Properties

Label 1053.2.e.k.703.1
Level $1053$
Weight $2$
Character 1053.703
Analytic conductor $8.408$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1053,2,Mod(352,1053)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1053, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1053.352"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1053 = 3^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1053.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,1,0,1,-3,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.40824733284\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{5})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 2x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 703.1
Root \(-0.309017 + 0.535233i\) of defining polynomial
Character \(\chi\) \(=\) 1053.703
Dual form 1053.2.e.k.352.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.309017 + 0.535233i) q^{2} +(0.809017 + 1.40126i) q^{4} +(-1.30902 - 2.26728i) q^{5} +(0.190983 - 0.330792i) q^{7} -2.23607 q^{8} +1.61803 q^{10} +(2.92705 - 5.06980i) q^{11} +(0.500000 + 0.866025i) q^{13} +(0.118034 + 0.204441i) q^{14} +(-0.927051 + 1.60570i) q^{16} -4.23607 q^{17} -7.47214 q^{19} +(2.11803 - 3.66854i) q^{20} +(1.80902 + 3.13331i) q^{22} +(0.427051 + 0.739674i) q^{23} +(-0.927051 + 1.60570i) q^{25} -0.618034 q^{26} +0.618034 q^{28} +(-2.92705 + 5.06980i) q^{29} +(-4.16312 - 7.21073i) q^{31} +(-2.80902 - 4.86536i) q^{32} +(1.30902 - 2.26728i) q^{34} -1.00000 q^{35} -6.09017 q^{37} +(2.30902 - 3.99933i) q^{38} +(2.92705 + 5.06980i) q^{40} +(-3.30902 - 5.73139i) q^{41} +(5.11803 - 8.86469i) q^{43} +9.47214 q^{44} -0.527864 q^{46} +(3.73607 - 6.47106i) q^{47} +(3.42705 + 5.93583i) q^{49} +(-0.572949 - 0.992377i) q^{50} +(-0.809017 + 1.40126i) q^{52} -0.291796 q^{53} -15.3262 q^{55} +(-0.427051 + 0.739674i) q^{56} +(-1.80902 - 3.13331i) q^{58} +(-2.73607 - 4.73901i) q^{59} +(4.04508 - 7.00629i) q^{61} +5.14590 q^{62} -0.236068 q^{64} +(1.30902 - 2.26728i) q^{65} +(4.54508 + 7.87232i) q^{67} +(-3.42705 - 5.93583i) q^{68} +(0.309017 - 0.535233i) q^{70} -5.00000 q^{71} +11.1803 q^{73} +(1.88197 - 3.25966i) q^{74} +(-6.04508 - 10.4704i) q^{76} +(-1.11803 - 1.93649i) q^{77} +(-1.11803 + 1.93649i) q^{79} +4.85410 q^{80} +4.09017 q^{82} +(-3.59017 + 6.21836i) q^{83} +(5.54508 + 9.60437i) q^{85} +(3.16312 + 5.47868i) q^{86} +(-6.54508 + 11.3364i) q^{88} +0.381966 q^{89} +0.381966 q^{91} +(-0.690983 + 1.19682i) q^{92} +(2.30902 + 3.99933i) q^{94} +(9.78115 + 16.9415i) q^{95} +(3.23607 - 5.60503i) q^{97} -4.23607 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{2} + q^{4} - 3 q^{5} + 3 q^{7} + 2 q^{10} + 5 q^{11} + 2 q^{13} - 4 q^{14} + 3 q^{16} - 8 q^{17} - 12 q^{19} + 4 q^{20} + 5 q^{22} - 5 q^{23} + 3 q^{25} + 2 q^{26} - 2 q^{28} - 5 q^{29} - q^{31}+ \cdots - 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1053\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(730\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.309017 + 0.535233i −0.218508 + 0.378467i −0.954352 0.298684i \(-0.903452\pi\)
0.735844 + 0.677151i \(0.236786\pi\)
\(3\) 0 0
\(4\) 0.809017 + 1.40126i 0.404508 + 0.700629i
\(5\) −1.30902 2.26728i −0.585410 1.01396i −0.994824 0.101611i \(-0.967600\pi\)
0.409414 0.912349i \(-0.365733\pi\)
\(6\) 0 0
\(7\) 0.190983 0.330792i 0.0721848 0.125028i −0.827674 0.561210i \(-0.810336\pi\)
0.899859 + 0.436182i \(0.143670\pi\)
\(8\) −2.23607 −0.790569
\(9\) 0 0
\(10\) 1.61803 0.511667
\(11\) 2.92705 5.06980i 0.882539 1.52860i 0.0340306 0.999421i \(-0.489166\pi\)
0.848509 0.529182i \(-0.177501\pi\)
\(12\) 0 0
\(13\) 0.500000 + 0.866025i 0.138675 + 0.240192i
\(14\) 0.118034 + 0.204441i 0.0315459 + 0.0546391i
\(15\) 0 0
\(16\) −0.927051 + 1.60570i −0.231763 + 0.401425i
\(17\) −4.23607 −1.02740 −0.513699 0.857971i \(-0.671725\pi\)
−0.513699 + 0.857971i \(0.671725\pi\)
\(18\) 0 0
\(19\) −7.47214 −1.71423 −0.857113 0.515129i \(-0.827744\pi\)
−0.857113 + 0.515129i \(0.827744\pi\)
\(20\) 2.11803 3.66854i 0.473607 0.820311i
\(21\) 0 0
\(22\) 1.80902 + 3.13331i 0.385684 + 0.668024i
\(23\) 0.427051 + 0.739674i 0.0890463 + 0.154233i 0.907108 0.420897i \(-0.138285\pi\)
−0.818062 + 0.575130i \(0.804951\pi\)
\(24\) 0 0
\(25\) −0.927051 + 1.60570i −0.185410 + 0.321140i
\(26\) −0.618034 −0.121206
\(27\) 0 0
\(28\) 0.618034 0.116797
\(29\) −2.92705 + 5.06980i −0.543540 + 0.941438i 0.455158 + 0.890411i \(0.349583\pi\)
−0.998697 + 0.0510275i \(0.983750\pi\)
\(30\) 0 0
\(31\) −4.16312 7.21073i −0.747718 1.29509i −0.948914 0.315535i \(-0.897816\pi\)
0.201196 0.979551i \(-0.435517\pi\)
\(32\) −2.80902 4.86536i −0.496569 0.860082i
\(33\) 0 0
\(34\) 1.30902 2.26728i 0.224495 0.388836i
\(35\) −1.00000 −0.169031
\(36\) 0 0
\(37\) −6.09017 −1.00122 −0.500609 0.865674i \(-0.666891\pi\)
−0.500609 + 0.865674i \(0.666891\pi\)
\(38\) 2.30902 3.99933i 0.374572 0.648778i
\(39\) 0 0
\(40\) 2.92705 + 5.06980i 0.462807 + 0.801606i
\(41\) −3.30902 5.73139i −0.516782 0.895092i −0.999810 0.0194874i \(-0.993797\pi\)
0.483028 0.875605i \(-0.339537\pi\)
\(42\) 0 0
\(43\) 5.11803 8.86469i 0.780493 1.35185i −0.151162 0.988509i \(-0.548302\pi\)
0.931655 0.363344i \(-0.118365\pi\)
\(44\) 9.47214 1.42798
\(45\) 0 0
\(46\) −0.527864 −0.0778293
\(47\) 3.73607 6.47106i 0.544962 0.943901i −0.453648 0.891181i \(-0.649878\pi\)
0.998609 0.0527200i \(-0.0167891\pi\)
\(48\) 0 0
\(49\) 3.42705 + 5.93583i 0.489579 + 0.847975i
\(50\) −0.572949 0.992377i −0.0810272 0.140343i
\(51\) 0 0
\(52\) −0.809017 + 1.40126i −0.112190 + 0.194320i
\(53\) −0.291796 −0.0400813 −0.0200406 0.999799i \(-0.506380\pi\)
−0.0200406 + 0.999799i \(0.506380\pi\)
\(54\) 0 0
\(55\) −15.3262 −2.06659
\(56\) −0.427051 + 0.739674i −0.0570671 + 0.0988431i
\(57\) 0 0
\(58\) −1.80902 3.13331i −0.237536 0.411424i
\(59\) −2.73607 4.73901i −0.356206 0.616966i 0.631118 0.775687i \(-0.282596\pi\)
