Properties

Label 1053.2.e.g.703.1
Level $1053$
Weight $2$
Character 1053.703
Analytic conductor $8.408$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1053,2,Mod(352,1053)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1053, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1053.352"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1053 = 3^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1053.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-1,0,1,-3,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.40824733284\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{5})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 2x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 351)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 703.1
Root \(0.809017 - 1.40126i\) of defining polynomial
Character \(\chi\) \(=\) 1053.703
Dual form 1053.2.e.g.352.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.809017 + 1.40126i) q^{2} +(-0.309017 - 0.535233i) q^{4} +(-1.30902 - 2.26728i) q^{5} +(-1.11803 + 1.93649i) q^{7} -2.23607 q^{8} +4.23607 q^{10} +(0.427051 - 0.739674i) q^{11} +(0.500000 + 0.866025i) q^{13} +(-1.80902 - 3.13331i) q^{14} +(2.42705 - 4.20378i) q^{16} +4.61803 q^{17} -4.09017 q^{19} +(-0.809017 + 1.40126i) q^{20} +(0.690983 + 1.19682i) q^{22} +(-3.42705 - 5.93583i) q^{23} +(-0.927051 + 1.60570i) q^{25} -1.61803 q^{26} +1.38197 q^{28} +(2.35410 - 4.07742i) q^{29} +(4.23607 + 7.33708i) q^{31} +(1.69098 + 2.92887i) q^{32} +(-3.73607 + 6.47106i) q^{34} +5.85410 q^{35} +6.23607 q^{37} +(3.30902 - 5.73139i) q^{38} +(2.92705 + 5.06980i) q^{40} +(0.118034 + 0.204441i) q^{41} +(5.66312 - 9.80881i) q^{43} -0.527864 q^{44} +11.0902 q^{46} +(-0.545085 + 0.944115i) q^{47} +(1.00000 + 1.73205i) q^{49} +(-1.50000 - 2.59808i) q^{50} +(0.309017 - 0.535233i) q^{52} +2.14590 q^{53} -2.23607 q^{55} +(2.50000 - 4.33013i) q^{56} +(3.80902 + 6.59741i) q^{58} +(3.11803 + 5.40059i) q^{59} +(7.59017 - 13.1466i) q^{61} -13.7082 q^{62} +4.23607 q^{64} +(1.30902 - 2.26728i) q^{65} +(-2.54508 - 4.40822i) q^{67} +(-1.42705 - 2.47172i) q^{68} +(-4.73607 + 8.20311i) q^{70} -0.291796 q^{71} +3.38197 q^{73} +(-5.04508 + 8.73834i) q^{74} +(1.26393 + 2.18919i) q^{76} +(0.954915 + 1.65396i) q^{77} +(-1.66312 + 2.88061i) q^{79} -12.7082 q^{80} -0.381966 q^{82} +(6.97214 - 12.0761i) q^{83} +(-6.04508 - 10.4704i) q^{85} +(9.16312 + 15.8710i) q^{86} +(-0.954915 + 1.65396i) q^{88} +17.2361 q^{89} -2.23607 q^{91} +(-2.11803 + 3.66854i) q^{92} +(-0.881966 - 1.52761i) q^{94} +(5.35410 + 9.27358i) q^{95} +(-1.23607 + 2.14093i) q^{97} -3.23607 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} + q^{4} - 3 q^{5} + 8 q^{10} - 5 q^{11} + 2 q^{13} - 5 q^{14} + 3 q^{16} + 14 q^{17} + 6 q^{19} - q^{20} + 5 q^{22} - 7 q^{23} + 3 q^{25} - 2 q^{26} + 10 q^{28} - 4 q^{29} + 8 q^{31} + 9 q^{32}+ \cdots - 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1053\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(730\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.809017 + 1.40126i −0.572061 + 0.990839i 0.424293 + 0.905525i \(0.360523\pi\)
−0.996354 + 0.0853143i \(0.972811\pi\)
\(3\) 0 0
\(4\) −0.309017 0.535233i −0.154508 0.267617i
\(5\) −1.30902 2.26728i −0.585410 1.01396i −0.994824 0.101611i \(-0.967600\pi\)
0.409414 0.912349i \(-0.365733\pi\)
\(6\) 0 0
\(7\) −1.11803 + 1.93649i −0.422577 + 0.731925i −0.996191 0.0872010i \(-0.972208\pi\)
0.573614 + 0.819126i \(0.305541\pi\)
\(8\) −2.23607 −0.790569
\(9\) 0 0
\(10\) 4.23607 1.33956
\(11\) 0.427051 0.739674i 0.128761 0.223020i −0.794436 0.607348i \(-0.792233\pi\)
0.923197 + 0.384328i \(0.125567\pi\)
\(12\) 0 0
\(13\) 0.500000 + 0.866025i 0.138675 + 0.240192i
\(14\) −1.80902 3.13331i −0.483480 0.837412i
\(15\) 0 0
\(16\) 2.42705 4.20378i 0.606763 1.05094i
\(17\) 4.61803 1.12004 0.560019 0.828480i \(-0.310794\pi\)
0.560019 + 0.828480i \(0.310794\pi\)
\(18\) 0 0
\(19\) −4.09017 −0.938349 −0.469175 0.883105i \(-0.655449\pi\)
−0.469175 + 0.883105i \(0.655449\pi\)
\(20\) −0.809017 + 1.40126i −0.180902 + 0.313331i
\(21\) 0 0
\(22\) 0.690983 + 1.19682i 0.147318 + 0.255162i
\(23\) −3.42705 5.93583i −0.714590 1.23771i −0.963118 0.269081i \(-0.913280\pi\)
0.248528 0.968625i \(-0.420053\pi\)
\(24\) 0 0
\(25\) −0.927051 + 1.60570i −0.185410 + 0.321140i
\(26\) −1.61803 −0.317323
\(27\) 0 0
\(28\) 1.38197 0.261167
\(29\) 2.35410 4.07742i 0.437146 0.757159i −0.560322 0.828275i \(-0.689323\pi\)
0.997468 + 0.0711160i \(0.0226561\pi\)
\(30\) 0 0
\(31\) 4.23607 + 7.33708i 0.760820 + 1.31778i 0.942428 + 0.334408i \(0.108536\pi\)
−0.181608 + 0.983371i \(0.558130\pi\)
\(32\) 1.69098 + 2.92887i 0.298926 + 0.517756i
\(33\) 0 0
\(34\) −3.73607 + 6.47106i −0.640730 + 1.10978i
\(35\) 5.85410 0.989524
\(36\) 0 0
\(37\) 6.23607 1.02520 0.512602 0.858627i \(-0.328682\pi\)
0.512602 + 0.858627i \(0.328682\pi\)
\(38\) 3.30902 5.73139i 0.536793 0.929754i
\(39\) 0 0
\(40\) 2.92705 + 5.06980i 0.462807 + 0.801606i
\(41\) 0.118034 + 0.204441i 0.0184338 + 0.0319283i 0.875095 0.483951i \(-0.160799\pi\)
−0.856661 + 0.515879i \(0.827465\pi\)
\(42\) 0 0
\(43\) 5.66312 9.80881i 0.863618 1.49583i −0.00479580 0.999989i \(-0.501527\pi\)
0.868413 0.495841i \(-0.165140\pi\)
\(44\) −0.527864 −0.0795785
\(45\) 0 0
\(46\) 11.0902 1.63516
\(47\) −0.545085 + 0.944115i −0.0795088 + 0.137713i −0.903038 0.429560i \(-0.858669\pi\)
0.823529 + 0.567274i \(0.192002\pi\)
\(48\) 0 0
\(49\) 1.00000 + 1.73205i 0.142857 + 0.247436i
\(50\) −1.50000 2.59808i −0.212132 0.367423i
\(51\) 0 0
\(52\) 0.309017 0.535233i 0.0428529 0.0742235i
\(53\) 2.14590 0.294762 0.147381 0.989080i \(-0.452916\pi\)
0.147381 + 0.989080i \(0.452916\pi\)
\(54\) 0 0
\(55\) −2.23607 −0.301511
\(56\) 2.50000 4.33013i 0.334077 0.578638i
\(57\) 0 0
\(58\) 3.80902 + 6.59741i 0.500148 + 0.866282i
\(59\) 3.11803 + 5.40059i 0.405933 + 0.703097i 0.994430 0.105403i \(-0.0336131\pi\)
−0.588496 + 0.808500i \(0.700280\pi\)
