Properties

Label 1050.4.g.n.799.1
Level $1050$
Weight $4$
Character 1050.799
Analytic conductor $61.952$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1050,4,Mod(799,1050)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1050.799"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1050, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1050.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-8,0,12,0,0,-18,0,-16,0,0,28,0,32,0,0,248] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(61.9520055060\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 799.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1050.799
Dual form 1050.4.g.n.799.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000i q^{2} +3.00000i q^{3} -4.00000 q^{4} +6.00000 q^{6} +7.00000i q^{7} +8.00000i q^{8} -9.00000 q^{9} -8.00000 q^{11} -12.0000i q^{12} -42.0000i q^{13} +14.0000 q^{14} +16.0000 q^{16} +2.00000i q^{17} +18.0000i q^{18} +124.000 q^{19} -21.0000 q^{21} +16.0000i q^{22} +76.0000i q^{23} -24.0000 q^{24} -84.0000 q^{26} -27.0000i q^{27} -28.0000i q^{28} -254.000 q^{29} -72.0000 q^{31} -32.0000i q^{32} -24.0000i q^{33} +4.00000 q^{34} +36.0000 q^{36} -398.000i q^{37} -248.000i q^{38} +126.000 q^{39} +462.000 q^{41} +42.0000i q^{42} +212.000i q^{43} +32.0000 q^{44} +152.000 q^{46} +264.000i q^{47} +48.0000i q^{48} -49.0000 q^{49} -6.00000 q^{51} +168.000i q^{52} -162.000i q^{53} -54.0000 q^{54} -56.0000 q^{56} +372.000i q^{57} +508.000i q^{58} +772.000 q^{59} +30.0000 q^{61} +144.000i q^{62} -63.0000i q^{63} -64.0000 q^{64} -48.0000 q^{66} +764.000i q^{67} -8.00000i q^{68} -228.000 q^{69} -236.000 q^{71} -72.0000i q^{72} +418.000i q^{73} -796.000 q^{74} -496.000 q^{76} -56.0000i q^{77} -252.000i q^{78} -552.000 q^{79} +81.0000 q^{81} -924.000i q^{82} +1036.00i q^{83} +84.0000 q^{84} +424.000 q^{86} -762.000i q^{87} -64.0000i q^{88} -30.0000 q^{89} +294.000 q^{91} -304.000i q^{92} -216.000i q^{93} +528.000 q^{94} +96.0000 q^{96} +1190.00i q^{97} +98.0000i q^{98} +72.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 8 q^{4} + 12 q^{6} - 18 q^{9} - 16 q^{11} + 28 q^{14} + 32 q^{16} + 248 q^{19} - 42 q^{21} - 48 q^{24} - 168 q^{26} - 508 q^{29} - 144 q^{31} + 8 q^{34} + 72 q^{36} + 252 q^{39} + 924 q^{41} + 64 q^{44}+ \cdots + 144 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1050\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(701\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 2.00000i − 0.707107i
\(3\) 3.00000i 0.577350i
\(4\) −4.00000 −0.500000
\(5\) 0 0
\(6\) 6.00000 0.408248
\(7\) 7.00000i 0.377964i
\(8\) 8.00000i 0.353553i
\(9\) −9.00000 −0.333333
\(10\) 0 0
\(11\) −8.00000 −0.219281 −0.109640 0.993971i \(-0.534970\pi\)
−0.109640 + 0.993971i \(0.534970\pi\)
\(12\) − 12.0000i − 0.288675i
\(13\) − 42.0000i − 0.896054i −0.894020 0.448027i \(-0.852127\pi\)
0.894020 0.448027i \(-0.147873\pi\)
\(14\) 14.0000 0.267261
\(15\) 0 0
\(16\) 16.0000 0.250000
\(17\) 2.00000i 0.0285336i 0.999898 + 0.0142668i \(0.00454142\pi\)
−0.999898 + 0.0142668i \(0.995459\pi\)
\(18\) 18.0000i 0.235702i
\(19\) 124.000 1.49724 0.748620 0.663000i \(-0.230717\pi\)
0.748620 + 0.663000i \(0.230717\pi\)
\(20\) 0 0
\(21\) −21.0000 −0.218218
\(22\) 16.0000i 0.155055i
\(23\) 76.0000i 0.689004i 0.938786 + 0.344502i \(0.111952\pi\)
−0.938786 + 0.344502i \(0.888048\pi\)
\(24\) −24.0000 −0.204124
\(25\) 0 0
\(26\) −84.0000 −0.633606
\(27\) − 27.0000i − 0.192450i
\(28\) − 28.0000i − 0.188982i
\(29\) −254.000 −1.62644 −0.813218 0.581960i \(-0.802286\pi\)
−0.813218 + 0.581960i \(0.802286\pi\)
\(30\) 0 0
\(31\) −72.0000 −0.417148 −0.208574 0.978007i \(-0.566882\pi\)
−0.208574 + 0.978007i \(0.566882\pi\)
\(32\) − 32.0000i − 0.176777i
\(33\) − 24.0000i − 0.126602i
\(34\) 4.00000 0.0201763
\(35\) 0 0
\(36\) 36.0000 0.166667
\(37\) − 398.000i − 1.76840i −0.467109 0.884200i \(-0.654704\pi\)
0.467109 0.884200i \(-0.345296\pi\)
\(38\) − 248.000i − 1.05871i
\(39\) 126.000 0.517337
\(40\) 0 0
\(41\) 462.000 1.75981 0.879906 0.475148i \(-0.157606\pi\)
0.879906 + 0.475148i \(0.157606\pi\)
\(42\) 42.0000i 0.154303i
\(43\) 212.000i 0.751853i 0.926649 + 0.375927i \(0.122676\pi\)
−0.926649 + 0.375927i \(0.877324\pi\)
\(44\) 32.0000 0.109640
\(45\) 0 0
\(46\) 152.000 0.487200
\(47\) 264.000i 0.819327i 0.912237 + 0.409663i \(0.134354\pi\)
−0.912237 + 0.409663i \(0.865646\pi\)
\(48\) 48.0000i 0.144338i
\(49\) −49.0000 −0.142857
\(50\) 0 0
\(51\) −6.00000 −0.0164739
\(52\) 168.000i 0.448027i
\(53\) − 162.000i − 0.419857i −0.977717 0.209928i \(-0.932677\pi\)
0.977717 0.209928i \(-0.0673231\pi\)
\(54\) −54.0000 −0.136083
\(55\) 0 0
\(56\) −56.0000 −0.133631
\(57\) 372.000i 0.864432i
\(58\) 508.000i 1.15006i
\(59\) 772.000 1.70349 0.851744 0.523958i \(-0.175545\pi\)
0.851744 + 0.523958i \(0.175545\pi\)
\(60\) 0 0
\(61\) 30.0000 0.0629690 0.0314845 0.999504i \(-0.489977\pi\)
0.0314845 + 0.999504i \(0.489977\pi\)
\(62\) 144.000i 0.294968i
\(63\) − 63.0000i − 0.125988i
\(64\) −64.0000 −0.125000
\(65\) 0 0
\(66\) −48.0000 −0.0895211
\(67\) 764.000i 1.39310i 0.717510 + 0.696548i \(0.245282\pi\)