−0.987324 + 0.158721i \(0.949263\pi\)
\(60\) 0 0
\(61\) 4.04508 7.00629i 0.517920 0.897064i −0.481863 0.876246i \(-0.660040\pi\)
0.999783 0.0208174i \(-0.00662687\pi\)
\(62\) 5.14590 0.653530
\(63\) 0 0
\(64\) −0.236068 −0.0295085
\(65\) 1.30902 2.26728i 0.162364 0.281222i
\(66\) 0 0
\(67\) 4.54508 + 7.87232i 0.555271 + 0.961757i 0.997882 + 0.0650435i \(0.0207186\pi\)
−0.442612 + 0.896713i \(0.645948\pi\)
\(68\) −3.42705 5.93583i −0.415591 0.719825i
\(69\) 0 0
\(70\) 0.309017 0.535233i 0.0369346 0.0639726i
\(71\) −5.00000 −0.593391 −0.296695 0.954972i \(-0.595885\pi\)
−0.296695 + 0.954972i \(0.595885\pi\)
\(72\) 0 0
\(73\) 11.1803 1.30856 0.654280 0.756252i \(-0.272972\pi\)
0.654280 + 0.756252i \(0.272972\pi\)
\(74\) 1.88197 3.25966i 0.218774 0.378928i
\(75\) 0 0
\(76\) −6.04508 10.4704i −0.693419 1.20104i
\(77\) −1.11803 1.93649i −0.127412 0.220684i
\(78\) 0 0
\(79\) −1.11803 + 1.93649i −0.125789 + 0.217872i −0.922041 0.387092i \(-0.873479\pi\)
0.796252 + 0.604965i \(0.206813\pi\)
\(80\) 4.85410 0.542705
\(81\) 0 0
\(82\) 4.09017 0.451684
\(83\) −3.59017 + 6.21836i −0.394072 + 0.682553i −0.992982 0.118263i \(-0.962267\pi\)
0.598910 + 0.800816i \(0.295601\pi\)
\(84\) 0 0
\(85\) 5.54508 + 9.60437i 0.601449 + 1.04174i
\(86\) 3.16312 + 5.47868i 0.341088 + 0.590782i
\(87\) 0 0
\(88\) −6.54508 + 11.3364i −0.697708 + 1.20847i
\(89\) 0.381966 0.0404883 0.0202442 0.999795i \(-0.493556\pi\)
0.0202442 + 0.999795i \(0.493556\pi\)
\(90\) 0 0
\(91\) 0.381966 0.0400409
\(92\) −0.690983 + 1.19682i −0.0720400 + 0.124777i
\(93\) 0 0
\(94\) 2.30902 + 3.99933i 0.238157 + 0.412500i
\(95\) 9.78115 + 16.9415i 1.00353 + 1.73816i
\(96\) 0 0
\(97\) 3.23607 5.60503i 0.328573 0.569105i −0.653656 0.756792i \(-0.726766\pi\)
0.982229 + 0.187687i \(0.0600990\pi\)
\(98\) −4.23607 −0.427907
\(99\) 0 0
\(100\) −3.00000 −0.300000
\(101\) 2.11803 3.66854i 0.210752 0.365034i −0.741198 0.671287i \(-0.765742\pi\)
0.951950 + 0.306253i \(0.0990753\pi\)
\(102\) 0 0
\(103\) 5.19098 + 8.99105i 0.511483 + 0.885914i 0.999911 + 0.0133103i \(0.00423692\pi\)
−0.488429 + 0.872604i \(0.662430\pi\)
\(104\) −1.11803 1.93649i −0.109632 0.189889i
\(105\) 0 0
\(106\) 0.0901699 0.156179i 0.00875808 0.0151694i
\(107\) −3.38197 −0.326947 −0.163473 0.986548i \(-0.552270\pi\)
−0.163473 + 0.986548i \(0.552270\pi\)
\(108\) 0 0
\(109\) 0.763932 0.0731714 0.0365857 0.999331i \(-0.488352\pi\)
0.0365857 + 0.999331i \(0.488352\pi\)
\(110\) 4.73607 8.20311i 0.451566 0.782136i
\(111\) 0 0
\(112\) 0.354102 + 0.613323i 0.0334595 + 0.0579535i
\(113\) −8.94427 15.4919i −0.841406 1.45736i −0.888706 0.458478i \(-0.848395\pi\)
0.0472996 0.998881i \(-0.484938\pi\)
\(114\) 0 0
\(115\) 1.11803 1.93649i 0.104257 0.180579i
\(116\) −9.47214 −0.879466
\(117\) 0 0
\(118\) 3.38197 0.311335
\(119\) −0.809017 + 1.40126i −0.0741625 + 0.128453i
\(120\) 0 0
\(121\) −11.6353 20.1529i −1.05775 1.83208i
\(122\) 2.50000 + 4.33013i 0.226339 + 0.392031i
\(123\) 0 0
\(124\) 6.73607 11.6672i 0.604917 1.04775i
\(125\) −8.23607 −0.736656
\(126\) 0 0
\(127\) 12.6525 1.12273 0.561363 0.827570i \(-0.310277\pi\)
0.561363 + 0.827570i \(0.310277\pi\)
\(128\) 5.69098 9.85707i 0.503017 0.871250i
\(129\) 0 0
\(130\) 0.809017 + 1.40126i 0.0709555 + 0.122899i
\(131\) −1.92705 3.33775i −0.168367 0.291621i 0.769479 0.638672i \(-0.220516\pi\)
−0.937846 + 0.347052i \(0.887183\pi\)
\(132\) 0 0
\(133\) −1.42705 + 2.47172i −0.123741 + 0.214326i
\(134\) −5.61803 −0.485324
\(135\) 0 0
\(136\) 9.47214 0.812229
\(137\) −11.3090 + 19.5878i −0.966195 + 1.67350i −0.259824 + 0.965656i \(0.583664\pi\)
−0.706371 + 0.707842i \(0.749669\pi\)
\(138\) 0 0
\(139\) −4.39919 7.61962i −0.373134 0.646287i 0.616912 0.787032i \(-0.288384\pi\)
−0.990046 + 0.140745i \(0.955050\pi\)
\(140\) −0.809017 1.40126i −0.0683744 0.118428i
\(141\) 0 0
\(142\) 1.54508 2.67617i 0.129661 0.224579i
\(143\) 5.85410 0.489545
\(144\) 0 0
\(145\) 15.3262 1.27277
\(146\) −3.45492 + 5.98409i −0.285931 + 0.495247i
\(147\) 0 0
\(148\) −4.92705 8.53390i −0.405001 0.701482i
\(149\) 0.381966 + 0.661585i 0.0312919 + 0.0541991i 0.881247 0.472656i \(-0.156705\pi\)
−0.849955 + 0.526855i \(0.823371\pi\)
\(150\) 0 0
\(151\) 5.78115 10.0133i 0.470464 0.814867i −0.528966 0.848643i \(-0.677420\pi\)
0.999429 + 0.0337763i \(0.0107534\pi\)
\(152\) 16.7082 1.35521
\(153\) 0 0
\(154\) 1.38197 0.111362
\(155\) −10.8992 + 18.8779i −0.875444 + 1.51631i
\(156\) 0 0
\(157\) 2.57295 + 4.45648i 0.205344 + 0.355666i 0.950242 0.311512i \(-0.100835\pi\)
−0.744898 + 0.667178i \(0.767502\pi\)
\(158\) −0.690983 1.19682i −0.0549717 0.0952137i
\(159\) 0 0
\(160\) −7.35410 + 12.7377i −0.581393 + 1.00700i
\(161\) 0.326238 0.0257112
\(162\) 0 0
\(163\) −9.52786 −0.746280 −0.373140 0.927775i \(-0.621719\pi\)
−0.373140 + 0.927775i \(0.621719\pi\)
\(164\) 5.35410 9.27358i 0.418085 0.724145i
\(165\) 0 0
\(166\) −2.21885 3.84316i −0.172216 0.298287i
\(167\) 1.02786 + 1.78031i 0.0795385 + 0.137765i 0.903051 0.429534i \(-0.141322\pi\)
−0.823512 + 0.567298i \(0.807989\pi\)
\(168\) 0 0
\(169\) −0.500000 + 0.866025i −0.0384615 + 0.0666173i
\(170\) −6.85410 −0.525686
\(171\) 0 0
\(172\) 16.5623 1.26286
\(173\) −2.26393 + 3.92125i −0.172124 + 0.298127i −0.939162 0.343474i \(-0.888396\pi\)
0.767039 + 0.641601i \(0.221730\pi\)
\(174\) 0 0
\(175\) 0.354102 + 0.613323i 0.0267676 + 0.0463628i
\(176\) 5.42705 + 9.39993i 0.409079 + 0.708546i
\(177\) 0 0
\(178\) −0.118034 + 0.204441i −0.00884702 + 0.0153235i
\(179\) 7.90983 0.591208 0.295604 0.955310i \(-0.404479\pi\)
0.295604 + 0.955310i \(0.404479\pi\)
\(180\) 0 0
\(181\) −18.1246 −1.34719 −0.673596 0.739100i \(-0.735251\pi\)
−0.673596 + 0.739100i \(0.735251\pi\)
\(182\) −0.118034 + 0.204441i −0.00874926 + 0.0151542i
\(183\) 0 0
\(184\) −0.954915 1.65396i −0.0703973 0.121932i
\(185\) 7.97214 + 13.8081i 0.586123 + 1.01519i
\(186\) 0 0
\(187\) −12.3992 + 21.4760i −0.906718 + 1.57048i