\(60\) 0 0
\(61\) 7.59017 13.1466i 0.971822 1.68324i 0.281774 0.959481i \(-0.409077\pi\)
0.690048 0.723764i \(-0.257589\pi\)
\(62\) −13.7082 −1.74094
\(63\) 0 0
\(64\) 4.23607 0.529508
\(65\) 1.30902 2.26728i 0.162364 0.281222i
\(66\) 0 0
\(67\) −2.54508 4.40822i −0.310932 0.538549i 0.667633 0.744491i \(-0.267308\pi\)
−0.978564 + 0.205941i \(0.933974\pi\)
\(68\) −1.42705 2.47172i −0.173055 0.299741i
\(69\) 0 0
\(70\) −4.73607 + 8.20311i −0.566068 + 0.980459i
\(71\) −0.291796 −0.0346298 −0.0173149 0.999850i \(-0.505512\pi\)
−0.0173149 + 0.999850i \(0.505512\pi\)
\(72\) 0 0
\(73\) 3.38197 0.395829 0.197915 0.980219i \(-0.436583\pi\)
0.197915 + 0.980219i \(0.436583\pi\)
\(74\) −5.04508 + 8.73834i −0.586479 + 1.01581i
\(75\) 0 0
\(76\) 1.26393 + 2.18919i 0.144983 + 0.251118i
\(77\) 0.954915 + 1.65396i 0.108823 + 0.188486i
\(78\) 0 0
\(79\) −1.66312 + 2.88061i −0.187116 + 0.324094i −0.944287 0.329122i \(-0.893247\pi\)
0.757172 + 0.653216i \(0.226581\pi\)
\(80\) −12.7082 −1.42082
\(81\) 0 0
\(82\) −0.381966 −0.0421811
\(83\) 6.97214 12.0761i 0.765291 1.32552i −0.174801 0.984604i \(-0.555928\pi\)
0.940092 0.340920i \(-0.110738\pi\)
\(84\) 0 0
\(85\) −6.04508 10.4704i −0.655682 1.13567i
\(86\) 9.16312 + 15.8710i 0.988085 + 1.71141i
\(87\) 0 0
\(88\) −0.954915 + 1.65396i −0.101794 + 0.176313i
\(89\) 17.2361 1.82702 0.913510 0.406817i \(-0.133361\pi\)
0.913510 + 0.406817i \(0.133361\pi\)
\(90\) 0 0
\(91\) −2.23607 −0.234404
\(92\) −2.11803 + 3.66854i −0.220820 + 0.382472i
\(93\) 0 0
\(94\) −0.881966 1.52761i −0.0909678 0.157561i
\(95\) 5.35410 + 9.27358i 0.549319 + 0.951449i
\(96\) 0 0
\(97\) −1.23607 + 2.14093i −0.125504 + 0.217379i −0.921930 0.387357i \(-0.873388\pi\)
0.796426 + 0.604736i \(0.206721\pi\)
\(98\) −3.23607 −0.326892
\(99\) 0 0
\(100\) 1.14590 0.114590
\(101\) −9.59017 + 16.6107i −0.954258 + 1.65282i −0.218200 + 0.975904i \(0.570018\pi\)
−0.736058 + 0.676918i \(0.763315\pi\)
\(102\) 0 0
\(103\) −9.39919 16.2799i −0.926129 1.60410i −0.789735 0.613449i \(-0.789782\pi\)
−0.136395 0.990655i \(-0.543552\pi\)
\(104\) −1.11803 1.93649i −0.109632 0.189889i
\(105\) 0 0
\(106\) −1.73607 + 3.00696i −0.168622 + 0.292062i
\(107\) −6.38197 −0.616968 −0.308484 0.951230i \(-0.599822\pi\)
−0.308484 + 0.951230i \(0.599822\pi\)
\(108\) 0 0
\(109\) 13.7984 1.32164 0.660822 0.750542i \(-0.270208\pi\)
0.660822 + 0.750542i \(0.270208\pi\)
\(110\) 1.80902 3.13331i 0.172483 0.298749i
\(111\) 0 0
\(112\) 5.42705 + 9.39993i 0.512808 + 0.888210i
\(113\) −0.0278640 0.0482619i −0.00262123 0.00454010i 0.864712 0.502268i \(-0.167501\pi\)
−0.867333 + 0.497728i \(0.834168\pi\)
\(114\) 0 0
\(115\) −8.97214 + 15.5402i −0.836656 + 1.44913i
\(116\) −2.90983 −0.270171
\(117\) 0 0
\(118\) −10.0902 −0.928875
\(119\) −5.16312 + 8.94278i −0.473302 + 0.819784i
\(120\) 0 0
\(121\) 5.13525 + 8.89452i 0.466841 + 0.808593i
\(122\) 12.2812 + 21.2716i 1.11188 + 1.92584i
\(123\) 0 0
\(124\) 2.61803 4.53457i 0.235106 0.407216i
\(125\) −8.23607 −0.736656
\(126\) 0 0
\(127\) 1.47214 0.130631 0.0653155 0.997865i \(-0.479195\pi\)
0.0653155 + 0.997865i \(0.479195\pi\)
\(128\) −6.80902 + 11.7936i −0.601838 + 1.04241i
\(129\) 0 0
\(130\) 2.11803 + 3.66854i 0.185764 + 0.321752i
\(131\) −6.50000 11.2583i −0.567908 0.983645i −0.996773 0.0802763i \(-0.974420\pi\)
0.428865 0.903369i \(-0.358914\pi\)
\(132\) 0 0
\(133\) 4.57295 7.92058i 0.396525 0.686801i
\(134\) 8.23607 0.711488
\(135\) 0 0
\(136\) −10.3262 −0.885468
\(137\) −6.09017 + 10.5485i −0.520318 + 0.901218i 0.479403 + 0.877595i \(0.340853\pi\)
−0.999721 + 0.0236227i \(0.992480\pi\)
\(138\) 0 0
\(139\) 2.11803 + 3.66854i 0.179649 + 0.311162i 0.941760 0.336285i \(-0.109170\pi\)
−0.762111 + 0.647446i \(0.775837\pi\)
\(140\) −1.80902 3.13331i −0.152890 0.264813i
\(141\) 0 0
\(142\) 0.236068 0.408882i 0.0198104 0.0343126i
\(143\) 0.854102 0.0714236
\(144\) 0 0
\(145\) −12.3262 −1.02364
\(146\) −2.73607 + 4.73901i −0.226439 + 0.392203i
\(147\) 0 0
\(148\) −1.92705 3.33775i −0.158403 0.274361i
\(149\) 2.80902 + 4.86536i 0.230124 + 0.398586i 0.957844 0.287288i \(-0.0927536\pi\)
−0.727721 + 0.685874i \(0.759420\pi\)
\(150\) 0 0
\(151\) 6.35410 11.0056i 0.517089 0.895625i −0.482714 0.875778i \(-0.660349\pi\)
0.999803 0.0198470i \(-0.00631790\pi\)
\(152\) 9.14590 0.741830
\(153\) 0 0
\(154\) −3.09017 −0.249013
\(155\) 11.0902 19.2087i 0.890784 1.54288i
\(156\) 0 0
\(157\) −7.57295 13.1167i −0.604387 1.04683i −0.992148 0.125069i \(-0.960085\pi\)
0.387761 0.921760i \(-0.373249\pi\)
\(158\) −2.69098 4.66092i −0.214083 0.370803i
\(159\) 0 0
\(160\) 4.42705 7.66788i 0.349989 0.606199i
\(161\) 15.3262 1.20788
\(162\) 0 0
\(163\) −10.6180 −0.831669 −0.415834 0.909440i \(-0.636510\pi\)
−0.415834 + 0.909440i \(0.636510\pi\)
\(164\) 0.0729490 0.126351i 0.00569636 0.00986639i
\(165\) 0 0
\(166\) 11.2812 + 19.5395i 0.875587 + 1.51656i
\(167\) −5.11803 8.86469i −0.396045 0.685971i 0.597189 0.802101i \(-0.296284\pi\)
−0.993234 + 0.116130i \(0.962951\pi\)
\(168\) 0 0
\(169\) −0.500000 + 0.866025i −0.0384615 + 0.0666173i
\(170\) 19.5623 1.50036
\(171\) 0 0
\(172\) −7.00000 −0.533745
\(173\) −6.19098 + 10.7231i −0.470692 + 0.815262i −0.999438 0.0335179i \(-0.989329\pi\)
0.528746 + 0.848780i \(0.322662\pi\)
\(174\) 0 0
\(175\) −2.07295 3.59045i −0.156700 0.271413i
\(176\) −2.07295 3.59045i −0.156254 0.270641i
\(177\) 0 0
\(178\) −13.9443 + 24.1522i −1.04517 + 1.81028i
\(179\) −4.79837 −0.358647 −0.179324 0.983790i \(-0.557391\pi\)
−0.179324 + 0.983790i \(0.557391\pi\)
\(180\) 0 0
\(181\) 13.5623 1.00808 0.504039 0.863681i \(-0.331847\pi\)
0.504039 + 0.863681i \(0.331847\pi\)
\(182\) 1.80902 3.13331i 0.134093 0.232256i
\(183\) 0 0
\(184\) 7.66312 + 13.2729i 0.564933 + 0.978492i
\(185\) −8.16312 14.1389i −0.600164 1.03952i
\(186\) 0 0
\(187\) 1.97214 3.41584i 0.144217 0.249791i
\(188\) 0.673762 0.0491391
\(189\) 0 0
\(190\) −17.3262 −1.25698