−0.717510 + 0.696548i \(0.754718\pi\)
\(68\) − 8.00000i − 0.0142668i
\(69\) −228.000 −0.397797
\(70\) 0 0
\(71\) −236.000 −0.394480 −0.197240 0.980355i \(-0.563198\pi\)
−0.197240 + 0.980355i \(0.563198\pi\)
\(72\) − 72.0000i − 0.117851i
\(73\) 418.000i 0.670181i 0.942186 + 0.335090i \(0.108767\pi\)
−0.942186 + 0.335090i \(0.891233\pi\)
\(74\) −796.000 −1.25045
\(75\) 0 0
\(76\) −496.000 −0.748620
\(77\) − 56.0000i − 0.0828804i
\(78\) − 252.000i − 0.365813i
\(79\) −552.000 −0.786137 −0.393069 0.919509i \(-0.628587\pi\)
−0.393069 + 0.919509i \(0.628587\pi\)
\(80\) 0 0
\(81\) 81.0000 0.111111
\(82\) − 924.000i − 1.24437i
\(83\) 1036.00i 1.37007i 0.728510 + 0.685035i \(0.240213\pi\)
−0.728510 + 0.685035i \(0.759787\pi\)
\(84\) 84.0000 0.109109
\(85\) 0 0
\(86\) 424.000 0.531641
\(87\) − 762.000i − 0.939023i
\(88\) − 64.0000i − 0.0775275i
\(89\) −30.0000 −0.0357303 −0.0178651 0.999840i \(-0.505687\pi\)
−0.0178651 + 0.999840i \(0.505687\pi\)
\(90\) 0 0
\(91\) 294.000 0.338677
\(92\) − 304.000i − 0.344502i
\(93\) − 216.000i − 0.240840i
\(94\) 528.000 0.579352
\(95\) 0 0
\(96\) 96.0000 0.102062
\(97\) 1190.00i 1.24563i 0.782369 + 0.622815i \(0.214011\pi\)
−0.782369 + 0.622815i \(0.785989\pi\)
\(98\) 98.0000i 0.101015i
\(99\) 72.0000 0.0730937
\(100\) 0 0
\(101\) 1370.00 1.34970 0.674852 0.737953i \(-0.264207\pi\)
0.674852 + 0.737953i \(0.264207\pi\)
\(102\) 12.0000i 0.0116488i
\(103\) 464.000i 0.443876i 0.975061 + 0.221938i \(0.0712383\pi\)
−0.975061 + 0.221938i \(0.928762\pi\)
\(104\) 336.000 0.316803
\(105\) 0 0
\(106\) −324.000 −0.296884
\(107\) 2136.00i 1.92986i 0.262509 + 0.964930i \(0.415450\pi\)
−0.262509 + 0.964930i \(0.584550\pi\)
\(108\) 108.000i 0.0962250i
\(109\) 1226.00 1.07733 0.538667 0.842518i \(-0.318928\pi\)
0.538667 + 0.842518i \(0.318928\pi\)
\(110\) 0 0
\(111\) 1194.00 1.02099
\(112\) 112.000i 0.0944911i
\(113\) 338.000i 0.281384i 0.990053 + 0.140692i \(0.0449327\pi\)
−0.990053 + 0.140692i \(0.955067\pi\)
\(114\) 744.000 0.611245
\(115\) 0 0
\(116\) 1016.00 0.813218
\(117\) 378.000i 0.298685i
\(118\) − 1544.00i − 1.20455i
\(119\) −14.0000 −0.0107847
\(120\) 0 0
\(121\) −1267.00 −0.951916
\(122\) − 60.0000i − 0.0445258i
\(123\) 1386.00i 1.01603i
\(124\) 288.000 0.208574
\(125\) 0 0
\(126\) −126.000 −0.0890871
\(127\) − 2088.00i − 1.45890i −0.684035 0.729449i \(-0.739777\pi\)
0.684035 0.729449i \(-0.260223\pi\)
\(128\) 128.000i 0.0883883i
\(129\) −636.000 −0.434083
\(130\) 0 0
\(131\) −292.000 −0.194749 −0.0973747 0.995248i \(-0.531045\pi\)
−0.0973747 + 0.995248i \(0.531045\pi\)
\(132\) 96.0000i 0.0633010i
\(133\) 868.000i 0.565903i
\(134\) 1528.00 0.985068
\(135\) 0 0
\(136\) −16.0000 −0.0100882
\(137\) − 818.000i − 0.510120i −0.966925 0.255060i \(-0.917905\pi\)
0.966925 0.255060i \(-0.0820952\pi\)
\(138\) 456.000i 0.281285i
\(139\) 2156.00 1.31561 0.657804 0.753189i \(-0.271485\pi\)
0.657804 + 0.753189i \(0.271485\pi\)
\(140\) 0 0
\(141\) −792.000 −0.473039
\(142\) 472.000i 0.278939i
\(143\) 336.000i 0.196488i
\(144\) −144.000 −0.0833333
\(145\) 0 0
\(146\) 836.000 0.473889
\(147\) − 147.000i − 0.0824786i
\(148\) 1592.00i 0.884200i
\(149\) 2850.00 1.56699 0.783494 0.621400i \(-0.213436\pi\)
0.783494 + 0.621400i \(0.213436\pi\)
\(150\) 0 0
\(151\) 1672.00 0.901096 0.450548 0.892752i \(-0.351229\pi\)
0.450548 + 0.892752i \(0.351229\pi\)
\(152\) 992.000i 0.529354i
\(153\) − 18.0000i − 0.00951120i
\(154\) −112.000 −0.0586053
\(155\) 0 0
\(156\) −504.000 −0.258669
\(157\) − 446.000i − 0.226718i −0.993554 0.113359i \(-0.963839\pi\)
0.993554 0.113359i \(-0.0361610\pi\)
\(158\) 1104.00i 0.555883i
\(159\) 486.000 0.242404
\(160\) 0 0
\(161\) −532.000 −0.260419
\(162\) − 162.000i − 0.0785674i
\(163\) 2708.00i 1.30127i 0.759391 + 0.650635i \(0.225497\pi\)
−0.759391 + 0.650635i \(0.774503\pi\)
\(164\) −1848.00 −0.879906
\(165\) 0 0
\(166\) 2072.00 0.968785
\(167\) − 896.000i − 0.415177i −0.978216 0.207589i \(-0.933439\pi\)
0.978216 0.207589i \(-0.0665615\pi\)
\(168\) − 168.000i − 0.0771517i
\(169\) 433.000 0.197087
\(170\) 0 0
\(171\) −1116.00 −0.499080
\(172\) − 848.000i − 0.375927i
\(173\) 4034.00i 1.77283i 0.462893 + 0.886414i \(0.346811\pi\)
−0.462893 + 0.886414i \(0.653189\pi\)
\(174\) −1524.00 −0.663989
\(175\) 0 0
\(176\) −128.000 −0.0548202
\(177\) 2316.00i 0.983510i
\(178\) 60.0000i 0.0252651i
\(179\) 3480.00 1.45311 0.726557 0.687106i \(-0.241119\pi\)
0.726557 + 0.687106i \(0.241119\pi\)
\(180\) 0 0
\(181\) −2898.00 −1.19009 −0.595046 0.803692i \(-0.702866\pi\)
−0.595046 + 0.803692i \(0.702866\pi\)
\(182\) − 588.000i − 0.239481i
\(183\) 90.0000i 0.0363551i
\(184\) −608.000 −0.243600
\(185\) 0 0
\(186\) −432.000 −0.170300
\(187\) − 16.0000i − 0.00625688i
\(188\) − 1056.00i − 0.409663i
\(189\) 189.000 0.0727393
\(190\) 0 0
\(191\) 2652.00 1.00467 0.502335 0.864673i \(-0.332474\pi\)
0.502335 + 0.864673i \(0.332474\pi\)
\(192\) − 192.000i − 0.0721688i
\(193\) 146.000i 0.0544524i 0.999629 + 0.0272262i \(0.00866744\pi\)
−0.999629 + 0.0272262i \(0.991333\pi\)
\(194\) 2380.00 0.880794
\(195\) 0 0
\(196\) 196.000 0.0714286