\(188\) 12.0902 0.881766
\(189\) 0 0
\(190\) −12.0902 −0.877113
\(191\) −1.19098 + 2.06284i −0.0861765 + 0.149262i −0.905892 0.423509i \(-0.860798\pi\)
0.819715 + 0.572771i \(0.194132\pi\)
\(192\) 0 0
\(193\) −0.0278640 0.0482619i −0.00200570 0.00347397i 0.865021 0.501736i \(-0.167305\pi\)
−0.867027 + 0.498262i \(0.833972\pi\)
\(194\) 2.00000 + 3.46410i 0.143592 + 0.248708i
\(195\) 0 0
\(196\) −5.54508 + 9.60437i −0.396077 + 0.686026i
\(197\) 11.0000 0.783718 0.391859 0.920025i \(-0.371832\pi\)
0.391859 + 0.920025i \(0.371832\pi\)
\(198\) 0 0
\(199\) −13.1803 −0.934330 −0.467165 0.884170i \(-0.654725\pi\)
−0.467165 + 0.884170i \(0.654725\pi\)
\(200\) 2.07295 3.59045i 0.146580 0.253883i
\(201\) 0 0
\(202\) 1.30902 + 2.26728i 0.0921021 + 0.159526i
\(203\) 1.11803 + 1.93649i 0.0784706 + 0.135915i
\(204\) 0 0
\(205\) −8.66312 + 15.0050i −0.605058 + 1.04799i
\(206\) −6.41641 −0.447052
\(207\) 0 0
\(208\) −1.85410 −0.128559
\(209\) −21.8713 + 37.8822i −1.51287 + 2.62037i
\(210\) 0 0
\(211\) 8.07295 + 13.9828i 0.555765 + 0.962613i 0.997844 + 0.0656366i \(0.0209078\pi\)
−0.442079 + 0.896976i \(0.645759\pi\)
\(212\) −0.236068 0.408882i −0.0162132 0.0280821i
\(213\) 0 0
\(214\) 1.04508 1.81014i 0.0714405 0.123739i
\(215\) −26.7984 −1.82763
\(216\) 0 0
\(217\) −3.18034 −0.215896
\(218\) −0.236068 + 0.408882i −0.0159885 + 0.0276930i
\(219\) 0 0
\(220\) −12.3992 21.4760i −0.835953 1.44791i
\(221\) −2.11803 3.66854i −0.142474 0.246773i
\(222\) 0 0
\(223\) −9.56231 + 16.5624i −0.640339 + 1.10910i 0.345018 + 0.938596i \(0.387873\pi\)
−0.985357 + 0.170504i \(0.945460\pi\)
\(224\) −2.14590 −0.143379
\(225\) 0 0
\(226\) 11.0557 0.735416
\(227\) 6.32624 10.9574i 0.419887 0.727266i −0.576041 0.817421i \(-0.695403\pi\)
0.995928 + 0.0901552i \(0.0287363\pi\)
\(228\) 0 0
\(229\) −6.33688 10.9758i −0.418753 0.725301i 0.577061 0.816701i \(-0.304199\pi\)
−0.995814 + 0.0913995i \(0.970866\pi\)
\(230\) 0.690983 + 1.19682i 0.0455621 + 0.0789158i
\(231\) 0 0
\(232\) 6.54508 11.3364i 0.429706 0.744272i
\(233\) 25.9787 1.70192 0.850961 0.525229i \(-0.176020\pi\)
0.850961 + 0.525229i \(0.176020\pi\)
\(234\) 0 0
\(235\) −19.5623 −1.27610
\(236\) 4.42705 7.66788i 0.288176 0.499136i
\(237\) 0 0
\(238\) −0.500000 0.866025i −0.0324102 0.0561361i
\(239\) 11.2812 + 19.5395i 0.729717 + 1.26391i 0.957003 + 0.290079i \(0.0936816\pi\)
−0.227286 + 0.973828i \(0.572985\pi\)
\(240\) 0 0
\(241\) 5.39919 9.35167i 0.347792 0.602394i −0.638065 0.769983i \(-0.720265\pi\)
0.985857 + 0.167589i \(0.0535981\pi\)
\(242\) 14.3820 0.924508
\(243\) 0 0
\(244\) 13.0902 0.838012
\(245\) 8.97214 15.5402i 0.573209 0.992827i
\(246\) 0 0
\(247\) −3.73607 6.47106i −0.237720 0.411744i
\(248\) 9.30902 + 16.1237i 0.591123 + 1.02386i
\(249\) 0 0
\(250\) 2.54508 4.40822i 0.160965 0.278800i
\(251\) 4.85410 0.306388 0.153194 0.988196i \(-0.451044\pi\)
0.153194 + 0.988196i \(0.451044\pi\)
\(252\) 0 0
\(253\) 5.00000 0.314347
\(254\) −3.90983 + 6.77202i −0.245325 + 0.424915i
\(255\) 0 0
\(256\) 3.28115 + 5.68312i 0.205072 + 0.355195i
\(257\) 13.1074 + 22.7027i 0.817617 + 1.41615i 0.907434 + 0.420195i \(0.138038\pi\)
−0.0898172 + 0.995958i \(0.528628\pi\)
\(258\) 0 0
\(259\) −1.16312 + 2.01458i −0.0722727 + 0.125180i
\(260\) 4.23607 0.262710
\(261\) 0 0
\(262\) 2.38197 0.147158
\(263\) −6.57295 + 11.3847i −0.405305 + 0.702010i −0.994357 0.106086i \(-0.966168\pi\)
0.589052 + 0.808095i \(0.299501\pi\)
\(264\) 0 0
\(265\) 0.381966 + 0.661585i 0.0234640 + 0.0406408i
\(266\) −0.881966 1.52761i −0.0540768 0.0936638i
\(267\) 0 0
\(268\) −7.35410 + 12.7377i −0.449223 + 0.778078i
\(269\) −20.5623 −1.25371 −0.626853 0.779138i \(-0.715657\pi\)
−0.626853 + 0.779138i \(0.715657\pi\)
\(270\) 0 0
\(271\) 27.9443 1.69749 0.848747 0.528799i \(-0.177358\pi\)
0.848747 + 0.528799i \(0.177358\pi\)
\(272\) 3.92705 6.80185i 0.238112 0.412423i
\(273\) 0 0
\(274\) −6.98936 12.1059i −0.422242 0.731345i
\(275\) 5.42705 + 9.39993i 0.327263 + 0.566837i
\(276\) 0 0
\(277\) 8.85410 15.3358i 0.531991 0.921436i −0.467311 0.884093i \(-0.654777\pi\)
0.999302 0.0373432i \(-0.0118895\pi\)
\(278\) 5.43769 0.326131
\(279\) 0 0
\(280\) 2.23607 0.133631
\(281\) −11.8090 + 20.4538i −0.704467 + 1.22017i 0.262417 + 0.964955i \(0.415481\pi\)
−0.966884 + 0.255218i \(0.917853\pi\)
\(282\) 0 0
\(283\) 0.708204 + 1.22665i 0.0420984 + 0.0729165i 0.886307 0.463098i \(-0.153262\pi\)
−0.844208 + 0.536015i \(0.819929\pi\)
\(284\) −4.04508 7.00629i −0.240032 0.415747i
\(285\) 0 0
\(286\) −1.80902 + 3.13331i −0.106969 + 0.185276i
\(287\) −2.52786 −0.149215
\(288\) 0 0
\(289\) 0.944272 0.0555454
\(290\) −4.73607 + 8.20311i −0.278111 + 0.481703i
\(291\) 0 0
\(292\) 9.04508 + 15.6665i 0.529324 + 0.916815i
\(293\) 3.32624 + 5.76121i 0.194321 + 0.336574i 0.946678 0.322182i \(-0.104416\pi\)
−0.752357 + 0.658756i \(0.771083\pi\)
\(294\) 0 0
\(295\) −7.16312 + 12.4069i −0.417053 + 0.722357i
\(296\) 13.6180 0.791532
\(297\) 0 0
\(298\) −0.472136 −0.0273501
\(299\) −0.427051 + 0.739674i −0.0246970 + 0.0427765i
\(300\) 0 0
\(301\) −1.95492 3.38601i −0.112679 0.195166i
\(302\) 3.57295 + 6.18853i 0.205600 + 0.356110i
\(303\) 0 0
\(304\) 6.92705 11.9980i 0.397294 0.688133i
\(305\) −21.1803 −1.21278
\(306\) 0 0
\(307\) 6.94427 0.396331 0.198165 0.980169i \(-0.436502\pi\)
0.198165 + 0.980169i \(0.436502\pi\)
\(308\) 1.80902 3.13331i 0.103078 0.178537i
\(309\) 0 0
\(310\) −6.73607 11.6672i −0.382583 0.662653i
\(311\) −7.25329 12.5631i −0.411296 0.712386i 0.583735 0.811944i \(-0.301591\pi\)
−0.995032 + 0.0995578i \(0.968257\pi\)
\(312\) 0 0
\(313\) 10.5000 18.1865i 0.593495 1.02796i −0.400262 0.916401i \(-0.631081\pi\)
0.993757 0.111563i \(-0.0355857\pi\)
\(314\) −3.18034 −0.179477
\(315\) 0 0
\(316\) −3.61803 −0.203530
\(317\) 6.92705 11.9980i 0.389062 0.673875i −0.603262 0.797543i \(-0.706133\pi\)
0.992324 + 0.123668i \(0.0394659\pi\)
\(318\) 0 0