\(191\) 10.8713 18.8297i 0.786621 1.36247i −0.141404 0.989952i \(-0.545162\pi\)
0.928026 0.372516i \(-0.121505\pi\)
\(192\) 0 0
\(193\) −3.89919 6.75359i −0.280670 0.486134i 0.690880 0.722969i \(-0.257223\pi\)
−0.971550 + 0.236835i \(0.923890\pi\)
\(194\) −2.00000 3.46410i −0.143592 0.248708i
\(195\) 0 0
\(196\) 0.618034 1.07047i 0.0441453 0.0764619i
\(197\) −11.7082 −0.834175 −0.417087 0.908866i \(-0.636949\pi\)
−0.417087 + 0.908866i \(0.636949\pi\)
\(198\) 0 0
\(199\) −7.67376 −0.543979 −0.271989 0.962300i \(-0.587682\pi\)
−0.271989 + 0.962300i \(0.587682\pi\)
\(200\) 2.07295 3.59045i 0.146580 0.253883i
\(201\) 0 0
\(202\) −15.5172 26.8766i −1.09179 1.89103i
\(203\) 5.26393 + 9.11740i 0.369456 + 0.639916i
\(204\) 0 0
\(205\) 0.309017 0.535233i 0.0215827 0.0373823i
\(206\) 30.4164 2.11921
\(207\) 0 0
\(208\) 4.85410 0.336571
\(209\) −1.74671 + 3.02539i −0.120823 + 0.209271i
\(210\) 0 0
\(211\) −9.57295 16.5808i −0.659029 1.14147i −0.980867 0.194677i \(-0.937634\pi\)
0.321838 0.946795i \(-0.395699\pi\)
\(212\) −0.663119 1.14856i −0.0455432 0.0788831i
\(213\) 0 0
\(214\) 5.16312 8.94278i 0.352944 0.611316i
\(215\) −29.6525 −2.02228
\(216\) 0 0
\(217\) −18.9443 −1.28602
\(218\) −11.1631 + 19.3351i −0.756062 + 1.30954i
\(219\) 0 0
\(220\) 0.690983 + 1.19682i 0.0465861 + 0.0806894i
\(221\) 2.30902 + 3.99933i 0.155321 + 0.269024i
\(222\) 0 0
\(223\) −7.57295 + 13.1167i −0.507122 + 0.878361i 0.492844 + 0.870118i \(0.335957\pi\)
−0.999966 + 0.00824360i \(0.997376\pi\)
\(224\) −7.56231 −0.505278
\(225\) 0 0
\(226\) 0.0901699 0.00599802
\(227\) 10.6910 18.5173i 0.709585 1.22904i −0.255426 0.966829i \(-0.582216\pi\)
0.965011 0.262209i \(-0.0844511\pi\)
\(228\) 0 0
\(229\) −4.80902 8.32946i −0.317789 0.550426i 0.662238 0.749294i \(-0.269607\pi\)
−0.980026 + 0.198868i \(0.936274\pi\)
\(230\) −14.5172 25.1446i −0.957237 1.65798i
\(231\) 0 0
\(232\) −5.26393 + 9.11740i −0.345594 + 0.598586i
\(233\) 2.70820 0.177420 0.0887102 0.996057i \(-0.471726\pi\)
0.0887102 + 0.996057i \(0.471726\pi\)
\(234\) 0 0
\(235\) 2.85410 0.186181
\(236\) 1.92705 3.33775i 0.125440 0.217269i
\(237\) 0 0
\(238\) −8.35410 14.4697i −0.541516 0.937933i
\(239\) −9.20820 15.9491i −0.595629 1.03166i −0.993458 0.114200i \(-0.963569\pi\)
0.397829 0.917460i \(-0.369764\pi\)
\(240\) 0 0
\(241\) 14.8090 25.6500i 0.953933 1.65226i 0.217141 0.976140i \(-0.430327\pi\)
0.736792 0.676119i \(-0.236340\pi\)
\(242\) −16.6180 −1.06825
\(243\) 0 0
\(244\) −9.38197 −0.600619
\(245\) 2.61803 4.53457i 0.167260 0.289703i
\(246\) 0 0
\(247\) −2.04508 3.54219i −0.130126 0.225384i
\(248\) −9.47214 16.4062i −0.601481 1.04180i
\(249\) 0 0
\(250\) 6.66312 11.5409i 0.421413 0.729908i
\(251\) 21.2705 1.34258 0.671291 0.741194i \(-0.265740\pi\)
0.671291 + 0.741194i \(0.265740\pi\)
\(252\) 0 0
\(253\) −5.85410 −0.368044
\(254\) −1.19098 + 2.06284i −0.0747289 + 0.129434i
\(255\) 0 0
\(256\) −6.78115 11.7453i −0.423822 0.734081i
\(257\) 2.89919 + 5.02154i 0.180846 + 0.313235i 0.942169 0.335138i \(-0.108783\pi\)
−0.761323 + 0.648373i \(0.775450\pi\)
\(258\) 0 0
\(259\) −6.97214 + 12.0761i −0.433227 + 0.750372i
\(260\) −1.61803 −0.100346
\(261\) 0 0
\(262\) 21.0344 1.29951
\(263\) −1.63525 + 2.83234i −0.100834 + 0.174650i −0.912029 0.410127i \(-0.865484\pi\)
0.811194 + 0.584777i \(0.198818\pi\)
\(264\) 0 0
\(265\) −2.80902 4.86536i −0.172557 0.298877i
\(266\) 7.39919 + 12.8158i 0.453673 + 0.785785i
\(267\) 0 0
\(268\) −1.57295 + 2.72443i −0.0960832 + 0.166421i
\(269\) 18.2705 1.11397 0.556986 0.830522i \(-0.311958\pi\)
0.556986 + 0.830522i \(0.311958\pi\)
\(270\) 0 0
\(271\) −10.2361 −0.621797 −0.310898 0.950443i \(-0.600630\pi\)
−0.310898 + 0.950443i \(0.600630\pi\)
\(272\) 11.2082 19.4132i 0.679597 1.17710i
\(273\) 0 0
\(274\) −9.85410 17.0678i −0.595308 1.03110i
\(275\) 0.791796 + 1.37143i 0.0477471 + 0.0827004i
\(276\) 0 0
\(277\) −13.5623 + 23.4906i −0.814880 + 1.41141i 0.0945341 + 0.995522i \(0.469864\pi\)
−0.909414 + 0.415892i \(0.863469\pi\)
\(278\) −6.85410 −0.411082
\(279\) 0 0
\(280\) −13.0902 −0.782287
\(281\) −8.94427 + 15.4919i −0.533571 + 0.924171i 0.465661 + 0.884963i \(0.345817\pi\)
−0.999231 + 0.0392078i \(0.987517\pi\)
\(282\) 0 0
\(283\) 2.07295 + 3.59045i 0.123224 + 0.213430i 0.921037 0.389474i \(-0.127343\pi\)
−0.797813 + 0.602905i \(0.794010\pi\)
\(284\) 0.0901699 + 0.156179i 0.00535060 + 0.00926751i
\(285\) 0 0
\(286\) −0.690983 + 1.19682i −0.0408587 + 0.0707693i
\(287\) −0.527864 −0.0311588
\(288\) 0 0
\(289\) 4.32624 0.254485
\(290\) 9.97214 17.2722i 0.585584 1.01426i
\(291\) 0 0
\(292\) −1.04508 1.81014i −0.0611590 0.105930i
\(293\) −2.59017 4.48631i −0.151319 0.262093i 0.780393 0.625289i \(-0.215019\pi\)
−0.931713 + 0.363196i \(0.881686\pi\)
\(294\) 0 0
\(295\) 8.16312 14.1389i 0.475275 0.823201i
\(296\) −13.9443 −0.810494
\(297\) 0 0
\(298\) −9.09017 −0.526579
\(299\) 3.42705 5.93583i 0.198191 0.343278i
\(300\) 0 0
\(301\) 12.6631 + 21.9332i 0.729890 + 1.26421i
\(302\) 10.2812 + 17.8075i 0.591614 + 1.02471i
\(303\) 0 0
\(304\) −9.92705 + 17.1942i −0.569355 + 0.986153i
\(305\) −39.7426 −2.27566
\(306\) 0 0
\(307\) 17.7426 1.01263 0.506313 0.862350i \(-0.331008\pi\)
0.506313 + 0.862350i \(0.331008\pi\)
\(308\) 0.590170 1.02220i 0.0336281 0.0582455i
\(309\) 0 0
\(310\) 17.9443 + 31.0804i 1.01917 + 1.76525i
\(311\) 15.1631 + 26.2633i 0.859822 + 1.48925i 0.872099 + 0.489330i \(0.162759\pi\)
−0.0122771 + 0.999925i \(0.503908\pi\)
\(312\) 0 0
\(313\) 13.8541 23.9960i 0.783080 1.35633i −0.147059 0.989128i \(-0.546981\pi\)
0.930139 0.367207i \(-0.119686\pi\)
\(314\) 24.5066 1.38299
\(315\) 0 0
\(316\) 2.05573 0.115644
\(317\) 14.7812 25.6017i 0.830192 1.43794i −0.0676933 0.997706i \(-0.521564\pi\)
0.897886 0.440229i \(-0.145103\pi\)
\(318\) 0 0
\(319\) −2.01064 3.48254i −0.112574 0.194985i
\(320\) −5.54508 9.60437i −0.309980 0.536901i
\(321\) 0 0
\(322\) −12.3992 + 21.4760i −0.690980 + 1.19681i
\(323\) −18.8885 −1.05099