\(197\) 2546.00i 0.920787i 0.887715 + 0.460393i \(0.152292\pi\)
−0.887715 + 0.460393i \(0.847708\pi\)
\(198\) − 144.000i − 0.0516850i
\(199\) 2536.00 0.903378 0.451689 0.892175i \(-0.350822\pi\)
0.451689 + 0.892175i \(0.350822\pi\)
\(200\) 0 0
\(201\) −2292.00 −0.804305
\(202\) − 2740.00i − 0.954385i
\(203\) − 1778.00i − 0.614735i
\(204\) 24.0000 0.00823694
\(205\) 0 0
\(206\) 928.000 0.313868
\(207\) − 684.000i − 0.229668i
\(208\) − 672.000i − 0.224014i
\(209\) −992.000 −0.328316
\(210\) 0 0
\(211\) −1300.00 −0.424150 −0.212075 0.977253i \(-0.568022\pi\)
−0.212075 + 0.977253i \(0.568022\pi\)
\(212\) 648.000i 0.209928i
\(213\) − 708.000i − 0.227753i
\(214\) 4272.00 1.36462
\(215\) 0 0
\(216\) 216.000 0.0680414
\(217\) − 504.000i − 0.157667i
\(218\) − 2452.00i − 0.761791i
\(219\) −1254.00 −0.386929
\(220\) 0 0
\(221\) 84.0000 0.0255677
\(222\) − 2388.00i − 0.721946i
\(223\) 2576.00i 0.773550i 0.922174 + 0.386775i \(0.126411\pi\)
−0.922174 + 0.386775i \(0.873589\pi\)
\(224\) 224.000 0.0668153
\(225\) 0 0
\(226\) 676.000 0.198968
\(227\) 1836.00i 0.536826i 0.963304 + 0.268413i \(0.0864993\pi\)
−0.963304 + 0.268413i \(0.913501\pi\)
\(228\) − 1488.00i − 0.432216i
\(229\) 1874.00 0.540775 0.270387 0.962752i \(-0.412848\pi\)
0.270387 + 0.962752i \(0.412848\pi\)
\(230\) 0 0
\(231\) 168.000 0.0478510
\(232\) − 2032.00i − 0.575032i
\(233\) 3730.00i 1.04876i 0.851485 + 0.524379i \(0.175702\pi\)
−0.851485 + 0.524379i \(0.824298\pi\)
\(234\) 756.000 0.211202
\(235\) 0 0
\(236\) −3088.00 −0.851744
\(237\) − 1656.00i − 0.453877i
\(238\) 28.0000i 0.00762593i
\(239\) −2004.00 −0.542377 −0.271188 0.962526i \(-0.587417\pi\)
−0.271188 + 0.962526i \(0.587417\pi\)
\(240\) 0 0
\(241\) −646.000 −0.172666 −0.0863330 0.996266i \(-0.527515\pi\)
−0.0863330 + 0.996266i \(0.527515\pi\)
\(242\) 2534.00i 0.673106i
\(243\) 243.000i 0.0641500i
\(244\) −120.000 −0.0314845
\(245\) 0 0
\(246\) 2772.00 0.718440
\(247\) − 5208.00i − 1.34161i
\(248\) − 576.000i − 0.147484i
\(249\) −3108.00 −0.791010
\(250\) 0 0
\(251\) 1260.00 0.316855 0.158427 0.987371i \(-0.449358\pi\)
0.158427 + 0.987371i \(0.449358\pi\)
\(252\) 252.000i 0.0629941i
\(253\) − 608.000i − 0.151086i
\(254\) −4176.00 −1.03160
\(255\) 0 0
\(256\) 256.000 0.0625000
\(257\) − 5910.00i − 1.43446i −0.696838 0.717229i \(-0.745410\pi\)
0.696838 0.717229i \(-0.254590\pi\)
\(258\) 1272.00i 0.306943i
\(259\) 2786.00 0.668392
\(260\) 0 0
\(261\) 2286.00 0.542145
\(262\) 584.000i 0.137709i
\(263\) 2988.00i 0.700563i 0.936645 + 0.350281i \(0.113914\pi\)
−0.936645 + 0.350281i \(0.886086\pi\)
\(264\) 192.000 0.0447605
\(265\) 0 0
\(266\) 1736.00 0.400154
\(267\) − 90.0000i − 0.0206289i
\(268\) − 3056.00i − 0.696548i
\(269\) 1318.00 0.298736 0.149368 0.988782i \(-0.452276\pi\)
0.149368 + 0.988782i \(0.452276\pi\)
\(270\) 0 0
\(271\) −5640.00 −1.26423 −0.632114 0.774876i \(-0.717812\pi\)
−0.632114 + 0.774876i \(0.717812\pi\)
\(272\) 32.0000i 0.00713340i
\(273\) 882.000i 0.195535i
\(274\) −1636.00 −0.360709
\(275\) 0 0
\(276\) 912.000 0.198898
\(277\) − 6446.00i − 1.39820i −0.715022 0.699102i \(-0.753583\pi\)
0.715022 0.699102i \(-0.246417\pi\)
\(278\) − 4312.00i − 0.930275i
\(279\) 648.000 0.139049
\(280\) 0 0
\(281\) 4930.00 1.04662 0.523308 0.852144i \(-0.324698\pi\)
0.523308 + 0.852144i \(0.324698\pi\)
\(282\) 1584.00i 0.334489i
\(283\) − 6260.00i − 1.31491i −0.753496 0.657453i \(-0.771634\pi\)
0.753496 0.657453i \(-0.228366\pi\)
\(284\) 944.000 0.197240
\(285\) 0 0
\(286\) 672.000 0.138938
\(287\) 3234.00i 0.665146i
\(288\) 288.000i 0.0589256i
\(289\) 4909.00 0.999186
\(290\) 0 0
\(291\) −3570.00 −0.719165
\(292\) − 1672.00i − 0.335090i
\(293\) − 2310.00i − 0.460586i −0.973121 0.230293i \(-0.926032\pi\)
0.973121 0.230293i \(-0.0739684\pi\)
\(294\) −294.000 −0.0583212
\(295\) 0 0
\(296\) 3184.00 0.625224
\(297\) 216.000i 0.0422006i
\(298\) − 5700.00i − 1.10803i
\(299\) 3192.00 0.617385
\(300\) 0 0
\(301\) −1484.00 −0.284174
\(302\) − 3344.00i − 0.637171i
\(303\) 4110.00i 0.779252i
\(304\) 1984.00 0.374310
\(305\) 0 0
\(306\) −36.0000 −0.00672543
\(307\) − 196.000i − 0.0364375i −0.999834 0.0182187i \(-0.994200\pi\)
0.999834 0.0182187i \(-0.00579953\pi\)
\(308\) 224.000i 0.0414402i
\(309\) −1392.00 −0.256272
\(310\) 0 0
\(311\) −6736.00 −1.22818 −0.614089 0.789237i \(-0.710477\pi\)
−0.614089 + 0.789237i \(0.710477\pi\)
\(312\) 1008.00i 0.182906i
\(313\) 394.000i 0.0711508i 0.999367 + 0.0355754i \(0.0113264\pi\)
−0.999367 + 0.0355754i \(0.988674\pi\)
\(314\) −892.000 −0.160314
\(315\) 0 0
\(316\) 2208.00 0.393069
\(317\) 6714.00i 1.18958i 0.803882 + 0.594788i \(0.202764\pi\)
−0.803882 + 0.594788i \(0.797236\pi\)
\(318\) − 972.000i − 0.171406i
\(319\) 2032.00 0.356646
\(320\) 0 0
\(321\) −6408.00 −1.11420
\(322\) 1064.00i 0.184144i
\(323\) 248.000i 0.0427216i
\(324\) −324.000 −0.0555556
\(325\) 0 0
\(326\) 5416.00 0.920136
\(327\) 3678.00i 0.622000i
\(328\) 3696.00i 0.622187i
\(329\) −1848.00 −0.309676
\(330\) 0 0
\(331\) 692.000 0.114912 0.0574558 0.998348i \(-0.481701\pi\)
0.0574558 + 0.998348i \(0.481701\pi\)
\(332\) − 4144.00i − 0.685035i