\(319\) 17.1353 + 29.6791i 0.959390 + 1.66171i
\(320\) 0.309017 + 0.535233i 0.0172746 + 0.0299204i
\(321\) 0 0
\(322\) −0.100813 + 0.174613i −0.00561809 + 0.00973082i
\(323\) 31.6525 1.76119
\(324\) 0 0
\(325\) −1.85410 −0.102847
\(326\) 2.94427 5.09963i 0.163068 0.282442i
\(327\) 0 0
\(328\) 7.39919 + 12.8158i 0.408552 + 0.707632i
\(329\) −1.42705 2.47172i −0.0786759 0.136271i
\(330\) 0 0
\(331\) 1.88197 3.25966i 0.103442 0.179167i −0.809658 0.586901i \(-0.800348\pi\)
0.913101 + 0.407734i \(0.133681\pi\)
\(332\) −11.6180 −0.637622
\(333\) 0 0
\(334\) −1.27051 −0.0695192
\(335\) 11.8992 20.6100i 0.650122 1.12604i
\(336\) 0 0
\(337\) −4.59017 7.95041i −0.250042 0.433086i 0.713495 0.700661i \(-0.247111\pi\)
−0.963537 + 0.267574i \(0.913778\pi\)
\(338\) −0.309017 0.535233i −0.0168083 0.0291128i
\(339\) 0 0
\(340\) −8.97214 + 15.5402i −0.486582 + 0.842785i
\(341\) −48.7426 −2.63956
\(342\) 0 0
\(343\) 5.29180 0.285730
\(344\) −11.4443 + 19.8221i −0.617034 + 1.06873i
\(345\) 0 0
\(346\) −1.39919 2.42346i −0.0752208 0.130286i
\(347\) 10.9443 + 18.9560i 0.587519 + 1.01761i 0.994556 + 0.104202i \(0.0332287\pi\)
−0.407037 + 0.913412i \(0.633438\pi\)
\(348\) 0 0
\(349\) −17.5451 + 30.3890i −0.939167 + 1.62668i −0.172137 + 0.985073i \(0.555067\pi\)
−0.767030 + 0.641612i \(0.778266\pi\)
\(350\) −0.437694 −0.0233957
\(351\) 0 0
\(352\) −32.8885 −1.75297
\(353\) 16.2082 28.0734i 0.862676 1.49420i −0.00666108 0.999978i \(-0.502120\pi\)
0.869337 0.494220i \(-0.164546\pi\)
\(354\) 0 0
\(355\) 6.54508 + 11.3364i 0.347377 + 0.601675i
\(356\) 0.309017 + 0.535233i 0.0163779 + 0.0283673i
\(357\) 0 0
\(358\) −2.44427 + 4.23360i −0.129184 + 0.223753i
\(359\) −6.27051 −0.330945 −0.165472 0.986214i \(-0.552915\pi\)
−0.165472 + 0.986214i \(0.552915\pi\)
\(360\) 0 0
\(361\) 36.8328 1.93857
\(362\) 5.60081 9.70089i 0.294372 0.509868i
\(363\) 0 0
\(364\) 0.309017 + 0.535233i 0.0161969 + 0.0280538i
\(365\) −14.6353 25.3490i −0.766044 1.32683i
\(366\) 0 0
\(367\) 15.3541 26.5941i 0.801478 1.38820i −0.117166 0.993112i \(-0.537381\pi\)
0.918643 0.395088i \(-0.129286\pi\)
\(368\) −1.58359 −0.0825504
\(369\) 0 0
\(370\) −9.85410 −0.512290
\(371\) −0.0557281 + 0.0965239i −0.00289326 + 0.00501127i
\(372\) 0 0
\(373\) −6.28115 10.8793i −0.325226 0.563308i 0.656332 0.754472i \(-0.272107\pi\)
−0.981558 + 0.191164i \(0.938774\pi\)
\(374\) −7.66312 13.2729i −0.396250 0.686326i
\(375\) 0 0
\(376\) −8.35410 + 14.4697i −0.430830 + 0.746219i
\(377\) −5.85410 −0.301502
\(378\) 0 0
\(379\) −17.0000 −0.873231 −0.436616 0.899648i \(-0.643823\pi\)
−0.436616 + 0.899648i \(0.643823\pi\)
\(380\) −15.8262 + 27.4118i −0.811869 + 1.40620i
\(381\) 0 0
\(382\) −0.736068 1.27491i −0.0376605 0.0652299i
\(383\) 8.50000 + 14.7224i 0.434330 + 0.752281i 0.997241 0.0742364i \(-0.0236519\pi\)
−0.562911 + 0.826518i \(0.690319\pi\)
\(384\) 0 0
\(385\) −2.92705 + 5.06980i −0.149176 + 0.258381i
\(386\) 0.0344419 0.00175304
\(387\) 0 0
\(388\) 10.4721 0.531642
\(389\) 1.57295 2.72443i 0.0797517 0.138134i −0.823391 0.567474i \(-0.807921\pi\)
0.903143 + 0.429340i \(0.141254\pi\)
\(390\) 0 0
\(391\) −1.80902 3.13331i −0.0914859 0.158458i
\(392\) −7.66312 13.2729i −0.387046 0.670383i
\(393\) 0 0
\(394\) −3.39919 + 5.88756i −0.171249 + 0.296611i
\(395\) 5.85410 0.294552
\(396\) 0 0
\(397\) −9.29180 −0.466342 −0.233171 0.972436i \(-0.574910\pi\)
−0.233171 + 0.972436i \(0.574910\pi\)
\(398\) 4.07295 7.05455i 0.204158 0.353613i
\(399\) 0 0
\(400\) −1.71885 2.97713i −0.0859424 0.148857i
\(401\) −3.02786 5.24441i −0.151204 0.261894i 0.780466 0.625198i \(-0.214982\pi\)
−0.931670 + 0.363304i \(0.881648\pi\)
\(402\) 0 0
\(403\) 4.16312 7.21073i 0.207380 0.359192i
\(404\) 6.85410 0.341004
\(405\) 0 0
\(406\) −1.38197 −0.0685858
\(407\) −17.8262 + 30.8759i −0.883614 + 1.53046i
\(408\) 0 0
\(409\) −1.50000 2.59808i −0.0741702 0.128467i 0.826555 0.562856i \(-0.190297\pi\)
−0.900725 + 0.434389i \(0.856964\pi\)
\(410\) −5.35410 9.27358i −0.264420 0.457989i
\(411\) 0 0
\(412\) −8.39919 + 14.5478i −0.413798 + 0.716720i
\(413\) −2.09017 −0.102851
\(414\) 0 0
\(415\) 18.7984 0.922776
\(416\) 2.80902 4.86536i 0.137723 0.238544i
\(417\) 0 0
\(418\) −13.5172 23.4125i −0.661149 1.14514i
\(419\) −0.236068 0.408882i −0.0115327 0.0199752i 0.860201 0.509954i \(-0.170338\pi\)
−0.871734 + 0.489979i \(0.837004\pi\)
\(420\) 0 0
\(421\) −12.2361 + 21.1935i −0.596349 + 1.03291i 0.397005 + 0.917816i \(0.370049\pi\)
−0.993355 + 0.115091i \(0.963284\pi\)
\(422\) −9.97871 −0.485756
\(423\) 0 0
\(424\) 0.652476 0.0316870
\(425\) 3.92705 6.80185i 0.190490 0.329938i
\(426\) 0 0
\(427\) −1.54508 2.67617i −0.0747719 0.129509i
\(428\) −2.73607 4.73901i −0.132253 0.229069i
\(429\) 0 0
\(430\) 8.28115 14.3434i 0.399353 0.691699i
\(431\) 27.2361 1.31192 0.655958 0.754798i \(-0.272265\pi\)
0.655958 + 0.754798i \(0.272265\pi\)
\(432\) 0 0
\(433\) 7.94427 0.381777 0.190889 0.981612i \(-0.438863\pi\)
0.190889 + 0.981612i \(0.438863\pi\)
\(434\) 0.982779 1.70222i 0.0471749 0.0817093i
\(435\) 0 0
\(436\) 0.618034 + 1.07047i 0.0295985 + 0.0512660i
\(437\) −3.19098 5.52694i −0.152645 0.264390i
\(438\) 0 0
\(439\) 16.7705 29.0474i 0.800413 1.38636i −0.118932 0.992902i \(-0.537947\pi\)
0.919345 0.393453i \(-0.128720\pi\)
\(440\) 34.2705 1.63378
\(441\) 0 0
\(442\) 2.61803 0.124527
\(443\) −13.9164 + 24.1039i −0.661188 + 1.14521i 0.319115 + 0.947716i \(0.396614\pi\)
−0.980304 + 0.197496i \(0.936719\pi\)
\(444\) 0 0
\(445\) −0.500000 0.866025i −0.0237023 0.0410535i
\(446\) −5.90983 10.2361i −0.279839 0.484695i
\(447\) 0 0
\(448\) −0.0450850 + 0.0780895i −0.00213006 + 0.00368938i
\(449\) −28.5279 −1.34631 −0.673157 0.739500i \(-0.735062\pi\)
−0.673157 + 0.739500i \(0.735062\pi\)
\(450\) 0 0
\(451\) −38.7426 −1.82432
\(452\) 14.4721 25.0665i 0.680712 1.17903i
\(453\) 0 0
\(454\) 3.90983 + 6.77202i 0.183497 + 0.317827i
\(455\) −0.500000 0.866025i −0.0234404 0.0405999i
