i \(0.382786\pi\)
\(770\) 0 0
\(771\) −6.37890 −0.229731
\(772\) 0 0
\(773\) 3.22638 2.34410i 0.116045 0.0843116i −0.528249 0.849089i \(-0.677151\pi\)
0.644294 + 0.764778i \(0.277151\pi\)
\(774\) 0 0
\(775\) 11.1728 + 34.3864i 0.401339 + 1.23520i
\(776\) 0 0
\(777\) −39.0610 28.3795i −1.40130 1.01811i
\(778\) 0 0
\(779\) −0.694408 + 2.13717i −0.0248797 + 0.0765720i
\(780\) 0 0
\(781\) 19.1770 + 4.64430i 0.686207 + 0.166186i
\(782\) 0 0
\(783\) 2.71010 8.34082i 0.0968510 0.298077i
\(784\) 0 0
\(785\) 46.0918 + 33.4876i 1.64509 + 1.19522i
\(786\) 0 0
\(787\) −1.22425 3.76785i −0.0436397 0.134309i 0.926863 0.375400i \(-0.122495\pi\)
−0.970502 + 0.241091i \(0.922495\pi\)
\(788\) 0 0
\(789\) 21.3963 15.5453i 0.761729 0.553429i
\(790\) 0 0
\(791\) 53.2076 1.89185
\(792\) 0 0
\(793\) 9.16663 0.325516
\(794\) 0 0
\(795\) 12.4839 9.07012i 0.442760 0.321684i
\(796\) 0 0
\(797\) 3.54553 + 10.9120i 0.125589 + 0.386523i 0.994008 0.109308i \(-0.0348634\pi\)
−0.868419 + 0.495831i \(0.834863\pi\)
\(798\) 0 0
\(799\) 9.50036 + 6.90241i 0.336098 + 0.244190i
\(800\) 0 0
\(801\) −2.35708 + 7.25435i −0.0832834 + 0.256320i
\(802\) 0 0
\(803\) −31.7845 + 13.0916i −1.12165 + 0.461994i
\(804\) 0 0
\(805\) −8.85031 + 27.2384i −0.311932 + 0.960029i
\(806\) 0 0
\(807\) −3.71010 2.69554i −0.130602 0.0948876i
\(808\) 0 0
\(809\) −11.4845 35.3455i −0.403772 1.24268i −0.921916 0.387389i \(-0.873377\pi\)
0.518145 0.855293i \(-0.326623\pi\)
\(810\) 0 0
\(811\) −11.7817 + 8.55987i −0.413710 + 0.300578i −0.775102 0.631836i \(-0.782302\pi\)
0.361392 + 0.932414i \(0.382302\pi\)
\(812\) 0 0
\(813\) 13.4405 0.471378
\(814\) 0 0
\(815\) −7.95931 −0.278802
\(816\) 0 0
\(817\) −2.74904 + 1.99730i −0.0961769 + 0.0698766i
\(818\) 0 0
\(819\) 1.47308 + 4.53368i 0.0514737 + 0.158420i
\(820\) 0 0
\(821\) 1.41997 + 1.03167i 0.0495572 + 0.0360054i 0.612288 0.790635i \(-0.290249\pi\)
−0.562731 + 0.826640i \(0.690249\pi\)
\(822\) 0 0
\(823\) 11.6140 35.7443i 0.404839 1.24597i −0.516190 0.856474i \(-0.672650\pi\)
0.921029 0.389493i \(-0.127350\pi\)
\(824\) 0 0
\(825\) −10.5642 12.4190i −0.367798 0.432373i
\(826\) 0 0
\(827\) 5.55556 17.0983i 0.193186 0.594564i −0.806807 0.590815i \(-0.798806\pi\)
0.999993 0.00374973i \(-0.00119358\pi\)
\(828\) 0 0
\(829\) 1.21959 + 0.886081i 0.0423579 + 0.0307749i 0.608763 0.793352i \(-0.291666\pi\)
−0.566405 + 0.824127i \(0.691666\pi\)
\(830\) 0 0
\(831\) −9.04960 27.8518i −0.313927 0.966168i
\(832\) 0 0
\(833\) −34.4756 + 25.0480i −1.19451 + 0.867862i
\(834\) 0 0
\(835\) −12.8670 −0.445280
\(836\) 0 0
\(837\) 7.35482 0.254220
\(838\) 0 0
\(839\) −35.1429 + 25.5328i −1.21327 + 0.881490i −0.995523 0.0945156i \(-0.969870\pi\)
−0.217744 + 0.976006i \(0.569870\pi\)
\(840\) 0 0
\(841\) 14.8062 + 45.5688i 0.510559 + 1.57134i
\(842\) 0 0
\(843\) 7.24904 + 5.26674i 0.249670 + 0.181396i
\(844\) 0 0
\(845\) 11.6770 35.9381i 0.401701 1.23631i
\(846\) 0 0
\(847\) 8.40866 51.7584i 0.288925 1.77844i
\(848\) 0 0
\(849\) 2.16763 6.67128i 0.0743929 0.228958i
\(850\) 0 0
\(851\) −15.6337 11.3586i −0.535917 0.389367i
\(852\) 0 0