\(333\) 3582.00i 0.589467i
\(334\) −1792.00 −0.293574
\(335\) 0 0
\(336\) −336.000 −0.0545545
\(337\) 1566.00i 0.253132i 0.991958 + 0.126566i \(0.0403955\pi\)
−0.991958 + 0.126566i \(0.959604\pi\)
\(338\) − 866.000i − 0.139362i
\(339\) −1014.00 −0.162457
\(340\) 0 0
\(341\) 576.000 0.0914726
\(342\) 2232.00i 0.352903i
\(343\) − 343.000i − 0.0539949i
\(344\) −1696.00 −0.265820
\(345\) 0 0
\(346\) 8068.00 1.25358
\(347\) 5328.00i 0.824271i 0.911123 + 0.412135i \(0.135217\pi\)
−0.911123 + 0.412135i \(0.864783\pi\)
\(348\) 3048.00i 0.469511i
\(349\) −11326.0 −1.73715 −0.868577 0.495554i \(-0.834965\pi\)
−0.868577 + 0.495554i \(0.834965\pi\)
\(350\) 0 0
\(351\) −1134.00 −0.172446
\(352\) 256.000i 0.0387638i
\(353\) − 2130.00i − 0.321157i −0.987023 0.160579i \(-0.948664\pi\)
0.987023 0.160579i \(-0.0513360\pi\)
\(354\) 4632.00 0.695446
\(355\) 0 0
\(356\) 120.000 0.0178651
\(357\) − 42.0000i − 0.00622654i
\(358\) − 6960.00i − 1.02751i
\(359\) −3044.00 −0.447510 −0.223755 0.974645i \(-0.571832\pi\)
−0.223755 + 0.974645i \(0.571832\pi\)
\(360\) 0 0
\(361\) 8517.00 1.24173
\(362\) 5796.00i 0.841522i
\(363\) − 3801.00i − 0.549589i
\(364\) −1176.00 −0.169338
\(365\) 0 0
\(366\) 180.000 0.0257070
\(367\) − 12416.0i − 1.76597i −0.469404 0.882984i \(-0.655531\pi\)
0.469404 0.882984i \(-0.344469\pi\)
\(368\) 1216.00i 0.172251i
\(369\) −4158.00 −0.586604
\(370\) 0 0
\(371\) 1134.00 0.158691
\(372\) 864.000i 0.120420i
\(373\) − 7442.00i − 1.03306i −0.856268 0.516531i \(-0.827223\pi\)
0.856268 0.516531i \(-0.172777\pi\)
\(374\) −32.0000 −0.00442428
\(375\) 0 0
\(376\) −2112.00 −0.289676
\(377\) 10668.0i 1.45737i
\(378\) − 378.000i − 0.0514344i
\(379\) −100.000 −0.0135532 −0.00677659 0.999977i \(-0.502157\pi\)
−0.00677659 + 0.999977i \(0.502157\pi\)
\(380\) 0 0
\(381\) 6264.00 0.842295
\(382\) − 5304.00i − 0.710409i
\(383\) 8080.00i 1.07799i 0.842310 + 0.538993i \(0.181195\pi\)
−0.842310 + 0.538993i \(0.818805\pi\)
\(384\) −384.000 −0.0510310
\(385\) 0 0
\(386\) 292.000 0.0385036
\(387\) − 1908.00i − 0.250618i
\(388\) − 4760.00i − 0.622815i
\(389\) 5482.00 0.714520 0.357260 0.934005i \(-0.383711\pi\)
0.357260 + 0.934005i \(0.383711\pi\)
\(390\) 0 0
\(391\) −152.000 −0.0196598
\(392\) − 392.000i − 0.0505076i
\(393\) − 876.000i − 0.112439i
\(394\) 5092.00 0.651095
\(395\) 0 0
\(396\) −288.000 −0.0365468
\(397\) − 10446.0i − 1.32058i −0.751011 0.660289i \(-0.770434\pi\)
0.751011 0.660289i \(-0.229566\pi\)
\(398\) − 5072.00i − 0.638785i
\(399\) −2604.00 −0.326724
\(400\) 0 0
\(401\) −11334.0 −1.41145 −0.705727 0.708484i \(-0.749379\pi\)
−0.705727 + 0.708484i \(0.749379\pi\)
\(402\) 4584.00i 0.568729i
\(403\) 3024.00i 0.373787i
\(404\) −5480.00 −0.674852
\(405\) 0 0
\(406\) −3556.00 −0.434683
\(407\) 3184.00i 0.387776i
\(408\) − 48.0000i − 0.00582440i
\(409\) −8594.00 −1.03899 −0.519494 0.854474i \(-0.673879\pi\)
−0.519494 + 0.854474i \(0.673879\pi\)
\(410\) 0 0
\(411\) 2454.00 0.294518
\(412\) − 1856.00i − 0.221938i
\(413\) 5404.00i 0.643858i
\(414\) −1368.00 −0.162400
\(415\) 0 0
\(416\) −1344.00 −0.158401
\(417\) 6468.00i 0.759567i
\(418\) 1984.00i 0.232155i
\(419\) −10500.0 −1.22424 −0.612122 0.790763i \(-0.709684\pi\)
−0.612122 + 0.790763i \(0.709684\pi\)
\(420\) 0 0
\(421\) −12066.0 −1.39682 −0.698410 0.715698i \(-0.746109\pi\)
−0.698410 + 0.715698i \(0.746109\pi\)
\(422\) 2600.00i 0.299919i
\(423\) − 2376.00i − 0.273109i
\(424\) 1296.00 0.148442
\(425\) 0 0
\(426\) −1416.00 −0.161046
\(427\) 210.000i 0.0238000i
\(428\) − 8544.00i − 0.964930i
\(429\) −1008.00 −0.113442
\(430\) 0 0
\(431\) 4332.00 0.484142 0.242071 0.970259i \(-0.422173\pi\)
0.242071 + 0.970259i \(0.422173\pi\)
\(432\) − 432.000i − 0.0481125i
\(433\) − 1918.00i − 0.212871i −0.994320 0.106436i \(-0.966056\pi\)
0.994320 0.106436i \(-0.0339438\pi\)
\(434\) −1008.00 −0.111487
\(435\) 0 0
\(436\) −4904.00 −0.538667
\(437\) 9424.00i 1.03160i
\(438\) 2508.00i 0.273600i
\(439\) 7992.00 0.868878 0.434439 0.900701i \(-0.356947\pi\)
0.434439 + 0.900701i \(0.356947\pi\)
\(440\) 0 0
\(441\) 441.000 0.0476190
\(442\) − 168.000i − 0.0180791i
\(443\) 3184.00i 0.341482i 0.985316 + 0.170741i \(0.0546161\pi\)
−0.985316 + 0.170741i \(0.945384\pi\)
\(444\) −4776.00 −0.510493
\(445\) 0 0
\(446\) 5152.00 0.546983
\(447\) 8550.00i 0.904700i
\(448\) − 448.000i − 0.0472456i
\(449\) −11426.0 −1.20095 −0.600475 0.799644i \(-0.705022\pi\)
−0.600475 + 0.799644i \(0.705022\pi\)
\(450\) 0 0
\(451\) −3696.00 −0.385893
\(452\) − 1352.00i − 0.140692i
\(453\) 5016.00i 0.520248i
\(454\) 3672.00 0.379594
\(455\) 0 0
\(456\) −2976.00 −0.305623
\(457\) 16934.0i 1.73335i 0.498877 + 0.866673i \(0.333746\pi\)
−0.498877 + 0.866673i \(0.666254\pi\)
\(458\) − 3748.00i − 0.382385i
\(459\) 54.0000 0.00549129
\(460\) 0 0
\(461\) −17038.0 −1.72134 −0.860671 0.509161i \(-0.829956\pi\)
−0.860671 + 0.509161i \(0.829956\pi\)
\(462\) − 336.000i − 0.0338358i
\(463\) − 13592.0i − 1.36431i −0.731209 0.682153i \(-0.761044\pi\)
0.731209 0.682153i \(-0.238956\pi\)
\(464\) −4064.00 −0.406609
\(465\) 0 0
\(466\) 7460.00 0.741583