\(456\) 0 0
\(457\) 13.3262 23.0817i 0.623375 1.07972i −0.365478 0.930820i \(-0.619094\pi\)
0.988853 0.148897i \(-0.0475724\pi\)
\(458\) 7.83282 0.366003
\(459\) 0 0
\(460\) 3.61803 0.168692
\(461\) 4.40983 7.63805i 0.205386 0.355739i −0.744869 0.667210i \(-0.767488\pi\)
0.950256 + 0.311471i \(0.100822\pi\)
\(462\) 0 0
\(463\) 15.4164 + 26.7020i 0.716461 + 1.24095i 0.962393 + 0.271660i \(0.0875727\pi\)
−0.245932 + 0.969287i \(0.579094\pi\)
\(464\) −5.42705 9.39993i −0.251945 0.436381i
\(465\) 0 0
\(466\) −8.02786 + 13.9047i −0.371884 + 0.644121i
\(467\) 6.58359 0.304652 0.152326 0.988330i \(-0.451324\pi\)
0.152326 + 0.988330i \(0.451324\pi\)
\(468\) 0 0
\(469\) 3.47214 0.160328
\(470\) 6.04508 10.4704i 0.278839 0.482963i
\(471\) 0 0
\(472\) 6.11803 + 10.5967i 0.281605 + 0.487755i
\(473\) −29.9615 51.8948i −1.37763 2.38613i
\(474\) 0 0
\(475\) 6.92705 11.9980i 0.317835 0.550506i
\(476\) −2.61803 −0.119997
\(477\) 0 0
\(478\) −13.9443 −0.637796
\(479\) 4.38197 7.58979i 0.200217 0.346786i −0.748381 0.663269i \(-0.769169\pi\)
0.948598 + 0.316483i \(0.102502\pi\)
\(480\) 0 0
\(481\) −3.04508 5.27424i −0.138844 0.240485i
\(482\) 3.33688 + 5.77965i 0.151991 + 0.263256i
\(483\) 0 0
\(484\) 18.8262 32.6080i 0.855738 1.48218i
\(485\) −16.9443 −0.769400
\(486\) 0 0
\(487\) −8.34752 −0.378262 −0.189131 0.981952i \(-0.560567\pi\)
−0.189131 + 0.981952i \(0.560567\pi\)
\(488\) −9.04508 + 15.6665i −0.409452 + 0.709191i
\(489\) 0 0
\(490\) 5.54508 + 9.60437i 0.250501 + 0.433881i
\(491\) −20.1631 34.9235i −0.909949 1.57608i −0.814133 0.580679i \(-0.802787\pi\)
−0.0958159 0.995399i \(-0.530546\pi\)
\(492\) 0 0
\(493\) 12.3992 21.4760i 0.558431 0.967231i
\(494\) 4.61803 0.207775
\(495\) 0 0
\(496\) 15.4377 0.693173
\(497\) −0.954915 + 1.65396i −0.0428338 + 0.0741903i
\(498\) 0 0
\(499\) −9.89919 17.1459i −0.443148 0.767556i 0.554773 0.832002i \(-0.312805\pi\)
−0.997921 + 0.0644463i \(0.979472\pi\)
\(500\) −6.66312 11.5409i −0.297984 0.516123i
\(501\) 0 0
\(502\) −1.50000 + 2.59808i −0.0669483 + 0.115958i
\(503\) 20.3262 0.906302 0.453151 0.891434i \(-0.350300\pi\)
0.453151 + 0.891434i \(0.350300\pi\)
\(504\) 0 0
\(505\) −11.0902 −0.493506
\(506\) −1.54508 + 2.67617i −0.0686874 + 0.118970i
\(507\) 0 0
\(508\) 10.2361 + 17.7294i 0.454152 + 0.786614i
\(509\) 8.51722 + 14.7523i 0.377519 + 0.653882i 0.990701 0.136060i \(-0.0434439\pi\)
−0.613181 + 0.789942i \(0.710111\pi\)
\(510\) 0 0
\(511\) 2.13525 3.69837i 0.0944581 0.163606i
\(512\) 18.7082 0.826794
\(513\) 0 0
\(514\) −16.2016 −0.714623
\(515\) 13.5902 23.5389i 0.598854 1.03725i
\(516\) 0 0
\(517\) −21.8713 37.8822i −0.961900 1.66606i
\(518\) −0.718847 1.24508i −0.0315843 0.0547057i
\(519\) 0 0
\(520\) −2.92705 + 5.06980i −0.128360 + 0.222325i
\(521\) −38.7639 −1.69828 −0.849139 0.528169i \(-0.822879\pi\)
−0.849139 + 0.528169i \(0.822879\pi\)
\(522\) 0 0
\(523\) −38.4721 −1.68227 −0.841135 0.540826i \(-0.818112\pi\)
−0.841135 + 0.540826i \(0.818112\pi\)
\(524\) 3.11803 5.40059i 0.136212 0.235926i
\(525\) 0 0
\(526\) −4.06231 7.03612i −0.177125 0.306789i
\(527\) 17.6353 + 30.5452i 0.768204 + 1.33057i
\(528\) 0 0
\(529\) 11.1353 19.2868i 0.484142 0.838558i
\(530\) −0.472136 −0.0205083
\(531\) 0 0
\(532\) −4.61803 −0.200217
\(533\) 3.30902 5.73139i 0.143329 0.248254i
\(534\) 0 0
\(535\) 4.42705 + 7.66788i 0.191398 + 0.331511i
\(536\) −10.1631 17.6030i −0.438980 0.760335i
\(537\) 0 0
\(538\) 6.35410 11.0056i 0.273945 0.474486i
\(539\) 40.1246 1.72829
\(540\) 0 0
\(541\) 33.1246 1.42414 0.712069 0.702109i \(-0.247758\pi\)
0.712069 + 0.702109i \(0.247758\pi\)
\(542\) −8.63525 + 14.9567i −0.370916 + 0.642445i
\(543\) 0 0
\(544\) 11.8992 + 20.6100i 0.510173 + 0.883646i
\(545\) −1.00000 1.73205i −0.0428353 0.0741929i
\(546\) 0 0
\(547\) 14.6180 25.3192i 0.625022 1.08257i −0.363515 0.931588i \(-0.618423\pi\)
0.988537 0.150981i \(-0.0482433\pi\)
\(548\) −36.5967 −1.56334
\(549\) 0 0
\(550\) −6.70820 −0.286039
\(551\) 21.8713 37.8822i 0.931750 1.61384i
\(552\) 0 0
\(553\) 0.427051 + 0.739674i 0.0181601 + 0.0314541i
\(554\) 5.47214 + 9.47802i 0.232489 + 0.402682i
\(555\) 0 0
\(556\) 7.11803 12.3288i 0.301872 0.522857i
\(557\) 17.6180 0.746500 0.373250 0.927731i \(-0.378243\pi\)
0.373250 + 0.927731i \(0.378243\pi\)
\(558\) 0 0
\(559\) 10.2361 0.432940
\(560\) 0.927051 1.60570i 0.0391751 0.0678532i
\(561\) 0 0
\(562\) −7.29837 12.6412i −0.307863 0.533235i
\(563\) −11.4164 19.7738i −0.481144 0.833366i 0.518622 0.855004i \(-0.326445\pi\)
−0.999766 + 0.0216376i \(0.993112\pi\)
\(564\) 0 0
\(565\) −23.4164 + 40.5584i −0.985136 + 1.70631i
\(566\) −0.875388 −0.0367953
\(567\) 0 0
\(568\) 11.1803 0.469117
\(569\) 23.1353 40.0714i 0.969880 1.67988i 0.273992 0.961732i \(-0.411656\pi\)
0.695888 0.718150i \(-0.255011\pi\)
\(570\) 0 0
\(571\) 2.50000 + 4.33013i 0.104622 + 0.181210i 0.913584 0.406651i \(-0.133303\pi\)
−0.808962 + 0.587861i \(0.799970\pi\)
\(572\) 4.73607 + 8.20311i 0.198025 + 0.342989i
\(573\) 0 0
\(574\) 0.781153 1.35300i 0.0326047 0.0564730i
\(575\) −1.58359 −0.0660404
\(576\) 0 0
\(577\) −31.5410 −1.31307 −0.656535 0.754296i \(-0.727979\pi\)
−0.656535 + 0.754296i \(0.727979\pi\)
\(578\) −0.291796 + 0.505406i −0.0121371 + 0.0210221i
\(579\) 0 0
\(580\) 12.3992 + 21.4760i 0.514848 + 0.891743i
\(581\) 1.37132 + 2.37520i 0.0568921 + 0.0985399i
\(582\) 0 0
\(583\) −0.854102 + 1.47935i −0.0353733 + 0.0612683i
\(584\) −25.0000 −1.03451
\(585\) 0 0
\(586\) −4.11146 −0.169843
\(587\) 12.5729 21.7770i 0.518941 0.898832i −0.480817 0.876821i \(-0.659660\pi\)
0.999758 0.0220112i \(-0.00700696\pi\)
\(588\) 0 0
\(589\) 31.1074 + 53.8796i 1.28176 + 2.22007i
\(590\) −4.42705 7.66788i −0.182259 0.315682i
\(591\) 0 0
\(592\) 5.64590 9.77898i 0.232045 0.401914i
\(593\) 10.8541 0.445725 0.222862 0.974850i \(-0.428460\pi\)
0.222862 + 0.974850i \(0.428460\pi\)
\(594\) 0 0