\(853\) 12.7068 + 39.1074i 0.435071 + 1.33901i 0.893014 + 0.450029i \(0.148586\pi\)
−0.457943 + 0.888982i \(0.651414\pi\)
\(854\) 0 0
\(855\) 0.738546 0.536585i 0.0252577 0.0183508i
\(856\) 0 0
\(857\) −57.3388 −1.95865 −0.979327 0.202282i \(-0.935164\pi\)
−0.979327 + 0.202282i \(0.935164\pi\)
\(858\) 0 0
\(859\) −35.3444 −1.20594 −0.602968 0.797765i \(-0.706015\pi\)
−0.602968 + 0.797765i \(0.706015\pi\)
\(860\) 0 0
\(861\) −29.8938 + 21.7192i −1.01878 + 0.740187i
\(862\) 0 0
\(863\) 9.72001 + 29.9151i 0.330873 + 1.01832i 0.968719 + 0.248159i \(0.0798254\pi\)
−0.637846 + 0.770164i \(0.720175\pi\)
\(864\) 0 0
\(865\) −18.4072 13.3736i −0.625864 0.454717i
\(866\) 0 0
\(867\) −2.98367 + 9.18281i −0.101331 + 0.311864i
\(868\) 0 0
\(869\) −23.7781 27.9528i −0.806616 0.948234i
\(870\) 0 0
\(871\) 0.582284 1.79209i 0.0197299 0.0607225i
\(872\) 0 0
\(873\) 1.79792 + 1.30627i 0.0608504 + 0.0442104i
\(874\) 0 0
\(875\) −0.389852 1.19984i −0.0131794 0.0405620i
\(876\) 0 0
\(877\) −14.2731 + 10.3700i −0.481969 + 0.350171i −0.802088 0.597206i \(-0.796277\pi\)
0.320118 + 0.947378i \(0.396277\pi\)
\(878\) 0 0
\(879\) 3.07530 0.103727
\(880\) 0 0
\(881\) −9.21345 −0.310409 −0.155204 0.987882i \(-0.549604\pi\)
−0.155204 + 0.987882i \(0.549604\pi\)
\(882\) 0 0
\(883\) 5.08711 3.69600i 0.171195 0.124380i −0.498889 0.866666i \(-0.666258\pi\)
0.670083 + 0.742286i \(0.266258\pi\)
\(884\) 0 0
\(885\) 8.12993 + 25.0214i 0.273285 + 0.841083i
\(886\) 0 0
\(887\) −11.0131 8.00145i −0.369782 0.268663i 0.387338 0.921938i \(-0.373395\pi\)
−0.757121 + 0.653275i \(0.773395\pi\)
\(888\) 0 0
\(889\) 1.83543 5.64888i 0.0615584 0.189457i
\(890\) 0 0
\(891\) −3.06668 + 1.26313i −0.102738 + 0.0423164i
\(892\) 0 0
\(893\) −0.388179 + 1.19469i −0.0129899 + 0.0399789i
\(894\) 0 0
\(895\) 27.5924 + 20.0471i 0.922313 + 0.670100i
\(896\) 0 0
\(897\) 0.589585 + 1.81456i 0.0196857 + 0.0605863i
\(898\) 0 0
\(899\) −52.1834 + 37.9134i −1.74041 + 1.26448i
\(900\) 0 0
\(901\) 13.2804 0.442435
\(902\) 0 0
\(903\) −55.8748 −1.85940
\(904\) 0 0
\(905\) −47.9755 + 34.8562i −1.59476 + 1.15866i
\(906\) 0 0
\(907\) 1.18751 + 3.65477i 0.0394305 + 0.121355i 0.968834 0.247710i \(-0.0796780\pi\)
−0.929404 + 0.369065i \(0.879678\pi\)
\(908\) 0 0
\(909\) −11.4280 8.30292i −0.379042 0.275390i
\(910\) 0 0
\(911\) −10.0334 + 30.8796i −0.332422 + 1.02309i 0.635557 + 0.772054i \(0.280771\pi\)
−0.967978 + 0.251034i \(0.919229\pi\)
\(912\) 0 0
\(913\) 36.8824 + 8.93221i 1.22063 + 0.295613i
\(914\) 0 0
\(915\) 8.91988 27.4526i 0.294882 0.907554i
\(916\) 0 0
\(917\) 11.9057 + 8.64998i 0.393160 + 0.285647i
\(918\) 0 0
\(919\) 14.4862 + 44.5840i 0.477856 + 1.47069i 0.842066 + 0.539374i \(0.181339\pi\)
−0.364210 + 0.931317i \(0.618661\pi\)
\(920\) 0 0
\(921\) 8.19383 5.95317i 0.269996 0.196163i
\(922\) 0 0
\(923\) −5.94923 −0.195821
\(924\) 0 0
\(925\) −49.7908 −1.63711
\(926\) 0 0
\(927\) 4.70514 3.41848i 0.154537 0.112278i
\(928\) 0 0
\(929\) 14.7218 + 45.3091i 0.483007 + 1.48654i 0.834847 + 0.550483i \(0.185556\pi\)
−0.351840 + 0.936060i \(0.614444\pi\)
\(930\) 0 0