\(467\) − 8612.00i − 0.853353i −0.904404 0.426676i \(-0.859684\pi\)
0.904404 0.426676i \(-0.140316\pi\)
\(468\) − 1512.00i − 0.149342i
\(469\) −5348.00 −0.526541
\(470\) 0 0
\(471\) 1338.00 0.130896
\(472\) 6176.00i 0.602274i
\(473\) − 1696.00i − 0.164867i
\(474\) −3312.00 −0.320939
\(475\) 0 0
\(476\) 56.0000 0.00539234
\(477\) 1458.00i 0.139952i
\(478\) 4008.00i 0.383518i
\(479\) −7432.00 −0.708928 −0.354464 0.935070i \(-0.615337\pi\)
−0.354464 + 0.935070i \(0.615337\pi\)
\(480\) 0 0
\(481\) −16716.0 −1.58458
\(482\) 1292.00i 0.122093i
\(483\) − 1596.00i − 0.150353i
\(484\) 5068.00 0.475958
\(485\) 0 0
\(486\) 486.000 0.0453609
\(487\) 6616.00i 0.615605i 0.951450 + 0.307802i \(0.0995936\pi\)
−0.951450 + 0.307802i \(0.900406\pi\)
\(488\) 240.000i 0.0222629i
\(489\) −8124.00 −0.751288
\(490\) 0 0
\(491\) 17040.0 1.56620 0.783100 0.621896i \(-0.213637\pi\)
0.783100 + 0.621896i \(0.213637\pi\)
\(492\) − 5544.00i − 0.508014i
\(493\) − 508.000i − 0.0464081i
\(494\) −10416.0 −0.948660
\(495\) 0 0
\(496\) −1152.00 −0.104287
\(497\) − 1652.00i − 0.149099i
\(498\) 6216.00i 0.559329i
\(499\) 2948.00 0.264470 0.132235 0.991218i \(-0.457785\pi\)
0.132235 + 0.991218i \(0.457785\pi\)
\(500\) 0 0
\(501\) 2688.00 0.239703
\(502\) − 2520.00i − 0.224050i
\(503\) 17304.0i 1.53389i 0.641712 + 0.766946i \(0.278224\pi\)
−0.641712 + 0.766946i \(0.721776\pi\)
\(504\) 504.000 0.0445435
\(505\) 0 0
\(506\) −1216.00 −0.106834
\(507\) 1299.00i 0.113788i
\(508\) 8352.00i 0.729449i
\(509\) −4650.00 −0.404927 −0.202463 0.979290i \(-0.564895\pi\)
−0.202463 + 0.979290i \(0.564895\pi\)
\(510\) 0 0
\(511\) −2926.00 −0.253305
\(512\) − 512.000i − 0.0441942i
\(513\) − 3348.00i − 0.288144i
\(514\) −11820.0 −1.01431
\(515\) 0 0
\(516\) 2544.00 0.217041
\(517\) − 2112.00i − 0.179663i
\(518\) − 5572.00i − 0.472625i
\(519\) −12102.0 −1.02354
\(520\) 0 0
\(521\) 16854.0 1.41725 0.708625 0.705585i \(-0.249316\pi\)
0.708625 + 0.705585i \(0.249316\pi\)
\(522\) − 4572.00i − 0.383354i
\(523\) − 124.000i − 0.0103674i −0.999987 0.00518369i \(-0.998350\pi\)
0.999987 0.00518369i \(-0.00165003\pi\)
\(524\) 1168.00 0.0973747
\(525\) 0 0
\(526\) 5976.00 0.495373
\(527\) − 144.000i − 0.0119027i
\(528\) − 384.000i − 0.0316505i
\(529\) 6391.00 0.525273
\(530\) 0 0
\(531\) −6948.00 −0.567830
\(532\) − 3472.00i − 0.282952i
\(533\) − 19404.0i − 1.57689i
\(534\) −180.000 −0.0145868
\(535\) 0 0
\(536\) −6112.00 −0.492534
\(537\) 10440.0i 0.838956i
\(538\) − 2636.00i − 0.211238i
\(539\) 392.000 0.0313259
\(540\) 0 0
\(541\) 5382.00 0.427708 0.213854 0.976866i \(-0.431398\pi\)
0.213854 + 0.976866i \(0.431398\pi\)
\(542\) 11280.0i 0.893944i
\(543\) − 8694.00i − 0.687100i
\(544\) 64.0000 0.00504408
\(545\) 0 0
\(546\) 1764.00 0.138264
\(547\) − 17460.0i − 1.36478i −0.730987 0.682391i \(-0.760940\pi\)
0.730987 0.682391i \(-0.239060\pi\)
\(548\) 3272.00i 0.255060i
\(549\) −270.000 −0.0209897
\(550\) 0 0
\(551\) −31496.0 −2.43516
\(552\) − 1824.00i − 0.140642i
\(553\) − 3864.00i − 0.297132i
\(554\) −12892.0 −0.988680
\(555\) 0 0
\(556\) −8624.00 −0.657804
\(557\) 9514.00i 0.723736i 0.932229 + 0.361868i \(0.117861\pi\)
−0.932229 + 0.361868i \(0.882139\pi\)
\(558\) − 1296.00i − 0.0983227i
\(559\) 8904.00 0.673701
\(560\) 0 0
\(561\) 48.0000 0.00361241
\(562\) − 9860.00i − 0.740069i
\(563\) 3988.00i 0.298533i 0.988797 + 0.149267i \(0.0476913\pi\)
−0.988797 + 0.149267i \(0.952309\pi\)
\(564\) 3168.00 0.236519
\(565\) 0 0
\(566\) −12520.0 −0.929779
\(567\) 567.000i 0.0419961i
\(568\) − 1888.00i − 0.139470i
\(569\) −11346.0 −0.835939 −0.417969 0.908461i \(-0.637258\pi\)
−0.417969 + 0.908461i \(0.637258\pi\)
\(570\) 0 0
\(571\) −8436.00 −0.618276 −0.309138 0.951017i \(-0.600041\pi\)
−0.309138 + 0.951017i \(0.600041\pi\)
\(572\) − 1344.00i − 0.0982438i
\(573\) 7956.00i 0.580047i
\(574\) 6468.00 0.470329
\(575\) 0 0
\(576\) 576.000 0.0416667
\(577\) − 2098.00i − 0.151371i −0.997132 0.0756853i \(-0.975886\pi\)
0.997132 0.0756853i \(-0.0241145\pi\)
\(578\) − 9818.00i − 0.706531i
\(579\) −438.000 −0.0314381
\(580\) 0 0
\(581\) −7252.00 −0.517838
\(582\) 7140.00i 0.508527i
\(583\) 1296.00i 0.0920666i
\(584\) −3344.00 −0.236945
\(585\) 0 0
\(586\) −4620.00 −0.325683
\(587\) − 9436.00i − 0.663484i −0.943370 0.331742i \(-0.892364\pi\)
0.943370 0.331742i \(-0.107636\pi\)
\(588\) 588.000i 0.0412393i
\(589\) −8928.00 −0.624570
\(590\) 0 0
\(591\) −7638.00 −0.531616
\(592\) − 6368.00i − 0.442100i
\(593\) − 1314.00i − 0.0909941i −0.998964 0.0454971i \(-0.985513\pi\)
0.998964 0.0454971i \(-0.0144872\pi\)
\(594\) 432.000 0.0298404
\(595\) 0 0
\(596\) −11400.0 −0.783494
\(597\) 7608.00i 0.521566i
\(598\) − 6384.00i − 0.436557i
\(599\) 8940.00 0.609814 0.304907 0.952382i \(-0.401375\pi\)
0.304907 + 0.952382i \(0.401375\pi\)
\(600\) 0 0
\(601\) 16058.0 1.08988 0.544941 0.838474i \(-0.316552\pi\)
0.544941 + 0.838474i \(0.316552\pi\)
\(602\) 2968.00i 0.200941i
\(603\) − 6876.00i − 0.464365i
\(604\) −6688.00 −0.450548
\(605\) 0 0
\(606\) 8220.00 0.551014
\(607\) − 3936.00i − 0.263192i −0.991303 0.131596i \(-0.957990\pi\)
0.991303 0.131596i \(-0.0420101\pi\)