\(595\) 4.23607 0.173662
\(596\) −0.618034 + 1.07047i −0.0253157 + 0.0438480i
\(597\) 0 0
\(598\) −0.263932 0.457144i −0.0107930 0.0186940i
\(599\) 16.8262 + 29.1439i 0.687501 + 1.19079i 0.972644 + 0.232302i \(0.0746258\pi\)
−0.285142 + 0.958485i \(0.592041\pi\)
\(600\) 0 0
\(601\) −9.09017 + 15.7446i −0.370796 + 0.642237i −0.989688 0.143239i \(-0.954248\pi\)
0.618892 + 0.785476i \(0.287582\pi\)
\(602\) 2.41641 0.0984854
\(603\) 0 0
\(604\) 18.7082 0.761226
\(605\) −30.4615 + 52.7609i −1.23844 + 2.14503i
\(606\) 0 0
\(607\) −2.28115 3.95107i −0.0925891 0.160369i 0.816011 0.578037i \(-0.196181\pi\)
−0.908600 + 0.417668i \(0.862848\pi\)
\(608\) 20.9894 + 36.3546i 0.851231 + 1.47438i
\(609\) 0 0
\(610\) 6.54508 11.3364i 0.265003 0.458998i
\(611\) 7.47214 0.302290
\(612\) 0 0
\(613\) 7.74265 0.312723 0.156361 0.987700i \(-0.450024\pi\)
0.156361 + 0.987700i \(0.450024\pi\)
\(614\) −2.14590 + 3.71680i −0.0866014 + 0.149998i
\(615\) 0 0
\(616\) 2.50000 + 4.33013i 0.100728 + 0.174466i
\(617\) −8.66312 15.0050i −0.348764 0.604077i 0.637266 0.770644i \(-0.280065\pi\)
−0.986030 + 0.166567i \(0.946732\pi\)
\(618\) 0 0
\(619\) 1.76393 3.05522i 0.0708984 0.122800i −0.828397 0.560142i \(-0.810747\pi\)
0.899295 + 0.437342i \(0.144080\pi\)
\(620\) −35.2705 −1.41650
\(621\) 0 0
\(622\) 8.96556 0.359486
\(623\) 0.0729490 0.126351i 0.00292264 0.00506216i
\(624\) 0 0
\(625\) 15.4164 + 26.7020i 0.616656 + 1.06808i
\(626\) 6.48936 + 11.2399i 0.259367 + 0.449237i
\(627\) 0 0
\(628\) −4.16312 + 7.21073i −0.166127 + 0.287740i
\(629\) 25.7984 1.02865
\(630\) 0 0
\(631\) 0.381966 0.0152058 0.00760291 0.999971i \(-0.497580\pi\)
0.00760291 + 0.999971i \(0.497580\pi\)
\(632\) 2.50000 4.33013i 0.0994447 0.172243i
\(633\) 0 0
\(634\) 4.28115 + 7.41517i 0.170026 + 0.294494i
\(635\) −16.5623 28.6868i −0.657255 1.13840i
\(636\) 0 0
\(637\) −3.42705 + 5.93583i −0.135785 + 0.235186i
\(638\) −21.1803 −0.838538
\(639\) 0 0
\(640\) −29.7984 −1.17788
\(641\) 9.37132 16.2316i 0.370145 0.641110i −0.619443 0.785042i \(-0.712641\pi\)
0.989588 + 0.143932i \(0.0459747\pi\)
\(642\) 0 0
\(643\) 2.54508 + 4.40822i 0.100368 + 0.173843i 0.911836 0.410554i \(-0.134665\pi\)
−0.811468 + 0.584397i \(0.801331\pi\)
\(644\) 0.263932 + 0.457144i 0.0104004 + 0.0180140i
\(645\) 0 0
\(646\) −9.78115 + 16.9415i −0.384834 + 0.666553i
\(647\) 23.6738 0.930712 0.465356 0.885124i \(-0.345926\pi\)
0.465356 + 0.885124i \(0.345926\pi\)
\(648\) 0 0
\(649\) −32.0344 −1.25746
\(650\) 0.572949 0.992377i 0.0224729 0.0389242i
\(651\) 0 0
\(652\) −7.70820 13.3510i −0.301877 0.522866i
\(653\) 2.54508 + 4.40822i 0.0995969 + 0.172507i 0.911518 0.411261i \(-0.134911\pi\)
−0.811921 + 0.583767i \(0.801578\pi\)
\(654\) 0 0
\(655\) −5.04508 + 8.73834i −0.197128 + 0.341435i
\(656\) 12.2705 0.479083
\(657\) 0 0
\(658\) 1.76393 0.0687652
\(659\) 12.5451 21.7287i 0.488687 0.846431i −0.511228 0.859445i \(-0.670809\pi\)
0.999915 + 0.0130141i \(0.00414263\pi\)
\(660\) 0 0
\(661\) −10.8541 18.7999i −0.422176 0.731230i 0.573976 0.818872i \(-0.305400\pi\)
−0.996152 + 0.0876422i \(0.972067\pi\)
\(662\) 1.16312 + 2.01458i 0.0452059 + 0.0782989i
\(663\) 0 0
\(664\) 8.02786 13.9047i 0.311542 0.539606i
\(665\) 7.47214 0.289757
\(666\) 0 0
\(667\) −5.00000 −0.193601
\(668\) −1.66312 + 2.88061i −0.0643480 + 0.111454i
\(669\) 0 0
\(670\) 7.35410 + 12.7377i 0.284114 + 0.492099i
\(671\) −23.6803 41.0156i −0.914169 1.58339i
\(672\) 0 0
\(673\) −24.6803 + 42.7476i −0.951357 + 1.64780i −0.208865 + 0.977945i \(0.566977\pi\)
−0.742492 + 0.669854i \(0.766356\pi\)
\(674\) 5.67376 0.218545
\(675\) 0 0
\(676\) −1.61803 −0.0622321
\(677\) 22.8156 39.5178i 0.876875 1.51879i 0.0221221 0.999755i \(-0.492958\pi\)
0.854752 0.519036i \(-0.173709\pi\)
\(678\) 0 0
\(679\) −1.23607 2.14093i −0.0474359 0.0821615i
\(680\) −12.3992 21.4760i −0.475487 0.823568i
\(681\) 0 0
\(682\) 15.0623 26.0887i 0.576766 0.998987i
\(683\) −45.6869 −1.74816 −0.874081 0.485781i \(-0.838535\pi\)
−0.874081 + 0.485781i \(0.838535\pi\)
\(684\) 0 0
\(685\) 59.2148 2.26248
\(686\) −1.63525 + 2.83234i −0.0624343 + 0.108139i
\(687\) 0 0
\(688\) 9.48936 + 16.4360i 0.361778 + 0.626618i
\(689\) −0.145898 0.252703i −0.00555827 0.00962721i
\(690\) 0 0
\(691\) 4.16312 7.21073i 0.158373 0.274309i −0.775909 0.630844i \(-0.782709\pi\)
0.934282 + 0.356535i \(0.116042\pi\)
\(692\) −7.32624 −0.278502
\(693\) 0 0
\(694\) −13.5279 −0.513511
\(695\) −11.5172 + 19.9484i −0.436873 + 0.756686i
\(696\) 0 0
\(697\) 14.0172 + 24.2785i 0.530940 + 0.919615i
\(698\) −10.8435 18.7814i −0.410431 0.710887i
\(699\) 0 0
\(700\) −0.572949 + 0.992377i −0.0216554 + 0.0375083i
\(701\) −43.9787 −1.66105 −0.830527 0.556979i \(-0.811960\pi\)
−0.830527 + 0.556979i \(0.811960\pi\)
\(702\) 0 0
\(703\) 45.5066 1.71631
\(704\) −0.690983 + 1.19682i −0.0260424 + 0.0451068i
\(705\) 0 0
\(706\) 10.0172 + 17.3503i 0.377003 + 0.652988i
\(707\) −0.809017 1.40126i −0.0304262 0.0526998i
\(708\) 0 0
\(709\) 14.3992 24.9401i 0.540773 0.936646i −0.458087 0.888907i \(-0.651465\pi\)
0.998860 0.0477387i \(-0.0152015\pi\)
\(710\) −8.09017 −0.303619
\(711\) 0 0
\(712\) −0.854102 −0.0320088
\(713\) 3.55573 6.15870i 0.133163 0.230645i
\(714\) 0 0
\(715\) −7.66312 13.2729i −0.286584 0.496379i
\(716\) 6.39919 + 11.0837i 0.239149 + 0.414218i
\(717\) 0 0
\(718\) 1.93769 3.35618i 0.0723141 0.125252i
\(719\) 41.0000 1.52904 0.764521 0.644599i \(-0.222976\pi\)
0.764521 + 0.644599i \(0.222976\pi\)
\(720\) 0 0
\(721\) 3.96556 0.147685
\(722\) −11.3820 + 19.7141i −0.423593 + 0.733684i
\(723\) 0 0
\(724\) −14.6631 25.3973i −0.544951 0.943882i
\(725\) −5.42705 9.39993i −0.201556 0.349105i
\(726\) 0 0
\(727\) 11.1631 19.3351i 0.414017 0.717099i −0.581308 0.813684i \(-0.697459\pi\)
0.995325 + 0.0965852i \(0.0307920\pi\)
\(728\) −0.854102 −0.0316551
\(729\) 0 0
\(730\) 18.0902 0.669547
\(731\) −21.6803 + 37.5515i −0.801876 + 1.38889i