\(324\) 0 0
\(325\) −1.85410 −0.102847
\(326\) 8.59017 14.8786i 0.475766 0.824050i
\(327\) 0 0
\(328\) −0.263932 0.457144i −0.0145732 0.0252415i
\(329\) −1.21885 2.11111i −0.0671972 0.116389i
\(330\) 0 0
\(331\) −1.88197 + 3.25966i −0.103442 + 0.179167i −0.913101 0.407734i \(-0.866319\pi\)
0.809658 + 0.586901i \(0.199652\pi\)
\(332\) −8.61803 −0.472976
\(333\) 0 0
\(334\) 16.5623 0.906249
\(335\) −6.66312 + 11.5409i −0.364045 + 0.630545i
\(336\) 0 0
\(337\) 10.2984 + 17.8373i 0.560988 + 0.971660i 0.997411 + 0.0719181i \(0.0229120\pi\)
−0.436422 + 0.899742i \(0.643755\pi\)
\(338\) −0.809017 1.40126i −0.0440047 0.0762184i
\(339\) 0 0
\(340\) −3.73607 + 6.47106i −0.202617 + 0.350942i
\(341\) 7.23607 0.391855
\(342\) 0 0
\(343\) −20.1246 −1.08663
\(344\) −12.6631 + 21.9332i −0.682750 + 1.18256i
\(345\) 0 0
\(346\) −10.0172 17.3503i −0.538529 0.932760i
\(347\) 4.02786 + 6.97647i 0.216227 + 0.374516i 0.953651 0.300913i \(-0.0972915\pi\)
−0.737424 + 0.675430i \(0.763958\pi\)
\(348\) 0 0
\(349\) 1.54508 2.67617i 0.0827065 0.143252i −0.821705 0.569913i \(-0.806977\pi\)
0.904412 + 0.426661i \(0.140310\pi\)
\(350\) 6.70820 0.358569
\(351\) 0 0
\(352\) 2.88854 0.153960
\(353\) −2.35410 + 4.07742i −0.125296 + 0.217019i −0.921849 0.387550i \(-0.873321\pi\)
0.796552 + 0.604569i \(0.206655\pi\)
\(354\) 0 0
\(355\) 0.381966 + 0.661585i 0.0202727 + 0.0351133i
\(356\) −5.32624 9.22531i −0.282290 0.488941i
\(357\) 0 0
\(358\) 3.88197 6.72376i 0.205168 0.355362i
\(359\) −34.4164 −1.81643 −0.908214 0.418505i \(-0.862554\pi\)
−0.908214 + 0.418505i \(0.862554\pi\)
\(360\) 0 0
\(361\) −2.27051 −0.119501
\(362\) −10.9721 + 19.0043i −0.576683 + 0.998844i
\(363\) 0 0
\(364\) 0.690983 + 1.19682i 0.0362174 + 0.0627303i
\(365\) −4.42705 7.66788i −0.231722 0.401355i
\(366\) 0 0
\(367\) −0.354102 + 0.613323i −0.0184840 + 0.0320152i −0.875119 0.483907i \(-0.839217\pi\)
0.856635 + 0.515922i \(0.172551\pi\)
\(368\) −33.2705 −1.73435
\(369\) 0 0
\(370\) 26.4164 1.37332
\(371\) −2.39919 + 4.15551i −0.124560 + 0.215744i
\(372\) 0 0
\(373\) 1.92705 + 3.33775i 0.0997789 + 0.172822i 0.911593 0.411094i \(-0.134853\pi\)
−0.811814 + 0.583916i \(0.801520\pi\)
\(374\) 3.19098 + 5.52694i 0.165002 + 0.285792i
\(375\) 0 0
\(376\) 1.21885 2.11111i 0.0628572 0.108872i
\(377\) 4.70820 0.242485
\(378\) 0 0
\(379\) −14.7082 −0.755510 −0.377755 0.925906i \(-0.623304\pi\)
−0.377755 + 0.925906i \(0.623304\pi\)
\(380\) 3.30902 5.73139i 0.169749 0.294014i
\(381\) 0 0
\(382\) 17.5902 + 30.4671i 0.899991 + 1.55883i
\(383\) −4.70820 8.15485i −0.240578 0.416693i 0.720301 0.693662i \(-0.244004\pi\)
−0.960879 + 0.276968i \(0.910670\pi\)
\(384\) 0 0
\(385\) 2.50000 4.33013i 0.127412 0.220684i
\(386\) 12.6180 0.642241
\(387\) 0 0
\(388\) 1.52786 0.0775655
\(389\) 3.85410 6.67550i 0.195411 0.338461i −0.751624 0.659591i \(-0.770729\pi\)
0.947035 + 0.321130i \(0.104063\pi\)
\(390\) 0 0
\(391\) −15.8262 27.4118i −0.800367 1.38628i
\(392\) −2.23607 3.87298i −0.112938 0.195615i
\(393\) 0 0
\(394\) 9.47214 16.4062i 0.477199 0.826533i
\(395\) 8.70820 0.438157
\(396\) 0 0
\(397\) −12.1246 −0.608517 −0.304258 0.952590i \(-0.598409\pi\)
−0.304258 + 0.952590i \(0.598409\pi\)
\(398\) 6.20820 10.7529i 0.311189 0.538995i
\(399\) 0 0
\(400\) 4.50000 + 7.79423i 0.225000 + 0.389711i
\(401\) 2.61803 + 4.53457i 0.130738 + 0.226446i 0.923961 0.382486i \(-0.124932\pi\)
−0.793223 + 0.608931i \(0.791599\pi\)
\(402\) 0 0
\(403\) −4.23607 + 7.33708i −0.211014 + 0.365486i
\(404\) 11.8541 0.589764
\(405\) 0 0
\(406\) −17.0344 −0.845405
\(407\) 2.66312 4.61266i 0.132006 0.228641i
\(408\) 0 0
\(409\) −10.4164 18.0417i −0.515058 0.892107i −0.999847 0.0174759i \(-0.994437\pi\)
0.484789 0.874631i \(-0.338896\pi\)
\(410\) 0.500000 + 0.866025i 0.0246932 + 0.0427699i
\(411\) 0 0
\(412\) −5.80902 + 10.0615i −0.286190 + 0.495695i
\(413\) −13.9443 −0.686153
\(414\) 0 0
\(415\) −36.5066 −1.79204
\(416\) −1.69098 + 2.92887i −0.0829073 + 0.143600i
\(417\) 0 0
\(418\) −2.82624 4.89519i −0.138236 0.239431i
\(419\) 9.18034 + 15.9008i 0.448489 + 0.776806i 0.998288 0.0584914i \(-0.0186290\pi\)
−0.549799 + 0.835297i \(0.685296\pi\)
\(420\) 0 0
\(421\) 15.0902 26.1369i 0.735450 1.27384i −0.219076 0.975708i \(-0.570304\pi\)
0.954526 0.298129i \(-0.0963625\pi\)
\(422\) 30.9787 1.50802
\(423\) 0 0
\(424\) −4.79837 −0.233030
\(425\) −4.28115 + 7.41517i −0.207666 + 0.359689i
\(426\) 0 0
\(427\) 16.9721 + 29.3966i 0.821339 + 1.42260i
\(428\) 1.97214 + 3.41584i 0.0953268 + 0.165111i
\(429\) 0 0
\(430\) 23.9894 41.5508i 1.15687 2.00376i
\(431\) −18.8885 −0.909829 −0.454915 0.890535i \(-0.650330\pi\)
−0.454915 + 0.890535i \(0.650330\pi\)
\(432\) 0 0
\(433\) 24.0344 1.15502 0.577511 0.816383i \(-0.304024\pi\)
0.577511 + 0.816383i \(0.304024\pi\)
\(434\) 15.3262 26.5458i 0.735683 1.27424i
\(435\) 0 0
\(436\) −4.26393 7.38535i −0.204205 0.353694i
\(437\) 14.0172 + 24.2785i 0.670535 + 1.16140i
\(438\) 0 0
\(439\) −18.0000 + 31.1769i −0.859093 + 1.48799i 0.0137020 + 0.999906i \(0.495638\pi\)
−0.872795 + 0.488087i \(0.837695\pi\)
\(440\) 5.00000 0.238366
\(441\) 0 0
\(442\) −7.47214 −0.355413
\(443\) −8.06231 + 13.9643i −0.383052 + 0.663465i −0.991497 0.130131i \(-0.958460\pi\)
0.608445 + 0.793596i \(0.291794\pi\)
\(444\) 0 0
\(445\) −22.5623 39.0791i −1.06956 1.85253i
\(446\) −12.2533 21.2233i −0.580210 1.00495i
\(447\) 0 0
\(448\) −4.73607 + 8.20311i −0.223758 + 0.387561i
\(449\) 31.4721 1.48526 0.742631 0.669701i \(-0.233578\pi\)
0.742631 + 0.669701i \(0.233578\pi\)
\(450\) 0 0
\(451\) 0.201626 0.00949420
\(452\) −0.0172209 + 0.0298275i −0.000810004 + 0.00140297i
\(453\) 0 0
\(454\) 17.2984 + 29.9617i 0.811853 + 1.40617i
\(455\) 2.92705 + 5.06980i 0.137222 + 0.237676i
\(456\) 0 0
\(457\) 0.590170 1.02220i 0.0276070 0.0478167i −0.851892 0.523718i \(-0.824545\pi\)
0.879499 + 0.475901i \(0.157878\pi\)
\(458\) 15.5623 0.727179
\(459\) 0 0
\(460\) 11.0902 0.517082