\(608\) − 3968.00i − 0.264677i
\(609\) 5334.00 0.354917
\(610\) 0 0
\(611\) 11088.0 0.734161
\(612\) 72.0000i 0.00475560i
\(613\) 174.000i 0.0114646i 0.999984 + 0.00573230i \(0.00182466\pi\)
−0.999984 + 0.00573230i \(0.998175\pi\)
\(614\) −392.000 −0.0257652
\(615\) 0 0
\(616\) 448.000 0.0293027
\(617\) − 16018.0i − 1.04515i −0.852592 0.522577i \(-0.824971\pi\)
0.852592 0.522577i \(-0.175029\pi\)
\(618\) 2784.00i 0.181212i
\(619\) 3068.00 0.199214 0.0996069 0.995027i \(-0.468241\pi\)
0.0996069 + 0.995027i \(0.468241\pi\)
\(620\) 0 0
\(621\) 2052.00 0.132599
\(622\) 13472.0i 0.868453i
\(623\) − 210.000i − 0.0135048i
\(624\) 2016.00 0.129334
\(625\) 0 0
\(626\) 788.000 0.0503112
\(627\) − 2976.00i − 0.189553i
\(628\) 1784.00i 0.113359i
\(629\) 796.000 0.0504588
\(630\) 0 0
\(631\) 24656.0 1.55553 0.777765 0.628555i \(-0.216353\pi\)
0.777765 + 0.628555i \(0.216353\pi\)
\(632\) − 4416.00i − 0.277942i
\(633\) − 3900.00i − 0.244883i
\(634\) 13428.0 0.841158
\(635\) 0 0
\(636\) −1944.00 −0.121202
\(637\) 2058.00i 0.128008i
\(638\) − 4064.00i − 0.252187i
\(639\) 2124.00 0.131493
\(640\) 0 0
\(641\) 7594.00 0.467933 0.233966 0.972245i \(-0.424829\pi\)
0.233966 + 0.972245i \(0.424829\pi\)
\(642\) 12816.0i 0.787862i
\(643\) − 3724.00i − 0.228398i −0.993458 0.114199i \(-0.963570\pi\)
0.993458 0.114199i \(-0.0364302\pi\)
\(644\) 2128.00 0.130210
\(645\) 0 0
\(646\) 496.000 0.0302088
\(647\) − 3792.00i − 0.230416i −0.993341 0.115208i \(-0.963247\pi\)
0.993341 0.115208i \(-0.0367534\pi\)
\(648\) 648.000i 0.0392837i
\(649\) −6176.00 −0.373543
\(650\) 0 0
\(651\) 1512.00 0.0910291
\(652\) − 10832.0i − 0.650635i
\(653\) 24702.0i 1.48034i 0.672418 + 0.740171i \(0.265256\pi\)
−0.672418 + 0.740171i \(0.734744\pi\)
\(654\) 7356.00 0.439820
\(655\) 0 0
\(656\) 7392.00 0.439953
\(657\) − 3762.00i − 0.223394i
\(658\) 3696.00i 0.218974i
\(659\) 20144.0 1.19074 0.595371 0.803451i \(-0.297005\pi\)
0.595371 + 0.803451i \(0.297005\pi\)
\(660\) 0 0
\(661\) −2522.00 −0.148403 −0.0742015 0.997243i \(-0.523641\pi\)
−0.0742015 + 0.997243i \(0.523641\pi\)
\(662\) − 1384.00i − 0.0812548i
\(663\) 252.000i 0.0147615i
\(664\) −8288.00 −0.484393
\(665\) 0 0
\(666\) 7164.00 0.416816
\(667\) − 19304.0i − 1.12062i
\(668\) 3584.00i 0.207589i
\(669\) −7728.00 −0.446609
\(670\) 0 0
\(671\) −240.000 −0.0138079
\(672\) 672.000i 0.0385758i
\(673\) − 10414.0i − 0.596479i −0.954491 0.298239i \(-0.903601\pi\)
0.954491 0.298239i \(-0.0963994\pi\)
\(674\) 3132.00 0.178991
\(675\) 0 0
\(676\) −1732.00 −0.0985435
\(677\) 22230.0i 1.26199i 0.775786 + 0.630996i \(0.217353\pi\)
−0.775786 + 0.630996i \(0.782647\pi\)
\(678\) 2028.00i 0.114874i
\(679\) −8330.00 −0.470804
\(680\) 0 0
\(681\) −5508.00 −0.309937
\(682\) − 1152.00i − 0.0646809i
\(683\) 18192.0i 1.01918i 0.860418 + 0.509588i \(0.170202\pi\)
−0.860418 + 0.509588i \(0.829798\pi\)
\(684\) 4464.00 0.249540
\(685\) 0 0
\(686\) −686.000 −0.0381802
\(687\) 5622.00i 0.312216i
\(688\) 3392.00i 0.187963i
\(689\) −6804.00 −0.376214
\(690\) 0 0
\(691\) 8108.00 0.446372 0.223186 0.974776i \(-0.428354\pi\)
0.223186 + 0.974776i \(0.428354\pi\)
\(692\) − 16136.0i − 0.886414i
\(693\) 504.000i 0.0276268i
\(694\) 10656.0 0.582848
\(695\) 0 0
\(696\) 6096.00 0.331995
\(697\) 924.000i 0.0502138i
\(698\) 22652.0i 1.22835i
\(699\) −11190.0 −0.605500
\(700\) 0 0
\(701\) −5794.00 −0.312177 −0.156089 0.987743i \(-0.549889\pi\)
−0.156089 + 0.987743i \(0.549889\pi\)
\(702\) 2268.00i 0.121938i
\(703\) − 49352.0i − 2.64772i
\(704\) 512.000 0.0274101
\(705\) 0 0
\(706\) −4260.00 −0.227092
\(707\) 9590.00i 0.510140i
\(708\) − 9264.00i − 0.491755i
\(709\) 1954.00 0.103504 0.0517518 0.998660i \(-0.483520\pi\)
0.0517518 + 0.998660i \(0.483520\pi\)
\(710\) 0 0
\(711\) 4968.00 0.262046
\(712\) − 240.000i − 0.0126326i
\(713\) − 5472.00i − 0.287417i
\(714\) −84.0000 −0.00440283
\(715\) 0 0
\(716\) −13920.0 −0.726557
\(717\) − 6012.00i − 0.313141i
\(718\) 6088.00i 0.316438i
\(719\) 32016.0 1.66063 0.830317 0.557292i \(-0.188160\pi\)
0.830317 + 0.557292i \(0.188160\pi\)
\(720\) 0 0
\(721\) −3248.00 −0.167770
\(722\) − 17034.0i − 0.878033i
\(723\) − 1938.00i − 0.0996888i
\(724\) 11592.0 0.595046
\(725\) 0 0
\(726\) −7602.00 −0.388618
\(727\) 23072.0i 1.17702i 0.808490 + 0.588510i \(0.200285\pi\)
−0.808490 + 0.588510i \(0.799715\pi\)
\(728\) 2352.00i 0.119740i
\(729\) −729.000 −0.0370370
\(730\) 0 0
\(731\) −424.000 −0.0214531
\(732\) − 360.000i − 0.0181776i
\(733\) 31782.0i 1.60149i 0.599003 + 0.800747i \(0.295564\pi\)
−0.599003 + 0.800747i \(0.704436\pi\)
\(734\) −24832.0 −1.24873
\(735\) 0 0
\(736\) 2432.00 0.121800
\(737\) − 6112.00i − 0.305480i
\(738\) 8316.00i 0.414792i
\(739\) 24396.0 1.21437 0.607186 0.794559i \(-0.292298\pi\)
0.607186 + 0.794559i \(0.292298\pi\)
\(740\) 0 0
\(741\) 15624.0 0.774578
\(742\) − 2268.00i − 0.112211i
\(743\) − 32604.0i − 1.60986i −0.593371 0.804929i \(-0.702203\pi\)
0.593371 0.804929i \(-0.297797\pi\)
\(744\) 1728.00 0.0851499
\(745\) 0 0
\(746\) −14884.0 −0.730485
\(747\) − 9324.00i − 0.456690i
\(748\) 64.0000i 0.00312844i
\(749\) −14952.0 −0.729418