\(732\) 0 0
\(733\) −11.0279 19.1008i −0.407323 0.705505i 0.587265 0.809394i \(-0.300204\pi\)
−0.994589 + 0.103890i \(0.966871\pi\)
\(734\) 9.48936 + 16.4360i 0.350259 + 0.606666i
\(735\) 0 0
\(736\) 2.39919 4.15551i 0.0884352 0.153174i
\(737\) 53.2148 1.96019
\(738\) 0 0
\(739\) 25.8885 0.952325 0.476163 0.879357i \(-0.342027\pi\)
0.476163 + 0.879357i \(0.342027\pi\)
\(740\) −12.8992 + 22.3420i −0.474184 + 0.821310i
\(741\) 0 0
\(742\) −0.0344419 0.0596550i −0.00126440 0.00219001i
\(743\) 9.64590 + 16.7072i 0.353874 + 0.612927i 0.986925 0.161183i \(-0.0515309\pi\)
−0.633051 + 0.774110i \(0.718198\pi\)
\(744\) 0 0
\(745\) 1.00000 1.73205i 0.0366372 0.0634574i
\(746\) 7.76393 0.284258
\(747\) 0 0
\(748\) −40.1246 −1.46710
\(749\) −0.645898 + 1.11873i −0.0236006 + 0.0408774i
\(750\) 0 0
\(751\) −4.42705 7.66788i −0.161545 0.279805i 0.773878 0.633335i \(-0.218314\pi\)
−0.935423 + 0.353530i \(0.884981\pi\)
\(752\) 6.92705 + 11.9980i 0.252604 + 0.437522i
\(753\) 0 0
\(754\) 1.80902 3.13331i 0.0658805 0.114108i
\(755\) −30.2705 −1.10166
\(756\) 0 0
\(757\) −44.3951 −1.61357 −0.806784 0.590846i \(-0.798794\pi\)
−0.806784 + 0.590846i \(0.798794\pi\)
\(758\) 5.25329 9.09896i 0.190808 0.330489i
\(759\) 0 0
\(760\) −21.8713 37.8822i −0.793356 1.37413i
\(761\) −12.5729 21.7770i −0.455769 0.789415i 0.542963 0.839757i \(-0.317302\pi\)
−0.998732 + 0.0503415i \(0.983969\pi\)
\(762\) 0 0
\(763\) 0.145898 0.252703i 0.00528186 0.00914846i
\(764\) −3.85410 −0.139437
\(765\) 0 0
\(766\) −10.5066 −0.379618
\(767\) 2.73607 4.73901i 0.0987937 0.171116i
\(768\) 0 0
\(769\) −12.0000 20.7846i −0.432731 0.749512i 0.564376 0.825518i \(-0.309117\pi\)
−0.997107 + 0.0760054i \(0.975783\pi\)
\(770\) −1.80902 3.13331i −0.0651924 0.112917i
\(771\) 0 0
\(772\) 0.0450850 0.0780895i 0.00162264 0.00281050i
\(773\) 3.18034 0.114389 0.0571944 0.998363i \(-0.481785\pi\)
0.0571944 + 0.998363i \(0.481785\pi\)
\(774\) 0 0
\(775\) 15.4377 0.554538
\(776\) −7.23607 + 12.5332i −0.259760 + 0.449917i
\(777\) 0 0
\(778\) 0.972136 + 1.68379i 0.0348528 + 0.0603668i
\(779\) 24.7254 + 42.8257i 0.885880 + 1.53439i
\(780\) 0 0
\(781\) −14.6353 + 25.3490i −0.523691 + 0.907059i
\(782\) 2.23607 0.0799616
\(783\) 0 0
\(784\) −12.7082 −0.453864
\(785\) 6.73607 11.6672i 0.240421 0.416421i
\(786\) 0 0
\(787\) −5.96149 10.3256i −0.212504 0.368068i 0.739993 0.672614i \(-0.234829\pi\)
−0.952498 + 0.304546i \(0.901495\pi\)
\(788\) 8.89919 + 15.4138i 0.317020 + 0.549095i
\(789\) 0 0
\(790\) −1.80902 + 3.13331i −0.0643619 + 0.111478i
\(791\) −6.83282 −0.242947
\(792\) 0 0
\(793\) 8.09017 0.287290
\(794\) 2.87132 4.97328i 0.101899 0.176495i
\(795\) 0 0
\(796\) −10.6631 18.4691i −0.377944 0.654619i
\(797\) 2.80902 + 4.86536i 0.0995005 + 0.172340i 0.911478 0.411349i \(-0.134942\pi\)
−0.811978 + 0.583689i \(0.801609\pi\)
\(798\) 0 0
\(799\) −15.8262 + 27.4118i −0.559892 + 0.969761i
\(800\) 10.4164 0.368276
\(801\) 0 0
\(802\) 3.74265 0.132157
\(803\) 32.7254 56.6821i 1.15486 2.00027i
\(804\) 0 0
\(805\) −0.427051 0.739674i −0.0150516 0.0260701i
\(806\) 2.57295 + 4.45648i 0.0906283 + 0.156973i
\(807\) 0 0
\(808\) −4.73607 + 8.20311i −0.166614 + 0.288584i
\(809\) −41.7771 −1.46880 −0.734402 0.678715i \(-0.762537\pi\)
−0.734402 + 0.678715i \(0.762537\pi\)
\(810\) 0 0
\(811\) −27.5066 −0.965887 −0.482943 0.875652i \(-0.660432\pi\)
−0.482943 + 0.875652i \(0.660432\pi\)
\(812\) −1.80902 + 3.13331i −0.0634841 + 0.109958i
\(813\) 0 0
\(814\) −11.0172 19.0824i −0.386153 0.668837i
\(815\) 12.4721 + 21.6024i 0.436880 + 0.756698i
\(816\) 0 0
\(817\) −38.2426 + 66.2382i −1.33794 + 2.31738i
\(818\) 1.85410 0.0648272
\(819\) 0 0
\(820\) −28.0344 −0.979005
\(821\) −15.0066 + 25.9922i −0.523733 + 0.907132i 0.475885 + 0.879507i \(0.342128\pi\)
−0.999618 + 0.0276251i \(0.991206\pi\)
\(822\) 0 0
\(823\) 3.50000 + 6.06218i 0.122002 + 0.211314i 0.920557 0.390608i \(-0.127735\pi\)
−0.798555 + 0.601922i \(0.794402\pi\)
\(824\) −11.6074 20.1046i −0.404363 0.700377i
\(825\) 0 0
\(826\) 0.645898 1.11873i 0.0224737 0.0389255i
\(827\) 25.8328 0.898295 0.449148 0.893458i \(-0.351728\pi\)
0.449148 + 0.893458i \(0.351728\pi\)
\(828\) 0 0
\(829\) −27.8673 −0.967870 −0.483935 0.875104i \(-0.660793\pi\)
−0.483935 + 0.875104i \(0.660793\pi\)
\(830\) −5.80902 + 10.0615i −0.201634 + 0.349240i
\(831\) 0 0
\(832\) −0.118034 0.204441i −0.00409209 0.00708771i
\(833\) −14.5172 25.1446i −0.502992 0.871208i
\(834\) 0 0
\(835\) 2.69098 4.66092i 0.0931253 0.161298i
\(836\) −70.7771 −2.44788
\(837\) 0 0
\(838\) 0.291796 0.0100799
\(839\) −5.55573 + 9.62280i −0.191805 + 0.332216i −0.945848 0.324608i \(-0.894767\pi\)
0.754043 + 0.656825i \(0.228101\pi\)
\(840\) 0 0
\(841\) −2.63525 4.56440i −0.0908709 0.157393i
\(842\) −7.56231 13.0983i −0.260614 0.451397i
\(843\) 0 0
\(844\) −13.0623 + 22.6246i −0.449623 + 0.778770i
\(845\) 2.61803 0.0900631
\(846\) 0 0
\(847\) −8.88854 −0.305414
\(848\) 0.270510 0.468537i 0.00928935 0.0160896i
\(849\) 0 0
\(850\) 2.42705 + 4.20378i 0.0832472 + 0.144188i
\(851\) −2.60081 4.50474i −0.0891547 0.154421i
\(852\) 0 0
\(853\) −25.7533 + 44.6060i −0.881776 + 1.52728i −0.0324108 + 0.999475i \(0.510318\pi\)
−0.849365 + 0.527806i \(0.823015\pi\)
\(854\) 1.90983 0.0653530
\(855\) 0 0
\(856\) 7.56231 0.258474
\(857\) 1.51722 2.62790i 0.0518273 0.0897675i −0.838948 0.544212i \(-0.816829\pi\)
0.890775 + 0.454444i \(0.150162\pi\)
\(858\) 0 0
\(859\) −9.95492 17.2424i −0.339657 0.588304i 0.644711 0.764426i \(-0.276978\pi\)
−0.984368 + 0.176123i \(0.943644\pi\)
\(860\) −21.6803 37.5515i −0.739293 1.28049i
\(861\) 0 0
\(862\) −8.41641 + 14.5776i −0.286664 + 0.496517i
\(863\) −18.7984 −0.639904 −0.319952 0.947434i \(-0.603667\pi\)
−0.319952 + 0.947434i \(0.603667\pi\)
\(864\) 0 0
\(865\) 11.8541 0.403052
\(866\) −2.45492 + 4.25204i −0.0834214 + 0.144490i
\(867\) 0 0
\(868\) −2.57295 4.45648i −0.0873316 0.151263i