\(931\) −3.68791 2.67942i −0.120866 0.0878145i
\(932\) 0 0
\(933\) 3.23125 9.94475i 0.105786 0.325577i
\(934\) 0 0
\(935\) −2.16465 28.2211i −0.0707916 0.922930i
\(936\) 0 0
\(937\) 10.1917 31.3668i 0.332948 1.02471i −0.634775 0.772697i \(-0.718907\pi\)
0.967724 0.252013i \(-0.0810926\pi\)
\(938\) 0 0
\(939\) −5.50614 4.00044i −0.179686 0.130550i
\(940\) 0 0
\(941\) 1.11339 + 3.42666i 0.0362954 + 0.111706i 0.967563 0.252631i \(-0.0812958\pi\)
−0.931267 + 0.364337i \(0.881296\pi\)
\(942\) 0 0
\(943\) −11.9647 + 8.69285i −0.389624 + 0.283078i
\(944\) 0 0
\(945\) 15.0111 0.488311
\(946\) 0 0
\(947\) −21.1512 −0.687322 −0.343661 0.939094i \(-0.611667\pi\)
−0.343661 + 0.939094i \(0.611667\pi\)
\(948\) 0 0
\(949\) 8.38503 6.09208i 0.272190 0.197757i
\(950\) 0 0
\(951\) −3.58061 11.0200i −0.116109 0.357347i
\(952\) 0 0
\(953\) 13.2977 + 9.66131i 0.430753 + 0.312961i 0.781950 0.623341i \(-0.214225\pi\)
−0.351197 + 0.936302i \(0.614225\pi\)
\(954\) 0 0
\(955\) 23.4192 72.0767i 0.757826 2.33235i
\(956\) 0 0
\(957\) 15.2472 24.7705i 0.492870 0.800716i
\(958\) 0 0
\(959\) −23.3011 + 71.7135i −0.752432 + 2.31575i
\(960\) 0 0
\(961\) −18.6829 13.5739i −0.602675 0.437869i
\(962\) 0 0
\(963\) 1.38985 + 4.27752i 0.0447874 + 0.137841i
\(964\) 0 0
\(965\) 16.2837 11.8308i 0.524191 0.380847i
\(966\) 0 0
\(967\) 0.0359806 0.00115706 0.000578529 1.00000i \(-0.499816\pi\)
0.000578529 1.00000i \(0.499816\pi\)
\(968\) 0 0
\(969\) 0.785665 0.0252392
\(970\) 0 0
\(971\) −10.6501 + 7.73776i −0.341778 + 0.248316i −0.745412 0.666604i \(-0.767747\pi\)
0.403633 + 0.914921i \(0.367747\pi\)
\(972\) 0 0
\(973\) 7.81849 + 24.0628i 0.250649 + 0.771419i
\(974\) 0 0
\(975\) 3.97709 + 2.88953i 0.127369 + 0.0925389i
\(976\) 0 0
\(977\) 1.76809 5.44161i 0.0565661 0.174093i −0.918782 0.394766i \(-0.870826\pi\)
0.975348 + 0.220674i \(0.0708256\pi\)
\(978\) 0 0
\(979\) −13.2611 + 21.5439i −0.423826 + 0.688547i
\(980\) 0 0
\(981\) −4.07150 + 12.5308i −0.129993 + 0.400077i
\(982\) 0 0
\(983\) 18.5444 + 13.4733i 0.591474 + 0.429731i 0.842842 0.538161i \(-0.180881\pi\)
−0.251369 + 0.967891i \(0.580881\pi\)
\(984\) 0 0
\(985\) 24.7543 + 76.1858i 0.788737 + 2.42748i
\(986\) 0 0
\(987\) −16.7109 + 12.1412i −0.531914 + 0.386458i
\(988\) 0 0
\(989\) −22.3633 −0.711111
\(990\) 0 0
\(991\) 14.8537 0.471842 0.235921 0.971772i \(-0.424189\pi\)
0.235921 + 0.971772i \(0.424189\pi\)
\(992\) 0 0
\(993\) −25.8471 + 18.7790i −0.820233 + 0.595934i
\(994\) 0 0
\(995\) 17.5400 + 53.9827i 0.556056 + 1.71137i
\(996\) 0 0
\(997\) −13.2315 9.61326i −0.419047 0.304455i 0.358208 0.933642i \(-0.383388\pi\)
−0.777254 + 0.629187i \(0.783388\pi\)
\(998\) 0 0
\(999\) −3.12985 + 9.63268i −0.0990240 + 0.304764i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1056.2.y.c.97.1 8
4.3 odd 2 1056.2.y.d.97.1 yes 8
11.5 even 5 inner 1056.2.y.c.577.1 yes 8
44.27 odd 10 1056.2.y.d.577.1 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1056.2.y.c.97.1 8 1.1 even 1 trivial
1056.2.y.c.577.1 yes 8 11.5 even 5 inner
1056.2.y.d.97.1 yes 8 4.3 odd 2
1056.2.y.d.577.1 yes 8 44.27 odd 10