\(461\) −0.809017 + 1.40126i −0.0376797 + 0.0652631i −0.884250 0.467013i \(-0.845330\pi\)
0.846571 + 0.532276i \(0.178663\pi\)
\(462\) 0 0
\(463\) 15.2812 + 26.4677i 0.710175 + 1.23006i 0.964791 + 0.263018i \(0.0847177\pi\)
−0.254616 + 0.967042i \(0.581949\pi\)
\(464\) −11.4271 19.7922i −0.530488 0.918831i
\(465\) 0 0
\(466\) −2.19098 + 3.79489i −0.101495 + 0.175795i
\(467\) 30.1246 1.39400 0.697000 0.717071i \(-0.254518\pi\)
0.697000 + 0.717071i \(0.254518\pi\)
\(468\) 0 0
\(469\) 11.3820 0.525570
\(470\) −2.30902 + 3.99933i −0.106507 + 0.184476i
\(471\) 0 0
\(472\) −6.97214 12.0761i −0.320919 0.555847i
\(473\) −4.83688 8.37772i −0.222400 0.385208i
\(474\) 0 0
\(475\) 3.79180 6.56758i 0.173980 0.301341i
\(476\) 6.38197 0.292517
\(477\) 0 0
\(478\) 29.7984 1.36295
\(479\) −7.89919 + 13.6818i −0.360923 + 0.625137i −0.988113 0.153729i \(-0.950872\pi\)
0.627190 + 0.778866i \(0.284205\pi\)
\(480\) 0 0
\(481\) 3.11803 + 5.40059i 0.142170 + 0.246246i
\(482\) 23.9615 + 41.5025i 1.09142 + 1.89039i
\(483\) 0 0
\(484\) 3.17376 5.49712i 0.144262 0.249869i
\(485\) 6.47214 0.293885
\(486\) 0 0
\(487\) 25.3050 1.14668 0.573338 0.819319i \(-0.305648\pi\)
0.573338 + 0.819319i \(0.305648\pi\)
\(488\) −16.9721 + 29.3966i −0.768292 + 1.33072i
\(489\) 0 0
\(490\) 4.23607 + 7.33708i 0.191366 + 0.331456i
\(491\) 9.60739 + 16.6405i 0.433575 + 0.750975i 0.997178 0.0750712i \(-0.0239184\pi\)
−0.563603 + 0.826046i \(0.690585\pi\)
\(492\) 0 0
\(493\) 10.8713 18.8297i 0.489620 0.848046i
\(494\) 6.61803 0.297759
\(495\) 0 0
\(496\) 41.1246 1.84655
\(497\) 0.326238 0.565061i 0.0146338 0.0253464i
\(498\) 0 0
\(499\) 12.1910 + 21.1154i 0.545743 + 0.945255i 0.998560 + 0.0536514i \(0.0170860\pi\)
−0.452816 + 0.891604i \(0.649581\pi\)
\(500\) 2.54508 + 4.40822i 0.113820 + 0.197141i
\(501\) 0 0
\(502\) −17.2082 + 29.8055i −0.768040 + 1.33028i
\(503\) −4.23607 −0.188877 −0.0944385 0.995531i \(-0.530106\pi\)
−0.0944385 + 0.995531i \(0.530106\pi\)
\(504\) 0 0
\(505\) 50.2148 2.23453
\(506\) 4.73607 8.20311i 0.210544 0.364673i
\(507\) 0 0
\(508\) −0.454915 0.787936i −0.0201836 0.0349590i
\(509\) −0.909830 1.57587i −0.0403275 0.0698493i 0.845157 0.534518i \(-0.179507\pi\)
−0.885485 + 0.464669i \(0.846173\pi\)
\(510\) 0 0
\(511\) −3.78115 + 6.54915i −0.167268 + 0.289717i
\(512\) −5.29180 −0.233867
\(513\) 0 0
\(514\) −9.38197 −0.413821
\(515\) −24.6074 + 42.6213i −1.08433 + 1.87812i
\(516\) 0 0
\(517\) 0.465558 + 0.806370i 0.0204752 + 0.0354641i
\(518\) −11.2812 19.5395i −0.495665 0.858518i
\(519\) 0 0
\(520\) −2.92705 + 5.06980i −0.128360 + 0.222325i
\(521\) 34.2361 1.49991 0.749955 0.661489i \(-0.230075\pi\)
0.749955 + 0.661489i \(0.230075\pi\)
\(522\) 0 0
\(523\) 21.0344 0.919772 0.459886 0.887978i \(-0.347890\pi\)
0.459886 + 0.887978i \(0.347890\pi\)
\(524\) −4.01722 + 6.95803i −0.175493 + 0.303963i
\(525\) 0 0
\(526\) −2.64590 4.58283i −0.115367 0.199821i
\(527\) 19.5623 + 33.8829i 0.852147 + 1.47596i
\(528\) 0 0
\(529\) −11.9894 + 20.7662i −0.521276 + 0.902877i
\(530\) 9.09017 0.394852
\(531\) 0 0
\(532\) −5.65248 −0.245066
\(533\) −0.118034 + 0.204441i −0.00511262 + 0.00885532i
\(534\) 0 0
\(535\) 8.35410 + 14.4697i 0.361179 + 0.625581i
\(536\) 5.69098 + 9.85707i 0.245813 + 0.425761i
\(537\) 0 0
\(538\) −14.7812 + 25.6017i −0.637261 + 1.10377i
\(539\) 1.70820 0.0735776
\(540\) 0 0
\(541\) 20.1459 0.866140 0.433070 0.901360i \(-0.357430\pi\)
0.433070 + 0.901360i \(0.357430\pi\)
\(542\) 8.28115 14.3434i 0.355706 0.616101i
\(543\) 0 0
\(544\) 7.80902 + 13.5256i 0.334809 + 0.579906i
\(545\) −18.0623 31.2848i −0.773704 1.34009i
\(546\) 0 0
\(547\) 6.16312 10.6748i 0.263516 0.456423i −0.703658 0.710539i \(-0.748451\pi\)
0.967174 + 0.254116i \(0.0817845\pi\)
\(548\) 7.52786 0.321574
\(549\) 0 0
\(550\) −2.56231 −0.109257
\(551\) −9.62868 + 16.6774i −0.410195 + 0.710479i
\(552\) 0 0
\(553\) −3.71885 6.44123i −0.158141 0.273909i
\(554\) −21.9443 38.0086i −0.932323 1.61483i
\(555\) 0 0
\(556\) 1.30902 2.26728i 0.0555147 0.0961543i
\(557\) −38.2361 −1.62011 −0.810057 0.586351i \(-0.800564\pi\)
−0.810057 + 0.586351i \(0.800564\pi\)
\(558\) 0 0
\(559\) 11.3262 0.479049
\(560\) 14.2082 24.6093i 0.600406 1.03993i
\(561\) 0 0
\(562\) −14.4721 25.0665i −0.610470 1.05737i
\(563\) −6.50000 11.2583i −0.273942 0.474482i 0.695925 0.718114i \(-0.254994\pi\)
−0.969868 + 0.243632i \(0.921661\pi\)
\(564\) 0 0
\(565\) −0.0729490 + 0.126351i −0.00306899 + 0.00531564i
\(566\) −6.70820 −0.281967
\(567\) 0 0
\(568\) 0.652476 0.0273773
\(569\) −18.0623 + 31.2848i −0.757211 + 1.31153i 0.187056 + 0.982349i \(0.440105\pi\)
−0.944267 + 0.329179i \(0.893228\pi\)
\(570\) 0 0
\(571\) 6.29180 + 10.8977i 0.263303 + 0.456055i 0.967118 0.254329i \(-0.0818546\pi\)
−0.703814 + 0.710384i \(0.748521\pi\)
\(572\) −0.263932 0.457144i −0.0110356 0.0191141i
\(573\) 0 0
\(574\) 0.427051 0.739674i 0.0178248 0.0308734i
\(575\) 12.7082 0.529969
\(576\) 0 0
\(577\) −7.27051 −0.302675 −0.151338 0.988482i \(-0.548358\pi\)
−0.151338 + 0.988482i \(0.548358\pi\)
\(578\) −3.50000 + 6.06218i −0.145581 + 0.252153i
\(579\) 0 0
\(580\) 3.80902 + 6.59741i 0.158161 + 0.273943i
\(581\) 15.5902 + 27.0030i 0.646789 + 1.12027i
\(582\) 0 0
\(583\) 0.916408 1.58726i 0.0379537 0.0657378i
\(584\) −7.56231 −0.312930
\(585\) 0 0
\(586\) 8.38197 0.346256
\(587\) 1.63525 2.83234i 0.0674942 0.116903i −0.830303 0.557312i \(-0.811833\pi\)
0.897798 + 0.440408i \(0.145166\pi\)
\(588\) 0 0
\(589\) −17.3262 30.0099i −0.713915 1.23654i
\(590\) 13.2082 + 22.8773i 0.543773 + 0.941843i
\(591\) 0 0
\(592\) 15.1353 26.2150i 0.622055 1.07743i
\(593\) −16.6869 −0.685250 −0.342625 0.939472i \(-0.611316\pi\)
−0.342625 + 0.939472i \(0.611316\pi\)
\(594\) 0 0
\(595\) 27.0344 1.10830
\(596\) 1.73607 3.00696i 0.0711121 0.123170i
\(597\) 0 0
\(598\) 5.54508 + 9.60437i 0.226755 + 0.392752i
\(599\) 1.90983 + 3.30792i 0.0780335 + 0.135158i 0.902401 0.430896i \(-0.141803\pi\)