\(869\) 6.54508 + 11.3364i 0.222027 + 0.384562i
\(870\) 0 0
\(871\) −4.54508 + 7.87232i −0.154004 + 0.266743i
\(872\) −1.70820 −0.0578471
\(873\) 0 0
\(874\) 3.94427 0.133417
\(875\) −1.57295 + 2.72443i −0.0531754 + 0.0921025i
\(876\) 0 0
\(877\) 14.8156 + 25.6614i 0.500287 + 0.866523i 1.00000 0.000331534i \(0.000105530\pi\)
−0.499713 + 0.866191i \(0.666561\pi\)
\(878\) 10.3647 + 17.9523i 0.349793 + 0.605860i
\(879\) 0 0
\(880\) 14.2082 24.6093i 0.478958 0.829580i
\(881\) −9.47214 −0.319124 −0.159562 0.987188i \(-0.551008\pi\)
−0.159562 + 0.987188i \(0.551008\pi\)
\(882\) 0 0
\(883\) 40.3607 1.35825 0.679123 0.734025i \(-0.262360\pi\)
0.679123 + 0.734025i \(0.262360\pi\)
\(884\) 3.42705 5.93583i 0.115264 0.199643i
\(885\) 0 0
\(886\) −8.60081 14.8970i −0.288950 0.500476i
\(887\) 17.3541 + 30.0582i 0.582694 + 1.00926i 0.995159 + 0.0982816i \(0.0313346\pi\)
−0.412465 + 0.910973i \(0.635332\pi\)
\(888\) 0 0
\(889\) 2.41641 4.18534i 0.0810437 0.140372i
\(890\) 0.618034 0.0207165
\(891\) 0 0
\(892\) −30.9443 −1.03609
\(893\) −27.9164 + 48.3526i −0.934187 + 1.61806i
\(894\) 0 0
\(895\) −10.3541 17.9338i −0.346099 0.599462i
\(896\) −2.17376 3.76507i −0.0726203 0.125782i
\(897\) 0 0
\(898\) 8.81559 15.2691i 0.294180 0.509535i
\(899\) 48.7426 1.62566
\(900\) 0 0
\(901\) 1.23607 0.0411794
\(902\) 11.9721 20.7363i 0.398629 0.690445i
\(903\) 0 0
\(904\) 20.0000 + 34.6410i 0.665190 + 1.15214i
\(905\) 23.7254 + 41.0936i 0.788660 + 1.36600i
\(906\) 0 0
\(907\) 9.42705 16.3281i 0.313020 0.542167i −0.665995 0.745957i \(-0.731993\pi\)
0.979015 + 0.203790i \(0.0653259\pi\)
\(908\) 20.4721 0.679392
\(909\) 0 0
\(910\) 0.618034 0.0204876
\(911\) −23.7082 + 41.0638i −0.785488 + 1.36050i 0.143219 + 0.989691i \(0.454255\pi\)
−0.928707 + 0.370814i \(0.879079\pi\)
\(912\) 0 0
\(913\) 21.0172 + 36.4029i 0.695568 + 1.20476i
\(914\) 8.23607 + 14.2653i 0.272425 + 0.471854i
\(915\) 0 0
\(916\) 10.2533 17.7592i 0.338778 0.586781i
\(917\) −1.47214 −0.0486142
\(918\) 0 0
\(919\) 3.18034 0.104910 0.0524549 0.998623i \(-0.483295\pi\)
0.0524549 + 0.998623i \(0.483295\pi\)
\(920\) −2.50000 + 4.33013i −0.0824226 + 0.142760i
\(921\) 0 0
\(922\) 2.72542 + 4.72057i 0.0897571 + 0.155464i
\(923\) −2.50000 4.33013i −0.0822885 0.142528i
\(924\) 0 0
\(925\) 5.64590 9.77898i 0.185636 0.321531i
\(926\) −19.0557 −0.626210
\(927\) 0 0
\(928\) 32.8885 1.07962
\(929\) −7.68034 + 13.3027i −0.251984 + 0.436449i −0.964072 0.265641i \(-0.914416\pi\)
0.712088 + 0.702090i \(0.247750\pi\)
\(930\) 0 0
\(931\) −25.6074 44.3533i −0.839248 1.45362i
\(932\) 21.0172 + 36.4029i 0.688442 + 1.19242i
\(933\) 0 0
\(934\) −2.03444 + 3.52376i −0.0665690 + 0.115301i
\(935\) 64.9230 2.12321
\(936\) 0 0
\(937\) −27.8885 −0.911079 −0.455540 0.890216i \(-0.650554\pi\)
−0.455540 + 0.890216i \(0.650554\pi\)
\(938\) −1.07295 + 1.85840i −0.0350330 + 0.0606790i
\(939\) 0 0
\(940\) −15.8262 27.4118i −0.516195 0.894076i
\(941\) 1.68034 + 2.91043i 0.0547775 + 0.0948774i 0.892114 0.451811i \(-0.149222\pi\)
−0.837336 + 0.546688i \(0.815888\pi\)
\(942\) 0 0
\(943\) 2.82624 4.89519i 0.0920350 0.159409i
\(944\) 10.1459 0.330221
\(945\) 0 0
\(946\) 37.0344 1.20409
\(947\) 10.4271 18.0602i 0.338834 0.586877i −0.645380 0.763862i \(-0.723301\pi\)
0.984214 + 0.176985i \(0.0566343\pi\)
\(948\) 0 0
\(949\) 5.59017 + 9.68246i 0.181465 + 0.314306i
\(950\) 4.28115 + 7.41517i 0.138899 + 0.240580i
\(951\) 0 0
\(952\) 1.80902 3.13331i 0.0586306 0.101551i
\(953\) −3.34752 −0.108437 −0.0542185 0.998529i \(-0.517267\pi\)
−0.0542185 + 0.998529i \(0.517267\pi\)
\(954\) 0 0
\(955\) 6.23607 0.201794
\(956\) −18.2533 + 31.6156i −0.590354 + 1.02252i
\(957\) 0 0
\(958\) 2.70820 + 4.69075i 0.0874981 + 0.151551i
\(959\) 4.31966 + 7.48187i 0.139489 + 0.241602i
\(960\) 0 0
\(961\) −19.1631 + 33.1915i −0.618165 + 1.07069i
\(962\) 3.76393 0.121354
\(963\) 0 0
\(964\) 17.4721 0.562740
\(965\) −0.0729490 + 0.126351i −0.00234831 + 0.00406740i
\(966\) 0 0
\(967\) 6.94427 + 12.0278i 0.223313 + 0.386789i 0.955812 0.293979i \(-0.0949796\pi\)
−0.732499 + 0.680768i \(0.761646\pi\)
\(968\) 26.0172 + 45.0631i 0.836225 + 1.44838i
\(969\) 0 0
\(970\) 5.23607 9.06914i 0.168120 0.291192i
\(971\) −9.36068 −0.300399 −0.150199 0.988656i \(-0.547992\pi\)
−0.150199 + 0.988656i \(0.547992\pi\)
\(972\) 0 0
\(973\) −3.36068 −0.107738
\(974\) 2.57953 4.46787i 0.0826534 0.143160i
\(975\) 0 0
\(976\) 7.50000 + 12.9904i 0.240069 + 0.415812i
\(977\) −10.6525 18.4506i −0.340803 0.590288i 0.643779 0.765211i \(-0.277366\pi\)
−0.984582 + 0.174923i \(0.944032\pi\)
\(978\) 0 0
\(979\) 1.11803 1.93649i 0.0357325 0.0618905i
\(980\) 29.0344 0.927471
\(981\) 0 0
\(982\) 24.9230 0.795324
\(983\) −10.8885 + 18.8595i −0.347291 + 0.601525i −0.985767 0.168116i \(-0.946232\pi\)
0.638477 + 0.769641i \(0.279565\pi\)
\(984\) 0 0
\(985\) −14.3992 24.9401i −0.458796 0.794658i
\(986\) 7.66312 + 13.2729i 0.244043 + 0.422696i
\(987\) 0 0
\(988\) 6.04508 10.4704i 0.192320 0.333108i
\(989\) 8.74265 0.278000
\(990\) 0 0
\(991\) 38.3607 1.21857 0.609284 0.792952i \(-0.291457\pi\)
0.609284 + 0.792952i \(0.291457\pi\)
\(992\) −23.3885 + 40.5101i −0.742587 + 1.28620i
\(993\) 0 0
\(994\) −0.590170 1.02220i −0.0187191 0.0324224i
\(995\) 17.2533 + 29.8836i 0.546966 + 0.947373i
\(996\) 0 0
\(997\) 4.22542 7.31865i 0.133821 0.231784i −0.791326 0.611395i \(-0.790609\pi\)
0.925146 + 0.379611i \(0.123942\pi\)
\(998\) 12.2361 0.387326
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1053.2.e.k.703.1 4
3.2 odd 2 1053.2.e.h.703.2 4
9.2 odd 6 1053.2.a.f.1.1 yes 2
9.4 even 3 inner 1053.2.e.k.352.1 4
9.5 odd 6 1053.2.e.h.352.2 4
9.7 even 3 1053.2.a.e.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1053.2.a.e.1.2 2 9.7 even 3
1053.2.a.f.1.1 yes 2 9.2 odd 6
1053.2.e.h.352.2 4 9.5 odd 6
1053.2.e.h.703.2 4 3.2 odd 2
1053.2.e.k.352.1 4 9.4 even 3 inner
1053.2.e.k.703.1 4 1.1 even 1 trivial