\(750\) 0 0
\(751\) −7680.00 −0.373165 −0.186583 0.982439i \(-0.559741\pi\)
−0.186583 + 0.982439i \(0.559741\pi\)
\(752\) 4224.00i 0.204832i
\(753\) 3780.00i 0.182936i
\(754\) 21336.0 1.03052
\(755\) 0 0
\(756\) −756.000 −0.0363696
\(757\) − 366.000i − 0.0175727i −0.999961 0.00878633i \(-0.997203\pi\)
0.999961 0.00878633i \(-0.00279681\pi\)
\(758\) 200.000i 0.00958355i
\(759\) 1824.00 0.0872293
\(760\) 0 0
\(761\) 29374.0 1.39922 0.699610 0.714525i \(-0.253357\pi\)
0.699610 + 0.714525i \(0.253357\pi\)
\(762\) − 12528.0i − 0.595593i
\(763\) 8582.00i 0.407194i
\(764\) −10608.0 −0.502335
\(765\) 0 0
\(766\) 16160.0 0.762251
\(767\) − 32424.0i − 1.52642i
\(768\) 768.000i 0.0360844i
\(769\) 38990.0 1.82837 0.914184 0.405299i \(-0.132833\pi\)
0.914184 + 0.405299i \(0.132833\pi\)
\(770\) 0 0
\(771\) 17730.0 0.828185
\(772\) − 584.000i − 0.0272262i
\(773\) − 20470.0i − 0.952464i −0.879320 0.476232i \(-0.842002\pi\)
0.879320 0.476232i \(-0.157998\pi\)
\(774\) −3816.00 −0.177214
\(775\) 0 0
\(776\) −9520.00 −0.440397
\(777\) 8358.00i 0.385896i
\(778\) − 10964.0i − 0.505242i
\(779\) 57288.0 2.63486
\(780\) 0 0
\(781\) 1888.00 0.0865019
\(782\) 304.000i 0.0139016i
\(783\) 6858.00i 0.313008i
\(784\) −784.000 −0.0357143
\(785\) 0 0
\(786\) −1752.00 −0.0795061
\(787\) − 29916.0i − 1.35501i −0.735520 0.677503i \(-0.763062\pi\)
0.735520 0.677503i \(-0.236938\pi\)
\(788\) − 10184.0i − 0.460393i
\(789\) −8964.00 −0.404470
\(790\) 0 0
\(791\) −2366.00 −0.106353
\(792\) 576.000i 0.0258425i
\(793\) − 1260.00i − 0.0564236i
\(794\) −20892.0 −0.933790
\(795\) 0 0
\(796\) −10144.0 −0.451689
\(797\) − 4914.00i − 0.218398i −0.994020 0.109199i \(-0.965172\pi\)
0.994020 0.109199i \(-0.0348285\pi\)
\(798\) 5208.00i 0.231029i
\(799\) −528.000 −0.0233783
\(800\) 0 0
\(801\) 270.000 0.0119101
\(802\) 22668.0i 0.998049i
\(803\) − 3344.00i − 0.146958i
\(804\) 9168.00 0.402152
\(805\) 0 0
\(806\) 6048.00 0.264307
\(807\) 3954.00i 0.172475i
\(808\) 10960.0i 0.477192i
\(809\) −34250.0 −1.48846 −0.744231 0.667922i \(-0.767184\pi\)
−0.744231 + 0.667922i \(0.767184\pi\)
\(810\) 0 0
\(811\) −41804.0 −1.81003 −0.905017 0.425376i \(-0.860142\pi\)
−0.905017 + 0.425376i \(0.860142\pi\)
\(812\) 7112.00i 0.307367i
\(813\) − 16920.0i − 0.729902i
\(814\) 6368.00 0.274199
\(815\) 0 0
\(816\) −96.0000 −0.00411847
\(817\) 26288.0i 1.12570i
\(818\) 17188.0i 0.734675i
\(819\) −2646.00 −0.112892
\(820\) 0 0
\(821\) 30862.0 1.31193 0.655963 0.754793i \(-0.272263\pi\)
0.655963 + 0.754793i \(0.272263\pi\)
\(822\) − 4908.00i − 0.208256i
\(823\) 10576.0i 0.447942i 0.974596 + 0.223971i \(0.0719021\pi\)
−0.974596 + 0.223971i \(0.928098\pi\)
\(824\) −3712.00 −0.156934
\(825\) 0 0
\(826\) 10808.0 0.455277
\(827\) 10680.0i 0.449069i 0.974466 + 0.224534i \(0.0720861\pi\)
−0.974466 + 0.224534i \(0.927914\pi\)
\(828\) 2736.00i 0.114834i
\(829\) 1178.00 0.0493530 0.0246765 0.999695i \(-0.492144\pi\)
0.0246765 + 0.999695i \(0.492144\pi\)
\(830\) 0 0
\(831\) 19338.0 0.807254
\(832\) 2688.00i 0.112007i
\(833\) − 98.0000i − 0.00407623i
\(834\) 12936.0 0.537095
\(835\) 0 0
\(836\) 3968.00 0.164158
\(837\) 1944.00i 0.0802801i
\(838\) 21000.0i 0.865672i
\(839\) 5600.00 0.230433 0.115217 0.993340i \(-0.463244\pi\)
0.115217 + 0.993340i \(0.463244\pi\)
\(840\) 0 0
\(841\) 40127.0 1.64529
\(842\) 24132.0i 0.987700i
\(843\) 14790.0i 0.604264i
\(844\) 5200.00 0.212075
\(845\) 0 0
\(846\) −4752.00 −0.193117
\(847\) − 8869.00i − 0.359790i
\(848\) − 2592.00i − 0.104964i
\(849\) 18780.0 0.759161
\(850\) 0 0
\(851\) 30248.0 1.21843
\(852\) 2832.00i 0.113876i
\(853\) − 826.000i − 0.0331556i −0.999863 0.0165778i \(-0.994723\pi\)
0.999863 0.0165778i \(-0.00527711\pi\)
\(854\) 420.000 0.0168292
\(855\) 0 0
\(856\) −17088.0 −0.682308
\(857\) − 45918.0i − 1.83026i −0.403164 0.915128i \(-0.632090\pi\)
0.403164 0.915128i \(-0.367910\pi\)
\(858\) 2016.00i 0.0802157i
\(859\) −42380.0 −1.68334 −0.841669 0.539994i \(-0.818426\pi\)
−0.841669 + 0.539994i \(0.818426\pi\)
\(860\) 0 0
\(861\) −9702.00 −0.384022
\(862\) − 8664.00i − 0.342340i
\(863\) − 26524.0i − 1.04622i −0.852265 0.523110i \(-0.824772\pi\)
0.852265 0.523110i \(-0.175228\pi\)
\(864\) −864.000 −0.0340207
\(865\) 0 0
\(866\) −3836.00 −0.150523
\(867\) 14727.0i 0.576880i
\(868\) 2016.00i 0.0788335i
\(869\) 4416.00 0.172385
\(870\) 0 0
\(871\) 32088.0 1.24829
\(872\) 9808.00i 0.380895i
\(873\) − 10710.0i − 0.415210i
\(874\) 18848.0 0.729454
\(875\) 0 0
\(876\) 5016.00 0.193465
\(877\) − 20614.0i − 0.793712i −0.917881 0.396856i \(-0.870101\pi\)
0.917881 0.396856i \(-0.129899\pi\)
\(878\) − 15984.0i − 0.614389i
\(879\) 6930.00 0.265919
\(880\) 0 0
\(881\) −23730.0 −0.907473 −0.453737 0.891136i \(-0.649909\pi\)
−0.453737 + 0.891136i \(0.649909\pi\)
\(882\) − 882.000i − 0.0336718i
\(883\) − 9028.00i − 0.344073i −0.985091 0.172036i \(-0.944965\pi\)
0.985091 0.172036i \(-0.0550347\pi\)
\(884\) −336.000 −0.0127838
\(885\) 0 0
\(886\) 6368.00 0.241464
\(887\) − 37200.0i − 1.40818i −0.710112 0.704089i \(-0.751356\pi\)
0.710112 0.704089i \(-0.248644\pi\)
\(888\) 9552.00i 0.360973i
\(889\) 14616.0 0.551412