−0.824368 + 0.566054i \(0.808469\pi\)
\(600\) 0 0
\(601\) 3.10081 5.37077i 0.126485 0.219078i −0.795828 0.605523i \(-0.792964\pi\)
0.922312 + 0.386445i \(0.126297\pi\)
\(602\) −40.9787 −1.67017
\(603\) 0 0
\(604\) −7.85410 −0.319579
\(605\) 13.4443 23.2862i 0.546587 0.946717i
\(606\) 0 0
\(607\) 5.57295 + 9.65263i 0.226199 + 0.391788i 0.956678 0.291146i \(-0.0940367\pi\)
−0.730479 + 0.682935i \(0.760703\pi\)
\(608\) −6.91641 11.9796i −0.280497 0.485836i
\(609\) 0 0
\(610\) 32.1525 55.6897i 1.30182 2.25481i
\(611\) −1.09017 −0.0441036
\(612\) 0 0
\(613\) −24.5967 −0.993453 −0.496727 0.867907i \(-0.665465\pi\)
−0.496727 + 0.867907i \(0.665465\pi\)
\(614\) −14.3541 + 24.8620i −0.579284 + 1.00335i
\(615\) 0 0
\(616\) −2.13525 3.69837i −0.0860319 0.149012i
\(617\) −11.5172 19.9484i −0.463666 0.803093i 0.535474 0.844551i \(-0.320133\pi\)
−0.999140 + 0.0414587i \(0.986800\pi\)
\(618\) 0 0
\(619\) 0.236068 0.408882i 0.00948837 0.0164343i −0.861242 0.508195i \(-0.830313\pi\)
0.870731 + 0.491760i \(0.163646\pi\)
\(620\) −13.7082 −0.550535
\(621\) 0 0
\(622\) −49.0689 −1.96748
\(623\) −19.2705 + 33.3775i −0.772057 + 1.33724i
\(624\) 0 0
\(625\) 15.4164 + 26.7020i 0.616656 + 1.06808i
\(626\) 22.4164 + 38.8264i 0.895940 + 1.55181i
\(627\) 0 0
\(628\) −4.68034 + 8.10659i −0.186766 + 0.323488i
\(629\) 28.7984 1.14827
\(630\) 0 0
\(631\) −4.52786 −0.180251 −0.0901257 0.995930i \(-0.528727\pi\)
−0.0901257 + 0.995930i \(0.528727\pi\)
\(632\) 3.71885 6.44123i 0.147928 0.256218i
\(633\) 0 0
\(634\) 23.9164 + 41.4244i 0.949842 + 1.64517i
\(635\) −1.92705 3.33775i −0.0764727 0.132455i
\(636\) 0 0
\(637\) −1.00000 + 1.73205i −0.0396214 + 0.0686264i
\(638\) 6.50658 0.257598
\(639\) 0 0
\(640\) 35.6525 1.40929
\(641\) −18.1803 + 31.4893i −0.718080 + 1.24375i 0.243679 + 0.969856i \(0.421646\pi\)
−0.961759 + 0.273896i \(0.911688\pi\)
\(642\) 0 0
\(643\) 19.1525 + 33.1731i 0.755300 + 1.30822i 0.945225 + 0.326419i \(0.105842\pi\)
−0.189925 + 0.981799i \(0.560825\pi\)
\(644\) −4.73607 8.20311i −0.186627 0.323248i
\(645\) 0 0
\(646\) 15.2812 26.4677i 0.601229 1.04136i
\(647\) 32.5066 1.27797 0.638983 0.769221i \(-0.279356\pi\)
0.638983 + 0.769221i \(0.279356\pi\)
\(648\) 0 0
\(649\) 5.32624 0.209073
\(650\) 1.50000 2.59808i 0.0588348 0.101905i
\(651\) 0 0
\(652\) 3.28115 + 5.68312i 0.128500 + 0.222568i
\(653\) −12.7984 22.1674i −0.500839 0.867479i −1.00000 0.000969148i \(-0.999692\pi\)
0.499160 0.866510i \(-0.333642\pi\)
\(654\) 0 0
\(655\) −17.0172 + 29.4747i −0.664918 + 1.15167i
\(656\) 1.14590 0.0447398
\(657\) 0 0
\(658\) 3.94427 0.153764
\(659\) 11.9721 20.7363i 0.466368 0.807773i −0.532894 0.846182i \(-0.678896\pi\)
0.999262 + 0.0384086i \(0.0122289\pi\)
\(660\) 0 0
\(661\) 8.64590 + 14.9751i 0.336286 + 0.582465i 0.983731 0.179647i \(-0.0574956\pi\)
−0.647445 + 0.762112i \(0.724162\pi\)
\(662\) −3.04508 5.27424i −0.118351 0.204989i
\(663\) 0 0
\(664\) −15.5902 + 27.0030i −0.605016 + 1.04792i
\(665\) −23.9443 −0.928519
\(666\) 0 0
\(667\) −32.2705 −1.24952
\(668\) −3.16312 + 5.47868i −0.122385 + 0.211977i
\(669\) 0 0
\(670\) −10.7812 18.6735i −0.416512 0.721420i
\(671\) −6.48278 11.2285i −0.250265 0.433472i
\(672\) 0 0
\(673\) −7.09017 + 12.2805i −0.273306 + 0.473380i −0.969706 0.244274i \(-0.921450\pi\)
0.696400 + 0.717653i \(0.254784\pi\)
\(674\) −33.3262 −1.28368
\(675\) 0 0
\(676\) 0.618034 0.0237705
\(677\) 2.40983 4.17395i 0.0926173 0.160418i −0.815994 0.578060i \(-0.803810\pi\)
0.908612 + 0.417642i \(0.137143\pi\)
\(678\) 0 0
\(679\) −2.76393 4.78727i −0.106070 0.183719i
\(680\) 13.5172 + 23.4125i 0.518362 + 0.897829i
\(681\) 0 0
\(682\) −5.85410 + 10.1396i −0.224165 + 0.388265i
\(683\) −18.2918 −0.699916 −0.349958 0.936765i \(-0.613804\pi\)
−0.349958 + 0.936765i \(0.613804\pi\)
\(684\) 0 0
\(685\) 31.8885 1.21840
\(686\) 16.2812 28.1998i 0.621617 1.07667i
\(687\) 0 0
\(688\) −27.4894 47.6130i −1.04802 1.81523i
\(689\) 1.07295 + 1.85840i 0.0408761 + 0.0707995i
\(690\) 0 0
\(691\) −8.38197 + 14.5180i −0.318865 + 0.552290i −0.980252 0.197755i \(-0.936635\pi\)
0.661386 + 0.750045i \(0.269968\pi\)
\(692\) 7.65248 0.290903
\(693\) 0 0
\(694\) −13.0344 −0.494781
\(695\) 5.54508 9.60437i 0.210337 0.364314i
\(696\) 0 0
\(697\) 0.545085 + 0.944115i 0.0206466 + 0.0357609i
\(698\) 2.50000 + 4.33013i 0.0946264 + 0.163898i
\(699\) 0 0
\(700\) −1.28115 + 2.21902i −0.0484230 + 0.0838711i
\(701\) −6.41641 −0.242344 −0.121172 0.992632i \(-0.538665\pi\)
−0.121172 + 0.992632i \(0.538665\pi\)
\(702\) 0 0
\(703\) −25.5066 −0.961999
\(704\) 1.80902 3.13331i 0.0681799 0.118091i
\(705\) 0 0
\(706\) −3.80902 6.59741i −0.143354 0.248297i
\(707\) −21.4443 37.1426i −0.806495 1.39689i
\(708\) 0 0
\(709\) 15.1631 26.2633i 0.569463 0.986339i −0.427156 0.904178i \(-0.640485\pi\)
0.996619 0.0821608i \(-0.0261821\pi\)
\(710\) −1.23607 −0.0463888
\(711\) 0 0
\(712\) −38.5410 −1.44439
\(713\) 29.0344 50.2891i 1.08735 1.88334i
\(714\) 0 0
\(715\) −1.11803 1.93649i −0.0418121 0.0724207i
\(716\) 1.48278 + 2.56825i 0.0554141 + 0.0959800i
\(717\) 0 0
\(718\) 27.8435 48.2263i 1.03911 1.79979i
\(719\) 4.87539 0.181821 0.0909106 0.995859i \(-0.471022\pi\)
0.0909106 + 0.995859i \(0.471022\pi\)
\(720\) 0 0
\(721\) 42.0344 1.56544
\(722\) 1.83688 3.18157i 0.0683616 0.118406i
\(723\) 0 0
\(724\) −4.19098 7.25900i −0.155757 0.269778i
\(725\) 4.36475 + 7.55996i 0.162103 + 0.280770i
\(726\) 0 0
\(727\) −8.17376 + 14.1574i −0.303148 + 0.525068i −0.976847 0.213938i \(-0.931371\pi\)
0.673699 + 0.739006i \(0.264704\pi\)
\(728\) 5.00000 0.185312
\(729\) 0 0
\(730\) 14.3262 0.530238
\(731\) 26.1525 45.2974i 0.967284 1.67539i
\(732\) 0 0
\(733\) 21.2361 + 36.7819i 0.784372 + 1.35857i 0.929373 + 0.369141i \(0.120348\pi\)
−0.145001 + 0.989431i \(0.546319\pi\)
\(734\) −0.572949 0.992377i −0.0211479 0.0366293i
\(735\) 0 0
\(736\) 11.5902 20.0748i 0.427219 0.739966i
\(737\) −4.34752 −0.160143
\(738\) 0 0
\(739\) −3.61803 −0.133092 −0.0665458 0.997783i \(-0.521198\pi\)
−0.0665458 + 0.997783i \(0.521198\pi\)
\(740\) −5.04508 + 8.73834i −0.185461 + 0.321228i
\(741\) 0 0
\(742\) −3.88197 6.72376i −0.142511 0.246837i
\(743\) −6.78115 11.7453i −0.248776 0.430893i 0.714410 0.699727i \(-0.246695\pi\)
−0.963187 + 0.268834i \(0.913362\pi\)
\(744\) 0 0
\(745\) 7.35410 12.7377i 0.269433 0.466672i
\(746\) −6.23607 −0.228319
\(747\) 0 0
\(748\) −2.43769 −0.0891309
\(749\) 7.13525 12.3586i 0.260717 0.451574i
\(750\) 0 0
\(751\) −0.635255 1.10029i −0.0231808 0.0401503i 0.854202 0.519941i \(-0.174046\pi\)
−0.877383 + 0.479790i \(0.840713\pi\)
\(752\) 2.64590 + 4.58283i 0.0964860 + 0.167119i
\(753\) 0 0
\(754\) −3.80902 + 6.59741i −0.138716 + 0.240264i
\(755\) −33.2705 −1.21084
\(756\) 0 0
\(757\) −29.5623 −1.07446 −0.537230 0.843436i \(-0.680529\pi\)
−0.537230 + 0.843436i \(0.680529\pi\)
\(758\) 11.8992 20.6100i 0.432198 0.748589i
\(759\) 0 0
\(760\) −11.9721 20.7363i −0.434275 0.752186i
\(761\) −5.29180 9.16566i −0.191827 0.332255i 0.754028 0.656842i \(-0.228108\pi\)
−0.945856 + 0.324587i \(0.894775\pi\)
\(762\) 0 0
\(763\) −15.4271 + 26.7204i −0.558497 + 0.967345i
\(764\) −13.4377 −0.486159
\(765\) 0 0
\(766\) 15.2361 0.550502
\(767\) −3.11803 + 5.40059i −0.112586 + 0.195004i
\(768\) 0 0
\(769\) −2.91641 5.05137i −0.105168 0.182157i 0.808639 0.588306i \(-0.200205\pi\)
−0.913807 + 0.406149i \(0.866871\pi\)
\(770\) 4.04508 + 7.00629i 0.145775 + 0.252489i
\(771\) 0 0
\(772\) −2.40983 + 4.17395i −0.0867317 + 0.150224i
\(773\) −45.5066 −1.63676 −0.818379 0.574679i \(-0.805127\pi\)
−0.818379 + 0.574679i \(0.805127\pi\)
\(774\) 0 0
\(775\) −15.7082 −0.564255
\(776\) 2.76393 4.78727i 0.0992194 0.171853i
\(777\) 0 0
\(778\) 6.23607 + 10.8012i 0.223574 + 0.387241i
\(779\) −0.482779 0.836198i −0.0172974 0.0299599i
\(780\) 0 0
\(781\) −0.124612 + 0.215834i −0.00445896 + 0.00772315i
\(782\) 51.2148 1.83144
\(783\) 0 0
\(784\) 9.70820 0.346722
\(785\) −19.8262 + 34.3401i −0.707629 + 1.22565i
\(786\) 0 0
\(787\) −4.02786 6.97647i −0.143578 0.248684i 0.785264 0.619162i \(-0.212527\pi\)
−0.928841 + 0.370477i \(0.879194\pi\)
\(788\) 3.61803 + 6.26662i 0.128887 + 0.223239i
\(789\) 0 0
\(790\) −7.04508 + 12.2024i −0.250653 + 0.434144i
\(791\) 0.124612 0.00443069
\(792\) 0 0
\(793\) 15.1803 0.539070
\(794\) 9.80902 16.9897i 0.348109 0.602942i
\(795\) 0 0
\(796\) 2.37132 + 4.10725i 0.0840493 + 0.145578i
\(797\) −20.5344 35.5667i −0.727367 1.25984i −0.957992 0.286794i \(-0.907410\pi\)
0.230625 0.973043i \(-0.425923\pi\)
\(798\) 0 0
\(799\) −2.51722 + 4.35995i −0.0890529 + 0.154244i
\(800\) −6.27051 −0.221696
\(801\) 0 0
\(802\) −8.47214 −0.299162
\(803\) 1.44427 2.50155i 0.0509672 0.0882779i
\(804\) 0 0
\(805\) −20.0623 34.7489i −0.707103 1.22474i
\(806\) −6.85410 11.8717i −0.241425 0.418161i
\(807\) 0 0
\(808\) 21.4443 37.1426i 0.754407 1.30667i
\(809\) 11.6180 0.408468 0.204234 0.978922i \(-0.434530\pi\)
0.204234 + 0.978922i \(0.434530\pi\)
\(810\) 0 0
\(811\) 24.5279 0.861290 0.430645 0.902521i \(-0.358286\pi\)
0.430645 + 0.902521i \(0.358286\pi\)
\(812\) 3.25329 5.63486i 0.114168 0.197745i
\(813\) 0 0
\(814\) 4.30902 + 7.46344i 0.151031 + 0.261593i
\(815\) 13.8992 + 24.0741i 0.486867 + 0.843279i
\(816\) 0 0
\(817\) −23.1631 + 40.1197i −0.810375 + 1.40361i
\(818\) 33.7082 1.17858
\(819\) 0 0
\(820\) −0.381966 −0.0133388
\(821\) 12.9098 22.3605i 0.450556 0.780386i −0.547864 0.836567i \(-0.684559\pi\)
0.998421 + 0.0561809i \(0.0178924\pi\)
\(822\) 0 0
\(823\) −12.2082 21.1452i −0.425551 0.737076i 0.570921 0.821005i \(-0.306586\pi\)
−0.996472 + 0.0839290i \(0.973253\pi\)
\(824\) 21.0172 + 36.4029i 0.732170 + 1.26815i
\(825\) 0 0
\(826\) 11.2812 19.5395i 0.392522 0.679867i
\(827\) 19.0000 0.660695 0.330347 0.943859i \(-0.392834\pi\)
0.330347 + 0.943859i \(0.392834\pi\)
\(828\) 0 0
\(829\) −34.3607 −1.19340 −0.596698 0.802466i \(-0.703521\pi\)
−0.596698 + 0.802466i \(0.703521\pi\)
\(830\) 29.5344 51.1552i 1.02516 1.77562i
\(831\) 0 0
\(832\) 2.11803 + 3.66854i 0.0734296 + 0.127184i
\(833\) 4.61803 + 7.99867i 0.160005 + 0.277137i
\(834\) 0 0
\(835\) −13.3992 + 23.2081i −0.463698 + 0.803148i
\(836\) 2.15905 0.0746724
\(837\) 0 0
\(838\) −29.7082 −1.02625
\(839\) 0.809017 1.40126i 0.0279304 0.0483768i −0.851722 0.523993i \(-0.824442\pi\)
0.879653 + 0.475617i \(0.157775\pi\)
\(840\) 0 0
\(841\) 3.41641 + 5.91739i 0.117807 + 0.204048i
\(842\) 24.4164 + 42.2905i 0.841445 + 1.45743i
\(843\) 0 0
\(844\) −5.91641 + 10.2475i −0.203651 + 0.352734i
\(845\) 2.61803 0.0900631
\(846\) 0 0
\(847\) −22.9656 −0.789106
\(848\) 5.20820 9.02087i 0.178850 0.309778i
\(849\) 0 0
\(850\) −6.92705 11.9980i −0.237596 0.411528i
\(851\) −21.3713 37.0162i −0.732600 1.26890i
\(852\) 0 0
\(853\) 0.836881 1.44952i 0.0286543 0.0496306i −0.851343 0.524610i \(-0.824211\pi\)
0.879997 + 0.474979i \(0.157544\pi\)
\(854\) −54.9230 −1.87943
\(855\) 0 0
\(856\) 14.2705 0.487756
\(857\) 14.4336 24.9998i 0.493043 0.853976i −0.506925 0.861990i \(-0.669218\pi\)
0.999968 + 0.00801429i \(0.00255105\pi\)
\(858\) 0 0
\(859\) −20.5344 35.5667i −0.700626 1.21352i −0.968247 0.249996i \(-0.919571\pi\)
0.267621 0.963524i \(-0.413763\pi\)
\(860\) 9.16312 + 15.8710i 0.312460 + 0.541196i
\(861\) 0 0
\(862\) 15.2812 26.4677i 0.520478 0.901495i
\(863\) 1.34752 0.0458703 0.0229351 0.999737i \(-0.492699\pi\)
0.0229351 + 0.999737i \(0.492699\pi\)
\(864\) 0 0
\(865\) 32.4164 1.10219
\(866\) −19.4443 + 33.6785i −0.660743 + 1.14444i
\(867\) 0 0
\(868\) 5.85410 + 10.1396i 0.198701 + 0.344161i
\(869\) 1.42047 + 2.46033i 0.0481863 + 0.0834610i
\(870\) 0 0
\(871\) 2.54508 4.40822i 0.0862369 0.149367i
\(872\) −30.8541 −1.04485
\(873\) 0 0
\(874\) −45.3607 −1.53435
\(875\) 9.20820 15.9491i 0.311294 0.539177i
\(876\) 0 0
\(877\) 14.2984 + 24.7655i 0.482822 + 0.836272i 0.999805 0.0197234i \(-0.00627856\pi\)
−0.516984 + 0.855995i \(0.672945\pi\)
\(878\) −29.1246 50.4453i −0.982908 1.70245i