\(890\) 0 0
\(891\) −648.000 −0.0243646
\(892\) − 10304.0i − 0.386775i
\(893\) 32736.0i 1.22673i
\(894\) 17100.0 0.639720
\(895\) 0 0
\(896\) −896.000 −0.0334077
\(897\) 9576.00i 0.356447i
\(898\) 22852.0i 0.849199i
\(899\) 18288.0 0.678464
\(900\) 0 0
\(901\) 324.000 0.0119800
\(902\) 7392.00i 0.272868i
\(903\) − 4452.00i − 0.164068i
\(904\) −2704.00 −0.0994842
\(905\) 0 0
\(906\) 10032.0 0.367871
\(907\) − 23988.0i − 0.878179i −0.898443 0.439090i \(-0.855301\pi\)
0.898443 0.439090i \(-0.144699\pi\)
\(908\) − 7344.00i − 0.268413i
\(909\) −12330.0 −0.449901
\(910\) 0 0
\(911\) 15276.0 0.555561 0.277781 0.960645i \(-0.410401\pi\)
0.277781 + 0.960645i \(0.410401\pi\)
\(912\) 5952.00i 0.216108i
\(913\) − 8288.00i − 0.300430i
\(914\) 33868.0 1.22566
\(915\) 0 0
\(916\) −7496.00 −0.270387
\(917\) − 2044.00i − 0.0736083i
\(918\) − 108.000i − 0.00388293i
\(919\) 10760.0 0.386224 0.193112 0.981177i \(-0.438142\pi\)
0.193112 + 0.981177i \(0.438142\pi\)
\(920\) 0 0
\(921\) 588.000 0.0210372
\(922\) 34076.0i 1.21717i
\(923\) 9912.00i 0.353475i
\(924\) −672.000 −0.0239255
\(925\) 0 0
\(926\) −27184.0 −0.964710
\(927\) − 4176.00i − 0.147959i
\(928\) 8128.00i 0.287516i
\(929\) 52890.0 1.86788 0.933942 0.357424i \(-0.116345\pi\)
0.933942 + 0.357424i \(0.116345\pi\)
\(930\) 0 0
\(931\) −6076.00 −0.213891
\(932\) − 14920.0i − 0.524379i
\(933\) − 20208.0i − 0.709089i
\(934\) −17224.0 −0.603412
\(935\) 0 0
\(936\) −3024.00 −0.105601
\(937\) 6118.00i 0.213305i 0.994296 + 0.106652i \(0.0340132\pi\)
−0.994296 + 0.106652i \(0.965987\pi\)
\(938\) 10696.0i 0.372321i
\(939\) −1182.00 −0.0410789
\(940\) 0 0
\(941\) −32230.0 −1.11654 −0.558272 0.829658i \(-0.688535\pi\)
−0.558272 + 0.829658i \(0.688535\pi\)
\(942\) − 2676.00i − 0.0925571i
\(943\) 35112.0i 1.21252i
\(944\) 12352.0 0.425872
\(945\) 0 0
\(946\) −3392.00 −0.116579
\(947\) 18544.0i 0.636324i 0.948036 + 0.318162i \(0.103066\pi\)
−0.948036 + 0.318162i \(0.896934\pi\)
\(948\) 6624.00i 0.226938i
\(949\) 17556.0 0.600518
\(950\) 0 0
\(951\) −20142.0 −0.686802
\(952\) − 112.000i − 0.00381296i
\(953\) 25930.0i 0.881380i 0.897659 + 0.440690i \(0.145266\pi\)
−0.897659 + 0.440690i \(0.854734\pi\)
\(954\) 2916.00 0.0989612
\(955\) 0 0
\(956\) 8016.00 0.271188
\(957\) 6096.00i 0.205910i
\(958\) 14864.0i 0.501288i
\(959\) 5726.00 0.192807
\(960\) 0 0
\(961\) −24607.0 −0.825988
\(962\) 33432.0i 1.12047i
\(963\) − 19224.0i − 0.643286i
\(964\) 2584.00 0.0863330
\(965\) 0 0
\(966\) −3192.00 −0.106316
\(967\) − 8192.00i − 0.272427i −0.990680 0.136214i \(-0.956507\pi\)
0.990680 0.136214i \(-0.0434933\pi\)
\(968\) − 10136.0i − 0.336553i
\(969\) −744.000 −0.0246653
\(970\) 0 0
\(971\) −54444.0 −1.79937 −0.899686 0.436537i \(-0.856205\pi\)
−0.899686 + 0.436537i \(0.856205\pi\)
\(972\) − 972.000i − 0.0320750i
\(973\) 15092.0i 0.497253i
\(974\) 13232.0 0.435298
\(975\) 0 0
\(976\) 480.000 0.0157422
\(977\) 25446.0i 0.833255i 0.909077 + 0.416627i \(0.136788\pi\)
−0.909077 + 0.416627i \(0.863212\pi\)
\(978\) 16248.0i 0.531241i
\(979\) 240.000 0.00783497
\(980\) 0 0
\(981\) −11034.0 −0.359112
\(982\) − 34080.0i − 1.10747i
\(983\) 33192.0i 1.07697i 0.842635 + 0.538484i \(0.181003\pi\)
−0.842635 + 0.538484i \(0.818997\pi\)
\(984\) −11088.0 −0.359220
\(985\) 0 0
\(986\) −1016.00 −0.0328154
\(987\) − 5544.00i − 0.178792i
\(988\) 20832.0i 0.670804i
\(989\) −16112.0 −0.518030
\(990\) 0 0
\(991\) 11024.0 0.353369 0.176685 0.984268i \(-0.443463\pi\)
0.176685 + 0.984268i \(0.443463\pi\)
\(992\) 2304.00i 0.0737420i
\(993\) 2076.00i 0.0663443i
\(994\) −3304.00 −0.105429
\(995\) 0 0
\(996\) 12432.0 0.395505
\(997\) 40714.0i 1.29331i 0.762785 + 0.646653i \(0.223832\pi\)
−0.762785 + 0.646653i \(0.776168\pi\)
\(998\) − 5896.00i − 0.187009i
\(999\) −10746.0 −0.340329
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1050.4.g.n.799.1 2
5.2 odd 4 42.4.a.b.1.1 1
5.3 odd 4 1050.4.a.d.1.1 1
5.4 even 2 inner 1050.4.g.n.799.2 2
15.2 even 4 126.4.a.c.1.1 1
20.7 even 4 336.4.a.d.1.1 1
35.2 odd 12 294.4.e.a.67.1 2
35.12 even 12 294.4.e.d.67.1 2
35.17 even 12 294.4.e.d.79.1 2
35.27 even 4 294.4.a.h.1.1 1
35.32 odd 12 294.4.e.a.79.1 2
40.27 even 4 1344.4.a.t.1.1 1
40.37 odd 4 1344.4.a.f.1.1 1
60.47 odd 4 1008.4.a.j.1.1 1
105.2 even 12 882.4.g.s.361.1 2
105.17 odd 12 882.4.g.r.667.1 2
105.32 even 12 882.4.g.s.667.1 2
105.47 odd 12 882.4.g.r.361.1 2
105.62 odd 4 882.4.a.d.1.1 1
140.27 odd 4 2352.4.a.ba.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.4.a.b.1.1 1 5.2 odd 4
126.4.a.c.1.1 1 15.2 even 4
294.4.a.h.1.1 1 35.27 even 4
294.4.e.a.67.1 2 35.2 odd 12
294.4.e.a.79.1 2 35.32 odd 12
294.4.e.d.67.1 2 35.12 even 12
294.4.e.d.79.1 2 35.17 even 12
336.4.a.d.1.1 1 20.7 even 4
882.4.a.d.1.1 1 105.62 odd 4
882.4.g.r.361.1 2 105.47 odd 12
882.4.g.r.667.1 2 105.17 odd 12
882.4.g.s.361.1 2 105.2 even 12
882.4.g.s.667.1 2 105.32 even 12
1008.4.a.j.1.1 1 60.47 odd 4
1050.4.a.d.1.1 1 5.3 odd 4
1050.4.g.n.799.1 2 1.1 even 1 trivial
1050.4.g.n.799.2 2 5.4 even 2 inner
1344.4.a.f.1.1 1 40.37 odd 4
1344.4.a.t.1.1 1 40.27 even 4
2352.4.a.ba.1.1 1 140.27 odd 4