\(879\) 0 0
\(880\) −5.42705 + 9.39993i −0.182946 + 0.316872i
\(881\) 22.2361 0.749152 0.374576 0.927196i \(-0.377788\pi\)
0.374576 + 0.927196i \(0.377788\pi\)
\(882\) 0 0
\(883\) 13.7426 0.462477 0.231238 0.972897i \(-0.425722\pi\)
0.231238 + 0.972897i \(0.425722\pi\)
\(884\) 1.42705 2.47172i 0.0479969 0.0831331i
\(885\) 0 0
\(886\) −13.0451 22.5947i −0.438258 0.759085i
\(887\) −5.35410 9.27358i −0.179773 0.311376i 0.762030 0.647542i \(-0.224203\pi\)
−0.941803 + 0.336166i \(0.890870\pi\)
\(888\) 0 0
\(889\) −1.64590 + 2.85078i −0.0552016 + 0.0956121i
\(890\) 73.0132 2.44741
\(891\) 0 0
\(892\) 9.36068 0.313419
\(893\) 2.22949 3.86159i 0.0746070 0.129223i
\(894\) 0 0
\(895\) 6.28115 + 10.8793i 0.209956 + 0.363654i
\(896\) −15.2254 26.3712i −0.508646 0.881000i
\(897\) 0 0
\(898\) −25.4615 + 44.1006i −0.849661 + 1.47166i
\(899\) 39.8885 1.33036
\(900\) 0 0
\(901\) 9.90983 0.330144
\(902\) −0.163119 + 0.282530i −0.00543127 + 0.00940723i
\(903\) 0 0
\(904\) 0.0623059 + 0.107917i 0.00207226 + 0.00358927i
\(905\) −17.7533 30.7496i −0.590139 1.02215i
\(906\) 0 0
\(907\) −4.29180 + 7.43361i −0.142507 + 0.246829i −0.928440 0.371482i \(-0.878850\pi\)
0.785933 + 0.618311i \(0.212183\pi\)
\(908\) −13.2148 −0.438548
\(909\) 0 0
\(910\) −9.47214 −0.313998
\(911\) −1.57295 + 2.72443i −0.0521141 + 0.0902643i −0.890906 0.454188i \(-0.849929\pi\)
0.838792 + 0.544453i \(0.183263\pi\)
\(912\) 0 0
\(913\) −5.95492 10.3142i −0.197079 0.341351i
\(914\) 0.954915 + 1.65396i 0.0315858 + 0.0547082i
\(915\) 0 0
\(916\) −2.97214 + 5.14789i −0.0982021 + 0.170091i
\(917\) 29.0689 0.959939
\(918\) 0 0
\(919\) −17.0557 −0.562617 −0.281308 0.959617i \(-0.590768\pi\)
−0.281308 + 0.959617i \(0.590768\pi\)
\(920\) 20.0623 34.7489i 0.661435 1.14564i
\(921\) 0 0
\(922\) −1.30902 2.26728i −0.0431102 0.0746690i
\(923\) −0.145898 0.252703i −0.00480229 0.00831781i
\(924\) 0 0
\(925\) −5.78115 + 10.0133i −0.190083 + 0.329234i
\(926\) −49.4508 −1.62506
\(927\) 0 0
\(928\) 15.9230 0.522698
\(929\) −10.9721 + 19.0043i −0.359984 + 0.623511i −0.987958 0.154724i \(-0.950551\pi\)
0.627974 + 0.778235i \(0.283885\pi\)
\(930\) 0 0
\(931\) −4.09017 7.08438i −0.134050 0.232181i
\(932\) −0.836881 1.44952i −0.0274129 0.0474806i
\(933\) 0 0
\(934\) −24.3713 + 42.2124i −0.797454 + 1.38123i
\(935\) −10.3262 −0.337704
\(936\) 0 0
\(937\) −10.3820 −0.339164 −0.169582 0.985516i \(-0.554242\pi\)
−0.169582 + 0.985516i \(0.554242\pi\)
\(938\) −9.20820 + 15.9491i −0.300659 + 0.520756i
\(939\) 0 0
\(940\) −0.881966 1.52761i −0.0287666 0.0498251i
\(941\) 2.32624 + 4.02916i 0.0758332 + 0.131347i 0.901448 0.432887i \(-0.142505\pi\)
−0.825615 + 0.564234i \(0.809172\pi\)
\(942\) 0 0
\(943\) 0.809017 1.40126i 0.0263452 0.0456313i
\(944\) 30.2705 0.985221
\(945\) 0 0
\(946\) 15.6525 0.508906
\(947\) −15.7705 + 27.3153i −0.512473 + 0.887629i 0.487423 + 0.873166i \(0.337937\pi\)
−0.999895 + 0.0144626i \(0.995396\pi\)
\(948\) 0 0
\(949\) 1.69098 + 2.92887i 0.0548916 + 0.0950751i
\(950\) 6.13525 + 10.6266i 0.199054 + 0.344772i
\(951\) 0 0
\(952\) 11.5451 19.9967i 0.374178 0.648096i
\(953\) −0.472136 −0.0152940 −0.00764699 0.999971i \(-0.502434\pi\)
−0.00764699 + 0.999971i \(0.502434\pi\)
\(954\) 0 0
\(955\) −56.9230 −1.84198
\(956\) −5.69098 + 9.85707i −0.184060 + 0.318800i
\(957\) 0 0
\(958\) −12.7812 22.1376i −0.412940 0.715234i
\(959\) −13.6180 23.5871i −0.439749 0.761668i
\(960\) 0 0
\(961\) −20.3885 + 35.3140i −0.657695 + 1.13916i
\(962\) −10.0902 −0.325320
\(963\) 0 0
\(964\) −18.3050 −0.589563
\(965\) −10.2082 + 17.6811i −0.328614 + 0.569176i
\(966\) 0 0
\(967\) −12.0902 20.9408i −0.388794 0.673410i 0.603494 0.797368i \(-0.293775\pi\)
−0.992288 + 0.123957i \(0.960441\pi\)
\(968\) −11.4828 19.8888i −0.369070 0.639249i
\(969\) 0 0
\(970\) −5.23607 + 9.06914i −0.168120 + 0.291192i
\(971\) 39.3050 1.26136 0.630678 0.776045i \(-0.282777\pi\)
0.630678 + 0.776045i \(0.282777\pi\)
\(972\) 0 0
\(973\) −9.47214 −0.303663
\(974\) −20.4721 + 35.4588i −0.655970 + 1.13617i
\(975\) 0 0
\(976\) −36.8435 63.8147i −1.17933 2.04266i
\(977\) −5.38197 9.32184i −0.172184 0.298232i 0.766999 0.641648i \(-0.221749\pi\)
−0.939183 + 0.343416i \(0.888416\pi\)
\(978\) 0 0
\(979\) 7.36068 12.7491i 0.235248 0.407462i
\(980\) −3.23607 −0.103372
\(981\) 0 0
\(982\) −31.0902 −0.992127
\(983\) 10.5066 18.1979i 0.335108 0.580424i −0.648398 0.761302i \(-0.724561\pi\)
0.983506 + 0.180878i \(0.0578939\pi\)
\(984\) 0 0
\(985\) 15.3262 + 26.5458i 0.488335 + 0.845820i
\(986\) 17.5902 + 30.4671i 0.560185 + 0.970269i
\(987\) 0 0
\(988\) −1.26393 + 2.18919i −0.0402110 + 0.0696476i
\(989\) −77.6312 −2.46853
\(990\) 0 0
\(991\) −18.5279 −0.588557 −0.294278 0.955720i \(-0.595079\pi\)
−0.294278 + 0.955720i \(0.595079\pi\)
\(992\) −14.3262 + 24.8138i −0.454859 + 0.787838i
\(993\) 0 0
\(994\) 0.527864 + 0.914287i 0.0167428 + 0.0289994i
\(995\) 10.0451 + 17.3986i 0.318451 + 0.551573i
\(996\) 0 0
\(997\) 13.9615 24.1820i 0.442165 0.765852i −0.555685 0.831393i \(-0.687544\pi\)
0.997850 + 0.0655408i \(0.0208773\pi\)
\(998\) −39.4508 −1.24879
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1053.2.e.g.703.1 4
3.2 odd 2 1053.2.e.l.703.2 4
9.2 odd 6 351.2.a.a.1.1 2
9.4 even 3 inner 1053.2.e.g.352.1 4
9.5 odd 6 1053.2.e.l.352.2 4
9.7 even 3 351.2.a.c.1.2 yes 2
36.7 odd 6 5616.2.a.bx.1.2 2
36.11 even 6 5616.2.a.bl.1.1 2
45.29 odd 6 8775.2.a.bb.1.2 2
45.34 even 6 8775.2.a.u.1.1 2
117.25 even 6 4563.2.a.h.1.1 2
117.38 odd 6 4563.2.a.p.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
351.2.a.a.1.1 2 9.2 odd 6
351.2.a.c.1.2 yes 2 9.7 even 3
1053.2.e.g.352.1 4 9.4 even 3 inner
1053.2.e.g.703.1 4 1.1 even 1 trivial
1053.2.e.l.352.2 4 9.5 odd 6
1053.2.e.l.703.2 4 3.2 odd 2
4563.2.a.h.1.1 2 117.25 even 6
4563.2.a.p.1.2 2 117.38 odd 6
5616.2.a.bl.1.1 2 36.11 even 6
5616.2.a.bx.1.2 2 36.7 odd 6
8775.2.a.u.1.1 2 45.34 even 6
8775.2.a.bb.1.2 2 45.29 odd 6